Robust Shape Regularity Criteria for Superpixel Evaluation

Abstract : Regular decompositions are necessary for most superpixel-based object recognition or tracking applications. So far in the literature, the regularity or compactness of a superpixel shape is mainly measured by its circularity. In this work, we first demonstrate that such measure is not adapted for super-pixel evaluation, since it does not directly express regularity but circular appearance. Then, we propose a new metric that considers several shape regularity aspects: convexity, balanced repartition, and contour smoothness. Finally, we demonstrate that our measure is robust to scale and noise and enables to more relevantly compare superpixel methods.
Type de document :
Communication dans un congrès
IEEE International Conference on Image Processing (ICIP), Sep 2017, Beijing, China
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01510062
Contributeur : Rémi Giraud <>
Soumis le : samedi 20 mai 2017 - 15:40:43
Dernière modification le : mercredi 20 septembre 2017 - 18:14:34

Fichier

Giraud_SRC_ICIP17.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

  • HAL Id : hal-01510062, version 2

Collections

Citation

Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis. Robust Shape Regularity Criteria for Superpixel Evaluation. IEEE International Conference on Image Processing (ICIP), Sep 2017, Beijing, China. 〈hal-01510062〉

Partager

Métriques

Consultations de la notice

137

Téléchargements de fichiers

108