ASYMPTOTIC MULTIVARIATE EXPECTILES
Véronique Maume-Deschamps, Didier Rullière, Khalil Said

To cite this version:
Véronique Maume-Deschamps, Didier Rullière, Khalil Said. ASYMPTOTIC MULTIVARIATE EXPECTILES. 2018. hal-01509963v2

HAL Id: hal-01509963
https://hal.archives-ouvertes.fr/hal-01509963v2
Submitted on 18 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EXTREMES FOR MULTIVARIATE EXPECTILES

VÉRONIQUE MAUME-DESCHAMPS, DIDIER RULLIÈRE, AND KHALIL SAID

Abstract. In [20], a new family of vector-valued risk measures called multivariate expectiles is introduced. In this paper, we focus on the asymptotic behavior of these measures in a multivariate regular variations context. For models with equivalent tails, we propose an estimator of extreme multivariate expectiles, in the Fréchet attraction domain case, with asymptotic independence, or for comonotonic margins.

Introduction

In few years, expectiles became an important risk measure among more used ones, essentially, because it satisfies both coherence and elicitability properties. In dimension one, expectiles were introduced by Newey and Powell (1987) [13]. For a random variable \(X \) with finite order 2 moment, the expectile of level \(\alpha \) is defined as

\[
e_\alpha(X) = \arg \min_{x \in \mathbb{R}} \mathbb{E}[\alpha(X - x)_+^2 + (1 - \alpha)(X - x)_-^2],
\]

where \((x)_+ = \max(x, 0)\). Expectiles are the only risk measure satisfying both elicitability and coherence properties, according to Bellini and Bignozzi (2015) [4].

In higher dimension, one of the proposed extensions of expectiles in [20] are Matrix Expectiles. Consider a random vector \(X = (X_1, \ldots, X_d)^T \in \mathbb{R}^d \) having order 2 moments, and let \(\Sigma = (\pi_{ij})_{1 \leq i,j \leq d} \) be a \(d \times d \) real matrix, symmetric and positive semi-definite such that \(i \in \{1, \ldots, d\} \), \(\pi_{ii} = \pi_i > 0 \).

A \(\Sigma \)-expectile of \(X \), is defined as

\[
e_{\alpha}(X) \in \arg \min_{x \in \mathbb{R}^d} \mathbb{E}[\alpha(X - x)^T \Sigma(X - x)_+ + (1 - \alpha)(X - x)^T \Sigma(X - x)_-],
\]

where \((x)_+ = ((x)_1, \ldots, (x)_d)_+^T \) and \((x)_- = (-x)_+^T \). We shall concentrate on the case where the above minimization has a unique solution. In [20], conditions on \(\Sigma \) ensuring the uniqueness of the argmin are given, it is sufficient that \(\pi_{ij} \geq 0, \forall i,j \in \{1, \ldots, d\} \). We shall make this assumption throughout this paper. Then, the vector expectile is unique, and it is solution of the following equations system

\[
\alpha \sum_{i=1}^d \pi_{ki} \mathbb{E}[(X_i - x_i)_+ \mathbb{1}_{(X_i > x_k)}] = (1 - \alpha) \sum_{i=1}^d \pi_{ki} \mathbb{E}[(X_i - x_i)_+ \mathbb{1}_{(X_i > x_k)}], \quad \forall k \in \{1, \ldots, d\}.
\]

In case \(\pi_{ij} = 1 \) for all \((i,j) \in \{1, \ldots, d\}^2 \), the corresponding \(\Sigma \)-expectile is called a \(L_1 \)-expectile. It coincides with the \(L_1 \)-norm expectile defined in [20]. In [20], it is proved that

\[
\lim_{\alpha \to 1} e_{\alpha}(X) = X_F, \quad \text{and} \quad \lim_{\alpha \to 0} e_{\alpha}(X) = X_I,
\]

where \(X_F \in (\mathbb{R} \cup \{+\infty\})^d \) is the right endpoint vector \((x_F^1, \ldots, x_F^d)^T\), and by \(X_I \in (\mathbb{R} \cup \{-\infty\})^d \) is the left endpoint vector \((x_I^1, \ldots, x_I^d)^T\) of the support of the random vector \(X \).

The multivariate expectiles can be estimated in the general case using stochastic optimization algorithms. The example of estimation by the Robbins-Monro’s (1951) [25] algorithm, presented in [20], shows that for extreme levels, the obtained estimation is not satisfactory in term of convergence speed. This leads us to the theoretical analysis of the asymptotic behavior of multivariate expectiles. Asymptotic levels i.e. \(\alpha \to 1 \) or \(\alpha \to 0 \) represent extreme risks. Since the solvency thresholds in insurance are generally high (e.g. \(\alpha = 0.995 \) for Solvency II directive), the study of asymptotic behavior of risk measures is of natural importance. The goal of this work is to establish the asymptotic behaviour of multivariate expectiles. The study of the extreme behaviour of risk measures in a multivariate regular variation framework is the subject of a balk of works, let us mention as examples, Embrechts
et al. (2009) [12], Albrecher et al. (2006) [11] in risk aggregation contexts, and Asimit et al. (2011) [2] for risk capital allocation. Similar works are also done on other multivariate risk measures, as example, for the Multivariate Conditional-Tail-Expectation in a recent paper of Di Bernardino and Prieur [10].

We shall work on the equivalent tails model. It is often used in modeling the claim amounts in insurance, in studying dependent extreme events, and in ruin theory models. This model includes in particular the identically distributed portfolios of risks and the case with scale difference in the distributions. In this paper, we study the asymptotic behavior of multivariate expectiles in the multivariate regular variations framework. We focus on marginal distributions belonging to the Fréchet domain of attraction. This domain contains heavy-tailed distributions that represent the most dangerous claims in insurance. Let us remark that the attention to univariate expectiles is recent. In [5], asymptotic equivalents of expectiles as a function of the quantile of the same level for regular variation distributions are proved. First and second order asymptotics for the expectile of the sum in the case of FGM dependence structure are given in [19].

The paper is constructed as follows. The first section is devoted to the presentation of the multivariate regularly varying distribution framework. The study of the asymptotic behavior of the multivariate expectiles for Fréchet model with equivalent tails is the subject of Section 2. The case of an asymptotically dominant tail is analyzed in Section 3. Section 4 is devoted to estimations of extreme multivariate expectiles in the cases of asymptotic independence and comonotonicity. Numerical illustrations are given using simulations in different models.

1. The MRV Framework

Regularly varying distributions are well suited to study extreme phenomenons. Lots of works have been devoted to the asymptotic behavior of usual risk measures for this class of distributions, and results are given for sums of risks belonging to this family. It is well known that the three domains of attraction of extreme value distributions can be defined using the concept of regular variations (see [11; 23; 8; 6]).

This section is devoted to the classical characterization of multivariate regular variations, which will be used in the study of the asymptotic behavior of multivariate expectiles. We also recall some basic results on the univariate setting that we shall use.

1.1. Univariate regular variations. We begin by recalling basic definitions and results on univariate regular variations.

Definition 1.1 (Regularly varying functions). A measurable positive function f is regularly varying of index ρ at $a \in \{0, +\infty\}$, if for all $t > 0$,

$$
\lim_{x \to a} \frac{f(tx)}{f(x)} = t^\rho,
$$

we denote $f \in \text{RV}_\rho(a)$.

A slowly varying function is a regularly varying function of index $\rho = 0$. Remark that $f \in \text{RV}_\rho(+\infty)$ if and only if, there exists a slowly varying function at infinity, $L \in \text{RV}_0(+\infty)$ such that

$$
f(x) = x^\rho L(x).
$$

Theorem 1.2 (Karamata’s representation, [24]). For any slowly varying function L at $+\infty$, there exist a positive measurable function $c(\cdot)$ that satisfies

$$
\lim_{x \to +\infty} c(x) = c \in [0, +\infty],
$$

and a measurable function $\varepsilon(\cdot)$ with

$$
\lim_{x \to +\infty} \varepsilon(x) = 0,
$$

such that

$$
L(x) = c(x) \exp \left(\int_{1}^{x} \frac{\varepsilon(t)}{t} dt \right).
$$

The Karamata’s representation is generalized to RV functions. Indeed, $f \in \text{RV}_\rho(+\infty)$ if and only if it can written in the form

$$
f(x) = c(x) \int_{1}^{x} \frac{\rho(t)}{t} dt,
$$

where $\rho(t) = \rho$ and $c(t) = c \in [0, +\infty]$.

Throughout the paper, we shall consider generalized inverses of non-decreasing functions f: $f^{-1}(y) = \inf\{x \in \mathbb{R}, f(x) \geq y\}$.
Lemma 1.3 (Inverse of RV functions [22]). Let \(f \) be a measurable non-decreasing function defined on \(\mathbb{R}^+ \), such that \(\lim_{x \to +\infty} f(x) = +\infty \). Then

\[
 f \in RV_\rho(+\infty) \text{ if and only if } f^{-} \in RV_{\frac{1}{\rho}}(+\infty),
\]

for all \(0 \leq \rho \leq +\infty \), where we follow the convention \(1/0 = \infty \) and \(1/\infty = 0 \).

Lemma 1.4 (Integration of RV functions (Karamata’s Theorem), [22]). For a positive measurable function \(f \), regularly varying of index \(\rho \) at \(+\infty \), locally bounded on \([x_0, +\infty)\) with \(x_0 \geq 0 \)

- if \(\rho > -1 \), then
 \[
 \lim_{x \to +\infty} \frac{\int_{x_0}^x f(t) dt}{xf(x)} = \frac{1}{\rho + 1},
 \]
- if \(\rho < -1 \), then
 \[
 \lim_{x \to +\infty} \frac{\int_{x_0}^x f(t) dt}{xf(x)} = -\frac{1}{\rho + 1}.
 \]

Lemma 1.5 (Potter’s bounds [6]). For \(f \in RV_\rho(a), \text{ with } a \in \{0, \infty\} \) and \(\rho \in \mathbb{R} \). For any \(0 < \epsilon < 1 \) and all \(x \) and \(y \) sufficiently close to \(a \), we have

\[
 (1 - \epsilon) \min \left(\left(\frac{x}{y} \right)^{\rho - \epsilon} , \left(\frac{x}{y} \right)^{\rho + \epsilon} \right) \leq f(x) / f(y) \leq (1 + \epsilon) \max \left(\left(\frac{x}{y} \right)^{\rho - \epsilon} , \left(\frac{x}{y} \right)^{\rho + \epsilon} \right).
\]

Many other properties of regularly varying functions are presented e.g. in [6].

1.2. Multivariate regular variations. The multivariate extension of regular variations is introduced in [9]. We denote by \(\mu_n \xrightarrow{v} \mu \) the vague convergence of Radon measures as presented in [16]. The following definitions are given for non-negative random variables.

Definition 1.6 (Multivariate regular variations). The distribution of a random vector \(\mathbf{X} \) on \([0, \infty]^d\) is said to be regularly varying if there exist a non-null Radon measure \(\mu_{\mathbf{X}} \) on the Borel \(\sigma \)-algebra \(B_d \) on \([0, \infty]^d \setminus \{0\} \), and a normalization function \(b : \mathbb{R} \to \mathbb{R} \) which satisfies \(\lim_{x \to +\infty} b(x) = +\infty \) such that

\[
 \nu \mathbb{P}\left(\frac{\mathbf{X}}{b(u)} \in \cdot \right) \xrightarrow{v} \mu_{\mathbf{X}}(\cdot) \text{ as } u \to +\infty.
\]

There exist several equivalent definitions of multivariate regular variations which will be useful in what follows.

Definition 1.7 (MRV equivalent definitions). Let \(\mathbf{X} \) be a random vector on \(\mathbb{R}^d \), the following definitions are equivalent:

- The vector \(\mathbf{X} \) has a regularly varying tail of index \(\theta \).
- There exist a finite measure \(\mu \) on the unit sphere \(S^{d-1} \), and a normalization function \(b : (0, \infty) \to (0, \infty) \) such that

\[
 \lim_{t \to +\infty} \mathbb{P}\left(\|\mathbf{X}\| > xb(t) \left| \frac{\mathbf{X}}{\|\mathbf{X}\|} \in \cdot \right. \right) = x^{-\theta} \mu(\cdot),
\]

for all \(x > 0 \). The measure \(\mu \) depends on the chosen norm, it is called the spectral measure of \(\mathbf{X} \).

- There exist a finite measure \(\mu \) on the unit sphere \(S^{d-1} \), a slowly varying function \(L \), and a positive real \(\theta > 0 \) such that

\[
 \lim_{x \to +\infty} \frac{x^\theta}{L(x)} \mathbb{P}\left(\|\mathbf{X}\| > x, \left| \frac{\mathbf{X}}{\|\mathbf{X}\|} \in B \right. \right) = \mu(B),
\]

for all \(B \in B(S^{d-1}) \) with \(\mu(\partial B) = 0 \).

From now on, MRV denotes the set of multivariate regularly varying distributions, and \(\text{MRV}(\theta, \mu) \) denotes the set of random vectors with regularly varying tail, with index \(\theta \) and spectral measure \(\mu \).

From (1.3), we may assume that \(\mu \) is normalized i.e. \(\mu(S^{d-1}) = 1 \), which implies that \(\|\mathbf{X}\| \) has a regularly varying
Theorem 1.10

For any H_1:

when the limit exists. In this paper, our study is limited to the upper version as defined in (1.5).

(1.5)

The upper tail dependence function is

(1.4)

The tail dependence function is defined by

when the limit exists.

On another hand, the tail of index $-\theta$.

Theorem 1.9

Equivalently to the existence of the tail dependence functions.

1.3. Characterization using tail dependence functions. Let $X = (X_1, \ldots, X_d)$ be a random vector. From now on, \bar{F}_{X_i} denotes the survival function of X_i. In this paper, we use the definition of the upper tail dependence function, as introduced in [17].

Definition 1.8 (The tail dependence function). Let X be a random vector on \mathbb{R}^d, with continuous marginal distributions. The tail dependence function is defined by

when the limit exists.

For $k \leq d$, denote by $X^{(k)}$ a k dimensional sub-vector of X, $C^{(k)}$ its copula and $\bar{C}^{(k)}$ its survival copula. The upper tail dependence function is

(1.5)

if this limit exists. The lower tail dependence function can be defined analogically by

when the limit exists. In this paper, our study is limited to the upper version as defined in (1.5).

We assume that X has equivalent regularly varying marginal tails, which means:

H1: $\bar{F}_{X_1} \in \text{RV}_{-\theta}(+\infty)$, with $\theta > 0$.

H2: The tails of $X_i, i = 1, \ldots, d$ are equivalent. That is for all $i \in \{2, \ldots, d\}$, there is a positive constant c_i such that

H1 and H2 imply that all marginal tails are regularly varying of index $-\theta$ at $+\infty$.

The following two theorems show that, under H1 and H2, the MRV character of multivariate distributions is equivalent to the existence of the tail dependence functions.

Theorem 1.9 (Theorem 2.3 in [18]). Let $X = (X_1, \ldots, X_d)$ be a random vector in \mathbb{R}^d, with continuous marginal distributions $F_{X_i}, i = 1, \ldots, d$ that satisfy H1 and H2. If X has a MRV distribution, the tail dependence function exists, and it is given by par

for any $k \in \{1, \ldots, d\}$.

Theorem 1.10 (Theorem 3.2 in [27]). Let $X = (X_1, \ldots, X_d)$ be a random vector in \mathbb{R}^d, with continuous marginal distributions $F_{X_i}, i = 1, \ldots, d$ that satisfies H1 and H2. If the tail independence function λ^k exists for all $k \in \{1, \ldots, d\}$, then X is MRV, its normalization function is given by $b(u) = \left(\frac{1}{X_1}\right)\rightarrow (u)$ and the spectral measure is

\[
\mu([0,\infty^d]) = \sum_{i=1}^{d} c_i x_i^{-\theta} - \sum_{1 \leq i < j \leq d} \lambda^2(c_i x_i^{-\theta}, c_j x_j^{-\theta}) + \cdots + (-1)^{d+1} \lambda^d(c_1 x_1^{-\theta}, \ldots, c_d x_d^{-\theta}).
\]
By construction of the multivariate expectiles, only the bivariate dependence structures are taken into account. We shall use the functions $\lambda^{(X_i,X_k)}_t$, for all $(i,k) \in \{1,\ldots,d\}^2$. In order to simplify the notation, we denote it by $\lambda^{(i,k)}_t$. If the vector X has an MRV distribution, the pairs (X_i, X_j) have also MRV distributions, for any $(i,j) \in \{1,\ldots,d\}^2$. So, in the MRV framework, and under H1 and H2, the existence of functions $\lambda^{(i,k)}$ is insured. In addition, we assume in all the rest of this paper that these functions are continuous.

2. Fréchet Model with Equivalent Tails

In this section, we assume that X satisfies H1 and H2 with $\theta > 1$. It implies that X_i belongs to the extreme value domain of attraction of Fréchet MDA(Φ_θ). This domain contains distributions with infinite endpoint $x_F = \sup \{x : F(x) < 1\} = +\infty$, so as $\alpha \to 1$ we get $e_a^\alpha(X) \to +\infty \forall i$. Also, from Karamata’s Theorem (Theorem 1.4), we have for $i = 1,\ldots,d$,
\begin{equation}
\lim_{x \to +\infty} \frac{\mathbb{E}[|X_i - x|]}{xF_X(x)} = \frac{1}{\theta - 1},
\end{equation}
for all $i \in \{1,\ldots,d\}$.

Proposition 2.1. Let $\Sigma = (\pi_{ij})_{i,j=1,\ldots,d}$ with $\pi_{ij} > 0$ for all $i,j \in \{1,\ldots,d\}$. Under H1 and H2, the components of the multivariate Σ-expectiles $e_\alpha(X) = (e_\alpha^i(X))_{i=1,\ldots,d}$ satisfy
\begin{equation}
0 < \lim_{\alpha \to 1} e_\alpha^i(X) \leq \lim_{\alpha \to 1} e_\alpha^i(X) < +\infty, \forall i \in \{2,\ldots,d\}.
\end{equation}

Proposition 2.1 implies that distributions with equivalent tails have asymptotically comparable multivariate expectile components.

Before we prove Proposition 2.1, we shall demonstrate some preliminary results. Firstly, let $X = (X_1,\ldots,X_d)^T$ satisfy H1 and H2, we denote $x_i = e_\alpha^i(X)$ for all $i \in \{1,\ldots,d\}$. We define the functions $l^\alpha_{X_i,X_j}(x_i,x_j)$ for all $(i,j) \in \{1,\ldots,d\}^2$ by
\begin{equation}
l^\alpha_{X_i,X_j}(x_i,x_j) = \alpha \mathbb{E}[(X_i - x_i)_+ \mathbb{I}(X_j > x_j)] - (1 - \alpha)\mathbb{E}[(X_i - x_i)_- \mathbb{I}(X_j < x_j)],
\end{equation}
and $l^\alpha_{X_i,X_k}(x_i,x_k)$.

The optimality system (0.1) rewrites
\begin{equation}
l^\alpha_{X_k}(x_k) = - \sum_{i=1,\ldots,d}^{d} \pi_{ik} \pi_{kj} l^\alpha_{X_i,X_k}(x_i,x_k) \quad \forall k \in \{1,\ldots,d\}.
\end{equation}

We shall use the following sets:
\[
J'_0 = \{ j \in \{1,\ldots,d\} \setminus \{i\} \mid \lim_{\alpha \to 1} x_i = 0 \},
\]
\[
J'_C = \{ j \in \{1,\ldots,d\} \setminus \{i\} \mid 0 < \lim_{\alpha \to 1} x_i < \lim_{\alpha \to 1} x_j < +\infty \},
\]
and
\[
J'_\infty = \{ j \in \{1,\ldots,d\} \setminus \{i\} \mid \lim_{\alpha \to 1} x_j = +\infty \}.
\]
The proof of Proposition 2.1 is written for $\pi_{ij} = 1$, for all $(i,j) \in \{1,\ldots,d\}^2$, i.e for the L_1-expectiles. The general case can be treated in the same way, provided that $\pi_{ij} > 0$ for all $(i,j) \in \{1,\ldots,d\}^2$. The proof of Proposition 2.1 follows from Lemma 2.2 and Proposition 2.3 below.

Lemma 2.2. Assume that H1 and H2 are satisfied.

1. If $t = o(s)$ then for all $(i,j) \in \{1,\ldots,d\}^2$,
\[
\lim_{t \to +\infty} \frac{s F_{X_i}(s)}{t F_{X_j}(t)} = 0.
\]

2. If $t = \Theta(s)$\footnote{Recall that $t = \Theta(s)$ means that there exist positive constants C_1 and C_2 such that $C_1 s \leq t \leq C_2 s$} then for all $(i,j) \in \{1,\ldots,d\}^2$,
\[
\frac{F_{X_i}(s)}{F_{X_j}(t)} \sim \frac{C_i}{C_j} \left(\frac{s}{t}\right)^{-\theta} \quad \text{as } t \to \infty.
\]

The proof is given in Appendix A.1.
Proposition 2.3. Under H1 and H2, the components of the extreme multivariate expectile satisfy
\[
0 < \lim_{\alpha \to 1} \frac{1 - \alpha}{F_X(e^*_\alpha(X))} \leq \lim_{\alpha \to 1} \frac{1 - \alpha}{F_X(e^*_\alpha(X))} < +\infty, \forall i \in \{2, \ldots, d\}.
\]

The proof is given in Appendix A.2. We may now prove Proposition 2.3.

Proof of Proposition 2.3. We shall prove that \(J^1_\infty = \emptyset \), the fact that \(J^k_\infty = \emptyset \) for all \(k \in \{1, \ldots, d\} \) may be proven in the same way. This implies that \(J^k_\infty = J^k_\infty = \emptyset \) for all \(k \in \{1, \ldots, d\} \), hence the result.

We suppose that \(J^1_\infty \neq \emptyset \), let \(i \in J^1_\infty \), taking if necessary a subsequence, we may assume that \(x_i/x_1 \to +\infty \) as \(\alpha \to 1 \).

From Proposition 2.3 we have
\[
0 < \lim_{\alpha \to 1} \frac{1 - \alpha}{F_X(e^*_\alpha(X))} \leq \lim_{\alpha \to 1} \frac{1 - \alpha}{F_X(e^*_\alpha(X))} < +\infty, \forall i \in \{2, \ldots, d\},
\]
so, taking if necessary a subsequence, we may assume that \(\exists \ell \in \mathbb{R}^+ \setminus \{+\infty\} \) such that
\[
\lim_{\alpha \to 1} \frac{1 - \alpha}{F_X(x_1)} = \ell.
\]

In this case,
\[
\lim_{\alpha \to 1} \frac{l^1_{X_1}(x_1)}{x_1F_X(x_1)} = \lim_{\alpha \to 1} \left((2\alpha - 1) \frac{E[(X_i - x_1)_+]}{x_1F_X(x_1)} + \frac{1 - \alpha}{F_X(x_1)} \right) = \frac{1}{\theta - 1} - \ell < +\infty.
\]

Moreover,
\[
\frac{E[(X_i - x_1)_+ + \mathbb{1}_{\{X_i > x_1\}}]}{x_1F_X(x_1)} \leq \frac{E[(X_i - x_1)_+]}{x_1F_X(x_1)} = \frac{E[(X_i - x_1)_+]}{x_1F_X(x_1)} \to 0 \text{ using Lemma 2.2.}
\]

We get
\[
\lim_{\alpha \to 1} \frac{l^1_{X_iX_1}(x_i, x_1)}{x_1F_X(x_1)} = \lim_{\alpha \to 1} \left(\frac{\alpha E[(X_i - x_i)_+ + \mathbb{1}_{\{X_i > x_1\}}] - (1 - \alpha) E[(X_i - x_i)_+ \mathbb{1}_{\{X_i < x_1\}}]}{x_1F_X(x_1)} \right)
\]
\[
= \lim_{\alpha \to 1} \left(\frac{E[(X_i - x_i)_+ + \mathbb{1}_{\{X_i > x_1\}}]}{x_1F_X(x_1)} - \frac{1 - \alpha}{x_1F_X(x_1)} \right) = -\infty, \forall i \in J^1_\infty.
\]

Going through the limit \(\alpha \to 1 \) in the first equation of the optimality System \(2.3 \) divided by \(x_1F_X(x_1) \), leads to
\[
\lim_{\alpha \to 1} \sum_{k \in J^1_0 \cup J^k_0 \setminus J^1_\infty} l^1_{X_kX_1}(x_k, x_1)x_1F_X(x_1) = -\infty.
\]

Now, let \(k \in J^1_0 \)
\[
\frac{E[(X_k - x_k)_+ \mathbb{1}_{\{X_k > x_1\}}]}{x_1F_X(x_1)} = \frac{\int_{x_k}^{x_1} P(X_k > t, X_1 > x_1) dt}{x_1F_X(x_1)} + \frac{\int_{x_1}^{+\infty} P(X_k > t, X_1 > x_1) dt}{x_1F_X(x_1)}
\]
\[
\leq \frac{\int_{x_k}^{x_1} P(X_k > t) dt}{x_1F_X(x_1)} + \frac{\int_{x_1}^{+\infty} P(X_k > t) dt}{x_1F_X(x_1)},
\]
Karamata’s Theorem (Theorem 1.4) leads to
\[
\lim_{\alpha \to 1} \int_{x_k}^{x_1} P(X_1 > t) dt + \frac{\int_{x_1}^{+\infty} P(X_k > t) dt}{x_1F_X(x_1)} = 1 + \frac{c_k}{\theta - 1}, \forall k \in J^1_0.
\]

Consider \(k \in J^1_C \)
\[
\frac{E[(X_k - x_k)_+ \mathbb{1}_{\{X_k > x_1\}}]}{x_1F_X(x_1)} \leq \frac{E[(X_k - x_k)_+]}{x_1F_X(x_1)} = \frac{E[(X_k - x_k)_+]x_kF_X(x_k)}{x_kF_X(x_k)} \frac{x_kF_X(x_k)}{x_1F_X(x_1)},
\]
and
\[
\frac{E[(X_k - x_k)_+]x_kF_X(x_k)}{x_1F_X(x_1)} \sim \frac{c_k}{\theta - 1} \left(\frac{x_k}{x_1} \right)^{-\theta + 1}.
\]
Finally, we deduce that
\[
- \sum_{k \in J_0^1 \cup J_1^1 \setminus J_0^1} \lim_{\alpha \to 1} x_k \leq \lim_{\alpha \to 1} \sum_{k \in J_0^1 \cup J_1^1 \setminus J_0^1} \frac{l_{X_k, X_1}^\alpha(x_k, x_1)}{x_1 F_{X_1}(x_1)} \\
\leq \lim_{\alpha \to 1} \sum_{k \in J_1^1 \cup J_0^1 \setminus J_1^1} \frac{l_{X_k, X_1}^\alpha(x_k, x_1)}{x_1 F_{X_1}(x_1)} \\
\leq \sum_{k \in J_0^1} \left(\frac{c_k}{\theta - 1} \left(\lim_{\alpha \to 1} \frac{x_k}{x_1} \right)^{-\theta + 1} \right) - \ell \lim_{\alpha \to 1} \frac{x_k}{x_1} + \sum_{k \in J_1^1 \setminus J_0^1} \left(1 + \frac{c_k}{\theta - 1} \right).
\]
This is contradictory with (2.4), and consequently \(J_1^1 \) is necessarily an empty set. The result follows. □

Proposition 2.4 (Extreme multivariate expectile). Assume that \(H1 \) and \(H2 \) are satisfied and \(X \) has a regularly varying multivariate distribution in the sense of Definition 1.6. Consider the \(L_1 \)-expectiles \(e_\alpha(X) = (e_\alpha^1(X), \ldots, e_\alpha^d(X)) \) satisfies the following equation system
\[
\frac{1}{\theta - 1} - \eta \left(\frac{\beta_i}{c_k} \right)^\theta = - \sum_{i=1, i \neq k}^d \left(\int_{x_k}^{x_i} \int_{x_k}^{x_i} \frac{c_i}{c_k} t^{-\theta}, 1 \right) dt - \eta \left(\frac{\beta_i - 1}{c_k} \right), \forall k \in \{1, \ldots, d\}.
\]

By solving the system (2.5), we may obtain an equivalent of the extreme multivariate expectile, using the marginal quantiles.

Proof. The optimality system (2.3) can be written in the following form
\[
(2\alpha - 1) \frac{\mathbb{E}(X_k - x_k)_+}{x_k F_{X_k}(x_k)} - \frac{1 - \alpha}{F_{X_k}(x_k)} \left(1 - \frac{\mathbb{E}[X_k]}{x_k} \right) = \sum_{i=1, i \neq k}^d \left((1 - \alpha) \frac{\mathbb{E}(X_i - x_i)_+}{x_k F_{X_k}(x_k)} \right) \left(1 - \frac{\mathbb{E}[X_i]}{x_k} \right) - \sum_{i=1, i \neq k}^d \alpha \frac{\mathbb{E}(X_i - x_i)_+ 1_{\{X_i > x_k\}}}{x_k F_{X_k}(x_k)}, \forall k \in \{1, \ldots, d\}.
\]

For all \(k \in \{1, \ldots, d\} \), we have (taking if necessary a subsequence)
\[
\lim_{\alpha \to 1} (2\alpha - 1) \frac{\mathbb{E}(X_k - x_k)_+}{x_k F_{X_k}(x_k)} - \frac{1 - \alpha}{F_{X_k}(x_k)} \left(1 - \frac{\mathbb{E}[X_k]}{x_k} \right) = \frac{1}{\theta - 1} - \eta \left(\frac{\beta_i}{c_k} \right)^\theta,
\]
and for all \(i \in \{1, \ldots, d\} \setminus \{k\} \)
\[
\lim_{\alpha \to 1} (1 - \alpha) \frac{\mathbb{E}(X_i - x_i)_+ 1_{\{X_i < x_k\}}}{x_k F_{X_k}(x_k)} = \frac{1 - \alpha}{F_{X_k}(x_k)} \left(\frac{x_k}{x_k} \right) \mathbb{P}(X_i < x_i, X_k < x_k) - \frac{\mathbb{E}[X_i 1_{\{X_i < x_k, X_k < x_k\}}]}{x_k} = \eta \frac{\beta_i}{c_k} \beta_i = \eta \frac{\beta_i - 1}{c_k} \beta_i.
\]
Moreover,
\[
\frac{\mathbb{E}(X_i - x_i)_+ 1_{\{X_i > x_k\}}}{x_k F_{X_k}(x_k)} = \frac{1}{x_k F_{X_k}(x_k)} \int_{x_k}^{x_i} \mathbb{P}(X_i > t, X_k > x_k) dt = \int_{x_k}^{x_i} \frac{\mathbb{P}(X_i > tx_k, X_k > x_k)}{F_{X_k}(x_k)} dt = \int_{x_k}^{\infty} \frac{\mathbb{P}(F_{X_i}(X_i) < F_{X_k}(tx_k), F_{X_k}(X_k) < F_{X_k}(x_k))}{F_{X_k}(x_k)} dt.
\]

Firstly, we remark that
\[
\left| \int_{x_k}^{\infty} \frac{\mathbb{P}(F_{X_i}(X_i) < F_{X_k}(tx_k), F_{X_k}(X_k) < F_{X_k}(x_k))}{F_{X_k}(x_k)} dt \right| \leq \frac{x_k}{x_k - \beta_i}.
\]
Since the functions λ^k_U are assumed to be continuous,

\begin{equation}
\lim_{\alpha \to 1} \frac{\mathbb{P}(\tilde{F}_X(x_i) < \tilde{F}_X(tx_k), \tilde{F}_X(x_k) < \tilde{F}_X(xk))}{\tilde{F}_X(x_k)} = \lambda^k_U \left(\frac{c_i}{c_k} t^{-\theta}, 1 \right).
\end{equation}

In order to show that

\begin{equation}
\lim_{\alpha \to 1} \frac{\mathbb{E}(X_i - x_i)\mathbb{1}_{\{X_k > x_k\}}}{x_k \tilde{F}_X(x_k)} = \int_{\tilde{\beta}^k_{x_k}}^{+\infty} \lambda^k_U \left(\frac{c_i}{c_k} t^{-\theta}, 1 \right) dt,
\end{equation}

we may use the Lebesgue’s Dominated Convergence Theorem with Potter’s bounds (1942) (Lemma 1.5) for regularly varying functions.

First of all,

\begin{equation}
\frac{\mathbb{P}(\tilde{F}_X(x_i) < \tilde{F}_X(tx_k), \tilde{F}_X(x_k) < \tilde{F}_X(xk))}{\tilde{F}_X(x_k)} \leq \min \left\{ 1, \frac{\tilde{F}_X(tx_k)}{\tilde{F}_X(x_k)} \right\},
\end{equation}

since $\frac{\tilde{F}_X(tx_k)}{\tilde{F}_X(x_k)} = \frac{\tilde{F}_X(tx_k)}{\tilde{F}_X(x_k)}$ and $\lim_{\alpha \to 1} \frac{\tilde{F}_X(tx_k)}{\tilde{F}_X(x_k)} = \frac{c_i}{c_k}$, using Potter’s bounds, for all $\varepsilon_1 > 0$ and $0 < \varepsilon_2 < \theta - 1$, there exists $x^k_1(\varepsilon_2, \varepsilon_1)$ such that for $\min \{x_k, tx_k\} \geq x^k_1(\varepsilon_2, \varepsilon_1)$

\begin{equation}
\frac{\tilde{F}_X(tx_k)}{\tilde{F}_X(x_k)} \leq \left(\frac{c_i}{c_k} + 2\varepsilon_1 \right) t^{-\theta} \max(t^{\varepsilon_2}, t^{-\varepsilon_2}).
\end{equation}

Lebesgue’s theorem gives

\begin{equation}
\lim_{\alpha \to 1} \int_{\tilde{\beta}^k_{x_k}}^{+\infty} \frac{\mathbb{P}(\tilde{F}_X(x_i) < \tilde{F}_X(tx_k), \tilde{F}_X(x_k) < \tilde{F}_X(xk))}{\tilde{F}_X(x_k)} dt = \int_{\tilde{\beta}^k_{x_k}}^{+\infty} \lambda^k_U \left(\frac{c_i}{c_k} t^{-\theta}, 1 \right) dt,
\end{equation}

so, for all $(i \neq k) \in \{1, \ldots, d\}$

\begin{equation}
\lim_{\alpha \to 1} \frac{\mathbb{E}(X_i - x_i)\mathbb{1}_{\{X_k > x_k\}}}{x_k \tilde{F}_X(x_k)} = \int_{\tilde{\beta}^k_{x_k}}^{+\infty} \lambda^k_U \left(\frac{c_i}{c_k} t^{-\theta}, 1 \right) dt.
\end{equation}

Hence the system announced in this proposition.

\[\square\]

In the general case of Σ-expectiles, with $\Sigma = (\pi_{ij})_{i,j=1,\ldots,d}$, $\pi_{ij} \geq 0$, $\pi_{ii} = \pi_i > 0$, System (2.5) becomes

\begin{equation}
\frac{1}{\theta - 1} - \eta \left(\frac{\beta_k}{c_k} \right)^\theta = - \sum_{i=1}^{d} \pi_{ik} \left(\int_{\tilde{\beta}^k_{x_k}}^{+\infty} \lambda^k_U \left(\frac{c_i}{c_k} t^{-\theta}, 1 \right) dt - \eta \left(\frac{\beta_k}{c_k} \right)^{\theta-1} \beta_i \right), \forall k \in \{1, \ldots, d\}.
\end{equation}

Moreover, let us remark that System (2.5) is equivalent to the following system

\begin{equation}
\sum_{i=1}^{d} \int_{\tilde{\beta}^k_{x_k}}^{+\infty} \lambda^k_U \left(c_i t^{-\theta}, c_k \beta_k^{-\theta} \right) dt = \sum_{i=1}^{d} \int_{\beta_i}^{+\infty} \lambda^k_U \left(c_i t^{-\theta}, 1 \right) dt, \forall k \in \{2, \ldots, d\}.
\end{equation}

The limit points β_i are thus completely determined by the asymptotic bivariate dependencies between the marginal components of the vector X.

Proposition 2.5. Assume that $H1$ and $H2$ are satisfied and the multivariate distribution of X is regularly varying in the sense of Definition 1.1 and consider the L_1-expectiles $e^j_a(X) = (e^j_a(X))_{i=1,\ldots,d}$. Then any limit vector $(\eta, \beta_2, \ldots, \beta_d)$ of $\left(\frac{1-\alpha}{\tilde{F}_X(e^1_a(X)), \tilde{F}_X(e^2_a(X)), \ldots, \tilde{F}_X(e^d_a(X))} \right)$ satisfies the following system of equations, $\forall k \in \{1, \ldots, d\}$

\begin{equation}
\frac{1}{\theta - 1} - \eta \left(\frac{\beta_k}{c_k} \right)^\theta = - \sum_{i=1}^{d} \pi_{ik} \left(\int_{\tilde{\beta}^k_{x_k}}^{+\infty} \lambda^k_U \left(\frac{c_i}{c_k} \beta_k^{-\theta}, 1 \right) dt - \eta \left(\frac{\beta_k}{c_k} \right)^{\theta-1} \beta_i \right).
\end{equation}

Proof. The proof is straightforward using a substitution in System (2.5) and the positive homogeneity property of the bivariate tail dependence functions λ^k_U (see Proposition 2.2 in [14]).

\[\square\]

The main utility of writing the asymptotic optimality system in the form (2.8) is the possibility to give an explicit form to $(\eta, \beta_2, \ldots, \beta_d)$ for some dependence structures.
Example: Consider that the dependence structure of X is given by an Archimedean copula with generator ψ. The survival copula is given by

$$C(x_1, \ldots, x_d) = \psi(\psi^-(x_1) + \cdots + \psi^-(x_d)),$$

where $\psi^-(x) = \inf\{t \geq 0 | \psi(t) \leq x\}$ (see e.g. [21] for more details). Assume that, ψ is a regularly varying function with non-positive index $\psi \in \text{RV}_{-\theta}$. According to [7], the right tail dependence functions exist, and one can get their explicit forms

$$\lambda_U^k(x_1, \ldots, x_k) = \left(\sum_{i=1}^k \frac{-1}{x_i}\right)^{-\theta}.$$

Thus, the bivariate upper tail dependence functions are given by

$$\lambda_U^{ik}(t^{-\theta}, \frac{c_k}{c_i}(\frac{\beta_k}{\beta_i})^{-\theta}) = \left(t^{-\theta} + \left(\frac{c_i}{c_k}\right)^{\frac{1}{\theta}} \left(\frac{\beta_k}{\beta_i}\right)^{\frac{1}{\theta}}\right)^{-\theta}.$$

In particular, if $\theta = \theta_\psi$, we have

$$\int_1^{+\infty} \lambda_U^{ik}(t^{-\theta}, \frac{c_k}{c_i}(\frac{\beta_k}{\beta_i})^{-\theta}) dt = \frac{1}{\theta - 1} \left(1 + \left(\frac{c_i}{c_k}\right)^{\frac{1}{\theta}} \left(\frac{\beta_k}{\beta_i}\right)^{\frac{1}{\theta}}\right)^{-\theta+1},$$

and System [28] becomes

$$\frac{1}{\theta - 1} - \frac{\eta(\beta_k)^\theta}{c_k} = - \sum_{i=1, i \neq k}^d \left(\frac{1}{\theta - 1} \frac{c_i}{c_k} \left(\frac{\beta_k}{\beta_i}\right)^{\frac{1}{\theta}} + \left(\frac{c_i}{c_k}\right)^{\frac{1}{\theta}} \left(\frac{\beta_k}{\beta_i}\right)^{\frac{1}{\theta}}\right) - \eta \frac{\beta_k^{\theta-1}}{c_k\beta_i}.$$

Lemma 2.6 (The comonotonic Fréchet case). Under H1 and H2, consider the L_1-expectiles $e_\alpha(X) = (e_\alpha^i(X))_{i=1, \ldots, d}$. If $X = (X_1, \ldots, X_d)$ is a comonotonic random vector, then the limit

$$(\eta, \beta_2, \ldots, \beta_d) = \lim_{\alpha \to 1} \left(\frac{1 - \alpha}{F_{X_1}(e_\alpha^1(X))}, \frac{e_\alpha^2(X)}{e_\alpha^1(X)}, \ldots, \frac{e_\alpha^d(X)}{e_\alpha^1(X)}\right),$$

satisfies

$$\lim_{\alpha \to 1} \frac{1 - \alpha}{F_{X_k}(e_\alpha^k(X))} = \frac{1}{\theta - 1} \quad \text{and} \quad \beta_k = c_k^{1/\theta}, \quad \forall k \in \{1, \ldots, d\}.$$

Proof. Since the random vector X is comonotonic, its survival copula is

$$\mathcal{C}_X(u_1, \ldots, u_d) = \min(u_1, \ldots, u_d), \quad \forall (u_1, \ldots, u_d) \in [0, 1]^d.$$

We deduce the expression of the functions λ_U^{ij}

$$\lambda_U^{ij}(x_i, x_j) = \min(x_i, x_j), \quad \forall (x_i, x_j) \in \mathbb{R}_+^2, \forall i, j \in \{1, \ldots, d\}.$$

So,

$$\int_1^{+\infty} \lambda_U^{ik}(t^{-\theta}, \frac{c_k}{c_i}(\frac{\beta_k}{\beta_i})^{-\theta}) dt = \int_1^{+\infty} \min\left(t^{-\theta}, \frac{c_k}{c_i}(\frac{\beta_k}{\beta_i})^{-\theta}\right) dt
$$

$$= \left(\frac{\beta_k}{\beta_i} \left(\frac{c_k}{c_i}\right)^{-\frac{1}{\theta}} - 1\right)^{-\theta} + \frac{1}{\theta - 1} \left(1 + \left(\frac{\beta_k}{\beta_i} \left(\frac{c_k}{c_i}\right)^{-\frac{1}{\theta}} - 1\right)^{-\theta+1}.$$
Under assumptions H1 and H2, and by Proposition 2.8, let \((\eta, \beta_2, \ldots, \beta_d)\) be a solution of the following equation system.

\[
\eta \sum_{i=1}^{d} \beta_i - \frac{1}{\theta - 1} \sum_{i=1}^{d} c_i \beta_i^{-\theta + 1} = \sum_{i=1, i \neq k}^{d} c_k \beta_k^{-\theta + 1} \left(\frac{\beta_k}{\beta_i} \left(\frac{c_k}{c_i} \right)^{-\frac{1}{\theta}} - 1 \right) + \frac{1}{\theta - 1} \sum_{i=1, i \neq k}^{d} c_i \beta_i^{-\theta + 1} \left[\left(1 + \left(\frac{\beta_k}{\beta_i} \left(\frac{c_k}{c_i} \right)^{-\frac{1}{\theta}} - 1 \right) \right)^{-\theta + 1} - 1 \right],
\]

\(\forall k \in \{1, \ldots, d\}.\) \(\eta = \frac{1}{\theta - 1} \) and \(\beta_k = c_k^{\frac{1}{\theta - 1}}\) is the only solution to this system.

Proposition 2.7 (Asymptotic independence case). Under H1 and H2, consider the \(L_1\)-expectiles \(e_\alpha(X) = (e_\alpha^1(X), \ldots, e_\alpha^d(X))\) of \(\left(\frac{1-\alpha}{F_{X_1}(e_\alpha^1(X))}, \frac{e_\alpha^2(X)}{F_{X_1}(e_\alpha^1(X))}, \ldots, \frac{e_\alpha^d(X)}{F_{X_1}(e_\alpha^1(X))} \right)\) satisfies

\[
\eta = \frac{1}{(\theta - 1) \left(1 + \sum_{j=2}^{d} c_j^{\frac{1}{\theta - 1}} \right)} \quad \text{and} \quad \beta_k = c_k^{\frac{1}{\theta - 1}},
\]

for all \(k \in \{1, \ldots, d\}.

Proof. The hypothesis of asymptotic bivariate independence means:

\[
\lim_{\alpha \to 1} \frac{P(X_i > x_i, X_j > x_j)}{P(X_j > x_j)} = \lim_{\alpha \to 1} \frac{P(X_i > tx_j, X_j > x_j)}{P(X_j > x_j)} = 0,
\]

for all \((i, j) \in \{1, \ldots, d\}^2\) and for all \(t > 0\), then, Lebesgue’s Theorem used as in Proposition 2.4 gives

\[
\lim_{\alpha \to 1} \frac{\mathbb{E}[(X_i - x_i) + \mathbb{1}(X_j > x_j)]}{x_j F_{X_j}(x_j)} = \lim_{\alpha \to 1} \int_{x_j}^{+\infty} \frac{P(X_i > tx_j, X_j > x_j)}{P(X_j > x_j)} dt = 0.
\]

The extreme multivariate expectile verifies the following equation system

\[
\frac{1}{\theta - 1} - \frac{\eta}{c_k} \beta_k^\theta = \sum_{i=1, i \neq k}^{d} \frac{\eta}{c_k} \beta_k^{\theta - 1} \beta_i, \quad \forall k \in \{1, \ldots, d\},
\]

which can be rewritten as

\[
\frac{c_k}{\eta(\theta - 1) \beta_k^{\theta - 1}} = \sum_{i=1}^{d} \beta_i, \quad \forall k \in \{1, \ldots, d\},
\]

hence \(\beta_k = c_k^{\frac{1}{\theta - 1}}\) for all \(k \in \{1, \ldots, d\},\) and

\[
\eta = \frac{1}{(\theta - 1) \left(1 + \sum_{j=2}^{d} c_j^{\frac{1}{\theta - 1}} \right)}.
\]

\(\square\)

In the general case of a matrix of positive coefficients \(\pi_{ij}, \ i, j \in \{1, \ldots, d\},\) the limits \(\beta_i, i = 2, \ldots, d\) remain the same, but the limit \(\eta\) will change:

\[
\lim_{\alpha \to 1} \frac{e_\alpha^k(X)}{e_\alpha^2(X)} = c_k^{\frac{1}{\theta - 1}} \quad \text{and} \quad \lim_{\alpha \to 1} \frac{1 - \alpha}{F_{X_k}(e_\alpha^k(X))} = \frac{c_k^{\frac{1}{\theta - 1}}}{(\theta - 1) \left(1 + \sum_{j=2}^{d} \frac{\pi_{jk} c_j^{\frac{1}{\theta - 1}}}{\pi_k c_j^{\frac{1}{\theta - 1}}} \right)},
\]
for all \(k \in \{1, \ldots, d\} \).

We remark that
\[
\lim_{\alpha \to 1} \frac{1 - \alpha}{\alpha} \leq \frac{c_i^{\frac{1}{\theta - 1}}}{\theta - 1},
\]
which allows a comparison between the marginal quantile and the corresponding component of the multivariate expectile, and since \(F_{x_\theta}^{-1}(1 - \cdot) \) is a regularly varying function at 0 for all \(k \in \{1, \ldots, d\} \) with index \(-\frac{1}{\theta}\) (see Lemma 1.3), we get
\[
\frac{c_i^{\frac{1}{\theta - 1}}}{\theta - 1} \leq \alpha \cdot (1 + \sum_{i=2}^{d} \frac{c_i^{\frac{1}{\theta - 1}}}{c_i^{\frac{1}{\theta - 1}}})^{-\frac{1}{\theta}},
\]
where \(\text{VaR}_{\alpha}(X_k) \) denotes the Value at Risk of \(X_k \) at level \(\alpha \), i.e., the \(\alpha \)-quantile \(F_{x_\theta}^{-1}(\alpha) \) of \(X_k \). These conclusions coincide with the results obtained in dimension 1, for distributions that belong to the domain of attraction of Fréchet, in [7]. The values of constants \(c_i \) determine the position of the marginal quantile compared to the corresponding component of the multivariate expectile for each risk.

3. Fréchet model with a dominant tail

This section is devoted to the case where \(X_1 \) has a dominant tail with respect to the \(X_i \)'s.

Proposition 3.1 (Asymptotic dominance). Under \(H_1 \), consider the \(L_1 \)-expectiles \(e_\alpha(X) = (e^i_\alpha(X))_{i=1,\ldots,d} \). If
\[
\lim_{x \uparrow + \infty} \frac{\bar{F}_{X_i}(x)}{\bar{F}_{X_1}(x)} = 0, \quad \forall i \in \{2, \ldots, d\}, \quad \text{(dominant tail hypothesis)}
\]
then
\[
\beta_i = \lim_{\alpha \uparrow 1} \frac{e^i_\alpha(X)}{e^1_\alpha(X)} = 0, \quad \lim_{\alpha \uparrow 1} \frac{1 - \alpha}{\alpha} \frac{1 - \alpha}{\alpha} \frac{1 - \alpha}{\alpha} \frac{1 - \alpha}{\alpha} = 0, \quad \forall i \in \{2, \ldots, d\},
\]
and
\[
\lim_{\alpha \uparrow 1} \frac{1 - \alpha}{\alpha} \frac{1 - \alpha}{\alpha} \frac{1 - \alpha}{\alpha} \frac{1 - \alpha}{\alpha} = \frac{1}{\theta - 1}.
\]

The proof of Proposition 3.1 follows from the following lemmas.

Lemma 3.2. Under \(H_1 \), consider the \(L_1 \)-expectiles \(e_\alpha(X) = (e^i_\alpha(X))_{i=1,\ldots,d} \). If
\[
\lim_{x \uparrow + \infty} \frac{\bar{F}_{X_i}(x)}{\bar{F}_{X_1}(x)} = 0, \quad \forall i \in \{2, \ldots, d\},
\]
then
\[
\lim_{\alpha \uparrow 1} \frac{\mathbb{E}[(X_i - x_i) + \mathbb{1}_{\{X_i > x_i\}}]}{x_1 \bar{F}_{X_1}(x_1)} = 0, \quad \forall i \in \{2, \ldots, d\}.
\]

Lemma 3.3. Under \(H_1 \), consider the \(L_1 \)-expectiles \(e_\alpha(X) = (e^i_\alpha(X))_{i=1,\ldots,d} \). If
\[
\lim_{x \uparrow + \infty} \frac{\bar{F}_{X_i}(x)}{\bar{F}_{X_1}(x)} = 0, \quad \forall i \in \{2, \ldots, d\},
\]
then
\[
0 < \lim_{\alpha \uparrow 1} \frac{1 - \alpha}{\alpha} \leq \lim_{\alpha \uparrow 1} \frac{1 - \alpha}{\alpha} \leq +\infty.
\]

The proofs of Lemmas 3.2 and 3.3 are given in Appendix A.3 and A.4 respectively.

Now, we have all necessary tools to prove Proposition 3.1.

Proof of Proposition 3.1. From Lemma 3.3 we have Taking if necessary a subsequence \((\alpha_n)_{n \in \mathbb{N}} \), \(\alpha_n \to 1 \), we suppose that \(\frac{1 - \alpha}{\alpha} \) is converging to a limit denoted \(0 < \eta < +\infty \) and that the limits \(\lim_{\alpha \uparrow x_1} \frac{\bar{F}_{X_1}(x_1)}{\bar{F}_{X_1}(x_1)} = \beta_i \) exist.

Going through the limit \((\alpha \to 1) \) in the 1st equation of System 0.1 divided by \(x_1 \bar{F}_{X_1}(x_1) \), leads using Lemma 3.2 to
\[
\lim_{\alpha \uparrow 1} \left(\frac{1 - \alpha}{\alpha} \sum_{i \in J_0 \cup J_\infty} \frac{x_i}{x_1} \right) = \lim_{\alpha \uparrow 1} \left(\eta \sum_{i \in J_0 \cup J_\infty} \frac{x_i}{x_1} \right) = \frac{1}{\theta - 1} - \eta,
\]
where \(\eta \) is the limit of the right-hand side of System 0.1 when \(\alpha \to 1 \).
we deduce that \(J_\infty = 0 \).
We suppose that \(J_C \neq \emptyset \), so there exists at least one \(i \in \{2, \ldots, d\} \) such that \(i \in J_C \), and for all \(j \in \{1, \ldots, d\} \setminus \{i\} \), we have
\[
\lim_{\alpha \uparrow 1} \frac{\mathbb{E}[(X_j - x_j) + \mathbb{1}_{(X_i > x_i)}]}{x_i F_{X_i}(x_i)} = 0.
\]
Indeed, if \(j \in J_C \setminus \{i\} \)
\[
\lim_{\alpha \uparrow 1} \frac{\mathbb{E}[(X_j - x_j) + \mathbb{1}_{(X_i > x_i)}]}{x_i F_{X_i}(x_i)} = \lim_{\alpha \uparrow 1} \int_{\beta_j}^{+\infty} \frac{\mathbb{P}(X_j > tx_j, X_i > x_i)}{\mathbb{P}(X_i > x_i)} dt,
\]
because
\[
\frac{\mathbb{P}(X_j > tx_j, X_i > x_i)}{\mathbb{P}(X_i > x_i)} = \frac{\mathbb{P}(X_j > tx_j | X_i > x_i) \mathbb{P}(X_i > x_i)}{\mathbb{P}(X_i > x_i)},
\]
and
\[
\lim_{\alpha \uparrow 1} \frac{\mathbb{P}(X_i > x_i)}{\mathbb{P}(X_i > x_i)} = \lim_{\alpha \uparrow 1} \frac{\mathbb{P}(X_i > x_i)}{\mathbb{P}(X_i > x_i)} = \lim_{\alpha \uparrow 1} \left(\frac{x_i}{x_i} \right)^{-\theta} = 0. \quad \text{And since}
\]
\[
\frac{\mathbb{P}(X_j > tx_j, X_i > x_i)}{\mathbb{P}(X_i > x_i)} \leq \min \left(\frac{\mathbb{P}(X_j > tx_j)}{\mathbb{P}(X_i > x_i)}, \frac{\mathbb{P}(X_i > x_i)}{\mathbb{P}(X_i > x_i)} \right),
\]
and using Potter’s Bounds associated to \(F_{X_i} \) as regularly varying function in order to apply the dominated convergence Theorem, we get
\[
\lim_{\alpha \uparrow 1} \frac{\mathbb{E}[(X_j - x_j) + \mathbb{1}_{(X_i > x_i)}]}{x_i F_{X_i}(x_i)} = \int_{\beta_j}^{+\infty} \frac{\mathbb{P}(X_j > tx_j, X_i > x_i)}{\mathbb{P}(X_i > x_i)} dt = 0, \quad \forall j \in J_C \setminus \{i\}.
\]
Now, if \(j \in J_0 \) then
\[
\frac{\mathbb{E}[(X_j - x_j) + \mathbb{1}_{(X_i > x_i)}]}{x_i F_{X_i}(x_i)} = \int_{x_i}^{x_j} \frac{\mathbb{P}(X_j > t, X_i > x_i)}{x_i F_{X_i}(x_i)} dt + \int_{x_j}^{+\infty} \frac{\mathbb{P}(X_j > tx_j, X_i > x_i)}{\mathbb{P}(X_i > x_i)} dt
\]
\[
\leq \left(1 - \frac{x_j}{x_i} \right) \frac{\mathbb{P}(X_i > x_i)}{\mathbb{P}(X_i > x_i)} + \int_{x_j}^{+\infty} \frac{\mathbb{P}(X_j > tx_j, X_i > x_i)}{\mathbb{P}(X_i > x_i)} dt,
\]
thus
\[
\lim_{\alpha \uparrow 1} \frac{\mathbb{E}[(X_j - x_j) + \mathbb{1}_{(X_i > x_i)}]}{x_i F_{X_i}(x_i)} = 0, \quad \forall j \in J_0,
\]
because \(\lim_{\alpha \uparrow 1} \frac{\mathbb{P}(X_i > x_i)}{\mathbb{P}(X_i > x_i)} = 0 \) and \(\lim_{\alpha \uparrow 1} \int_{x_j}^{+\infty} \frac{\mathbb{P}(X_j > tx_j, X_i > x_i)}{\mathbb{P}(X_i > x_i)} dt = 0. \)
Going through the limit \((\alpha \rightarrow 1) \) in the \(j \)th equation of System 0.1 divided by \(x_i F_{X_i}(x_i) \), leads to
\[
-\eta \beta_i = \eta (1 + \sum_{j \in J_C \setminus \{i\}} \beta_j),
\]
which is absurd, and consequently \(J_C = \emptyset \).
We have thus proved that \(J_0 = \{2, \ldots, d\} \) which means
\[
\lim_{\alpha \uparrow 1} e^l_\alpha(X) = \beta_i = 0, \quad \forall i \in \{2, \ldots, d\}.
\]
And from Equation 3.1 we deduce also that
\[
\eta = \lim_{\alpha \uparrow 1} \frac{1 - \alpha}{F_{X_i}(e^l_\alpha(X))} = \frac{1}{\theta - 1},
\]
and by Lemma 2.2 that
\[
\lim_{\alpha \uparrow 1} \frac{1 - \alpha}{F_{X_i}(e^l_\alpha(X))} = 0, \quad \forall i \in \{2, \ldots, d\}.
\]
Example: Consider Pareto distributions, $X_i \sim Pa(a_i, b), i = 1, \ldots, d$, such that $a_i > a_1$ for all $i \in \{1, \ldots, d\}$. The tail of X_1 dominates that of the X_i’s and Proposition 3.1 applies.

4. Estimation of the extreme expectiles

In this section, we propose some estimators of the extreme multivariate expectile. We focus on the cases of asymptotic independence and comonotonicity, for which the equation system is more tractable. We begin with the main ideas of our approach, then, we construct the estimators using the extreme values statistical tools and prove its consistency. We terminate this section with a simulation study.

Proposition 4.1 (Estimation’s idea). Using notations of previous sections, consider the L_1-expectiles $e_\alpha(X) = (e_\alpha^i(X))_{i=1,\ldots,d}$. Under $H1$, $H2$ and the assumption that the vector $\left(\frac{1-\alpha}{F_{X_1}(e_\alpha^1(X))}, \frac{e_\alpha^2(X)}{e_\alpha^1(X)}, \ldots, \frac{e_\alpha^d(X)}{e_\alpha^1(X)} \right)$ has a unique limit point $(\eta, \beta_2, \ldots, \beta_d)$, \hspace{1cm} $e_\alpha(X) \sim \text{VaR}_{\alpha}(X_1)\eta^\frac{i}{\beta}$ $\begin{pmatrix} 1, \beta_2, \ldots, \beta_d \end{pmatrix}^T$.

Proof. Let $(\eta, \beta_2, \ldots, \beta_d) = \lim_{\alpha \to 1} \left(\frac{1-\alpha}{F_{X_1}(e_\alpha^1(X))}, \frac{e_\alpha^2(X)}{e_\alpha^1(X)}, \ldots, \frac{e_\alpha^d(X)}{e_\alpha^1(X)} \right)$, we have $e_\alpha(X) \sim \text{VaR}_{\alpha}(X)$ $(1, \beta_2, \ldots, \beta_d)^T$.

Moreover, $\lim_{\alpha \to 1} \frac{1-\alpha}{F_{X_1}(e_\alpha^1(X))} = \eta$, and Theorem 1.5.12 in [6] states that $F_{X_1}^e(1-.)$ is regularly varying at 0, with index $-\frac{1}{\beta}$. This leads to \hspace{1cm} $e_\alpha^i(X) \sim F_{X_1}^e(\alpha) \left(\frac{1}{\eta} \right)^{-\frac{i}{\beta}}$, and the result follows. \hspace{1cm} \Box

Proposition 4.1 gives a way to estimate the extreme multivariate expectile. Let $X = (X_1, \ldots, X_d)^T$ be an independent sample of size n of X, with $X_i = (X_{1,i}, \ldots, X_{d,i})^T$ for all $i \in \{1, \ldots, n\}$. We denote by $X_{i,1,n} \leq \cdots \leq X_{i,n,n}$ the ordered sample corresponding to X_i.

4.1. Estimator’s construction. We begin with the case of asymptotic independence. Propositions 2.7 and 4.1 are the key tools in the construction of the estimator. We have for all $i \in \{1, \ldots, d\}$ \hspace{1cm} $\beta_i = c_i^{\frac{1}{\theta-1}}$, and $\lim_{\alpha \to 1} \frac{1-\alpha}{F_{X_i}(e_\alpha^i(X))} = \frac{c_i^{\frac{1}{\theta-1}}}{(\theta - 1) \left(1 + \sum_{j=2}^{d} c_j^{\frac{1}{\theta-1}} \right)}$.

Proposition 4.1 gives \hspace{1cm} $e_\alpha(X) \sim \text{VaR}_{\alpha}(X_1)(\theta - 1)^{-\frac{i}{\beta}} \left(1 + \sum_{j=2}^{d} c_j^{\frac{1}{\theta-1}} \right)^{-\frac{i}{\beta}} \begin{pmatrix} 1/c_1^{\frac{1}{\theta-1}}, \ldots, c_d^{\frac{1}{\theta-1}} \end{pmatrix}^T$.

So, in order to estimate the extreme multivariate expectile, we need an estimator of the univariate quantile of X_1, of the tail equivalence parameters, and of θ.

In the same way, and for the case of comonotonicity, we may use Proposition 2.6
\hspace{1cm} $\lim_{\alpha \to 1} \frac{1-\alpha}{F_{X_i}(e_\alpha^i(X))} = \frac{1}{\theta - 1}$ and $\beta_i = c_i^{1/\theta}$, \hspace{1cm} $\forall i \in \{1, \ldots, d\}$.

and by Proposition 4.1 we obtain \hspace{1cm} $e_\alpha(X)^T \sim \text{VaR}_{\alpha}(X_1)(\theta - 1)^{-\frac{i}{\beta}} \begin{pmatrix} 1/c_1^{\frac{1}{\theta-1}}, \ldots, c_d^{\frac{1}{\theta-1}} \end{pmatrix}^T$.

The X_i’s have all the same index θ of regular variation, which is also the same as the index of regular variation of $\|X\|$. We propose to estimate θ by using the Hill estimator $\hat{\gamma}$. We shall denote $\theta = \frac{1}{\gamma}$. See [13] for details on the Hill estimator. In order to estimate the c_i‘s, we shall use the GPD approximation: for u a large threshold, and $x \geq u$,
\hspace{1cm} $\hat{F}(x) \sim \tilde{F}(u) \left(\frac{x}{u} \right)^{-\theta}$.

Let $k \in \mathbb{N}$ be fixed and consider the thresholds u_i:
\hspace{1cm} $\hat{F}_{X_i}(u_i) = \tilde{F}_{X_i}(u_i) = \frac{k}{n}$, \hspace{1cm} $\forall i \in \{1, \ldots, d\}$.
Moreover, it is well known (see [13]) that the Hill estimator is consistent. Using (4.1), and the fact that with equivalent tails, for a comonotonic random vector

\[\hat{c}_i = \left(\frac{X_{i,n-k+1,n}}{X_{1,n-k+1,n}} \right)^{\frac{1}{\gamma(k)}}, \]

where \(\gamma(k) \) is the Hill’s estimator of the extreme values index constructed using the \(k \) largest observations of \(||X|| \). Let \(\hat{\theta} = \frac{1}{\gamma(k)} \).

Proposition 4.2. Let \(k = k(n) \) be such that \(k \to \infty \) and \(k/n \to 0 \) as \(n \to \infty \). Under H1 and H2, for any \(i = 2, \ldots, d, \)

\[\hat{c}_i \overset{p}{\to} c_i. \]

Proof. The results in [3] page 86 imply that for any \(i = 1, \ldots, d \)

\[\frac{X_{i,n-k+1,n}}{u_i} \overset{p}{\to} 1. \]

Moreover, it is well known (see [13]) that the Hill estimator is consistent. Using (4.1), and the fact that

\[\frac{X_{i,n-k+1,n}}{X_{1,n-k+1,n}} \sim \frac{u_i}{u_1} \]

in probability and thus is bounded in probability, we get the result. \(\square \)

To estimate the extreme quantile, we will use Weissman’s estimator (1978) [26]:

\[\hat{\text{VaR}}_\alpha(X_1) = X_{1,n-k(n)+1,n} \left(\frac{k(n)}{(1-\alpha)n} \right)^{\gamma}. \]

The properties of Weissman’s estimator are presented in Embrechts et al. (1997) [11] and also in [3] page 119. In order to prove the consistency of our estimators of extreme multivariate expectiles, we shall need the following second order condition (see [3] Section 4.4).

Definition 4.3. A random variable \(X \) satisfying H1 with \(\theta = \frac{1}{\gamma} > 0 \) will be said to verify the second order condition SOC-\(\beta(b) \) with \(\beta > 0 \) and \(b \in \mathcal{RV}_-(-\infty) \) if the function \(U : y \sim F_\gamma(1-\frac{y}{\beta}) \) satisfies for \(u > 0 \):

\[\frac{U(ux)}{U(x)} = u^{\gamma} \left(1 + h_\beta(u)b(x) + o(b(x)) \right), \]

as \(x \) goes to infinity.

where \(h_\beta(u) = \frac{1}{\beta}u^{\beta-1} \).

Now, we can deduce some estimators of the extreme multivariate expectile, using the previous ones, in the cases of asymptotic independence and perfect dependence.

Definition 4.4 (Multivariate expectile estimator, Asymptotic independence). Under H1 and H2, in the case of bivariate asymptotic independence of the random vector \(X = (X_1, \ldots, X_d)^T \), we define the estimator of the \(L_1 \)-expectile as follows

\[\hat{\mathbf{e}}^\alpha(X) = X_{1,n-k(n)+1,n} \left(\frac{k(n)}{(1-\alpha)n} \right)^{\gamma} \left(\frac{1}{1 + \sum_{\ell=2}^d \hat{c}_\ell^{\frac{1}{\gamma}} \frac{1}{\gamma}} \right)^{\gamma} \left(1, \hat{c}_2^{\frac{1}{\gamma}}, \ldots, \hat{c}_d^{\frac{1}{\gamma}} \right)^T \]

\[= \hat{\text{VaR}}_\alpha(X_1) \left(\frac{\gamma}{1-\gamma} \right)^{\gamma} \left(1, \hat{c}_2^{\frac{1}{\gamma}}, \ldots, \hat{c}_d^{\frac{1}{\gamma}} \right)^T. \]

Definition 4.5 (Multivariate expectile estimator, comonotonic risks). Under the assumptions of the Fréchet model with equivalent tails, for a comonotonic random vector \(X = (X_1, \ldots, X_d)^T \), we define the estimator of \(L_1 \)-expectile as follows

\[\hat{\mathbf{e}}^\alpha(X) = X_{1,n-k(n)+1,n} \left(\frac{k(n)}{(1-\alpha)n} \right)^{\gamma} \left(\frac{\gamma}{1-\gamma} \right)^{\gamma} \left(1, \hat{c}_2^{\frac{1}{\gamma}}, \ldots, \hat{c}_d^{\frac{1}{\gamma}} \right)^T \]

\[= \hat{\text{VaR}}_\alpha(X_1) \left(\frac{\gamma}{1-\gamma} \right)^{\gamma} \left(1, \hat{c}_2^{\frac{1}{\gamma}}, \ldots, \hat{c}_d^{\frac{1}{\gamma}} \right)^T. \]
We prove below that if the second order condition $\text{SOC}_{-\beta}(b)$ is satisfied, then the term by term ratio $\hat{e}^{-i}_{\alpha}(X)/e_{\alpha}(X)$ goes to 1 in probability in the asymptotically independent case and $\hat{e}^{+i}_{\alpha}(X)/e_{\alpha}(X)$ goes to 1 in probability in the comonotonic case. More work is required to get the asymptotic normality.

Theorem 4.6. Assume that H1, H2 and $\text{SOC}_{-\beta}(b)$ are satisfied. Choose $k = k(n)$ such that

- $k(n) \to \infty$ as $n \to \infty$,
- $k(n)/n \to 0$ as $n \to \infty$,
- $\sqrt{k(n)} \left(1 + \log^2 \frac{k(n)}{n^{1-\alpha}}\right)^{-\frac{1}{2}} \to \infty$ as $n \to \infty$.

Then, if each pair of the random vector X is asymptotically independent,

$$\frac{\hat{e}^{-i}_{\alpha}(X)}{e_{\alpha}(X)} \to 1 \text{ in probability, as } n \to \infty.$$

If the random vector X is comonotonic, then

$$\frac{\hat{e}^{+i}_{\alpha}(X)}{e_{\alpha}(X)} \to 1 \text{ in probability, as } n \to \infty.$$

Proof. With the $\text{SOC}_{-\beta}(b)$ hypothesis and the choice of k, we get by using (4.18) p.120 in [3] that

$$\frac{\bar{\text{VaR}}_{\alpha}(X_1)}{\text{VaR}_{\alpha}(X_1)} \to 1 \text{ in probability as } n \to \infty.$$

Then the announced results follow from Propositions 2.7 and 4.2.

4.2. **Numerical illustration.** The attraction domain of Fréchet contains the usual distributions of Pareto, Student, Burr and Cauchy. In order to illustrate the convergence of the proposed estimators, we study numerically, the cases of Pareto, Burr and Student distributions.

In the independence case which is a special case of asymptotic independence, the functions $l^{\alpha}_{X_i,X_j}$ defined in (2.2) have the following expression

$$l^{\alpha}_{X_i,X_j}(x_i, x_j) = \alpha \left(\bar{F}_{X_j}(x_j) \mathbb{E} \left([X_i - x_i]^+\right) - (1 - \alpha) \left(F_{X_j}(x_j) \mathbb{E} \left([X_i - x_i]^+_+\right) \right) \right).$$

In the comonotonic case we have

$$l^{\alpha}_{X_i,X_j}(x_i, x_j) = \alpha \left(\bar{F}_{X_j}(x_j)(\mu_{i,j} - x_i)^+ + \mathbb{E} \left([X_i - \max(x_i, \mu_{i,j})]^+\right) \right)$$

$$- (1 - \alpha) \left(F_{X_j}(x_j)(x_i - \mu_{i,j})^+ + \mathbb{E} \left([X_i - \min(x_i, \mu_{i,j})]^+_+\right) \right),$$

where $\mu_{i,j} = F^{-\perp}_{X_i}(F_{X_j}(x_j))$. From these expressions, the exact value of the extreme multivariate expectile is obtained using numerical optimization, and we can confront it to the estimated values. The choice of $k(n)$ is function of the distributions parameters, and it is done in our simulations using graphical illustrations. We present the estimators for different values of $k(n)$ that belong to the common convergence range of the estimators of tail equivalence coefficients, in order to verify the stability of the expectile estimator’s convergence.

4.2.1. **Pareto distributions.** We consider a bivariate Pareto model $X_i \sim \text{Pa}(a, b_i), \ i \in \{1, 2\}$. Both distributions have the same scale parameter a, so they have equivalent tails with equivalence parameter

$$c_2 = \lim_{x \to +\infty} \frac{\bar{F}_{X_2}(x)}{F_{X_1}(x)} = \lim_{x \to +\infty} \frac{\left(\frac{b_2}{b_2 + x}\right)^a}{\left(\frac{b_1}{b_1 + x}\right)^a} = \left(\frac{b_2}{b_1}\right)^a.$$

In what follows, we consider two models for which the exact values of the L_1-expectiles are computable. In the first model, the X_i’s are independent. In the second one, the X_i’s are comonotonic and for Pareto distributions $\mu_{i,j} = \frac{b_i}{b_j} x_j$. In the simulations below, we have taken the same $k = k(n)$ to get $\hat{\gamma}$ and $\hat{e}_{\alpha}(X)$. For $X_i \sim \text{Pa}(2, 5 \cdot (i + 1))_{i=1,2}$, and $n = 100000$, Figure 4 illustrates the convergence of estimator \hat{c}_2. On the left, the shaded area indicates suitable values of $k(n)$ for $n = 100000$. The boxplots are obtained for different values of n and a fixed $k \in k(n)$, the data size is 1000.
Figure 1. Convergence of \(\hat{c}_2 \). \(X_i \sim Pa(2, 5 \cdot (i + 1)) \) for \(i = 1, 2 \).

Figure 2 presents the obtained results for different \(k(n) \) values in the independence case where \(n = 100000 \). A multivariate illustration in dimension 4 is given in Figure 3. The comonotonic case is illustrated in Figure 4. The simulations parameters are \(a = 2, b_1 = 10 \) and \(b_2 = 15 \).

Figure 2. Convergence of \(\hat{e}_{\alpha}^\perp(X) \) (asymptotic independence case). On the left, the first coordinate of \(e_{\alpha}(X) \) and \(\hat{e}_{\alpha}^\perp(X) \) for various values of \(k = k(n) \) are plotted. The right figure concerns the second coordinate.
Figure 3. Convergence of $\hat{e}_\alpha^\perp(X)$ (asymptotic independence case). The coordinates of $e_\alpha(X)$ and $\hat{e}_\alpha^\perp(X)$ in dimension $d = 4$, $n = 100000$ and $k(n) = 100$.
4.2.2. Burr distributions. We consider a multivariate Burr model $X_i \sim Burr(a, b_i, \tau), \ i \in \{1, \ldots, d\}$. In this case, the tails are equivalent with equivalence parameter $c_i = \lim_{x \to +\infty} \frac{F_{X_i}(x)}{F_{X_1}(x)} = \lim_{x \to +\infty} \left(\frac{b_i}{b_i + x} \right)^a \left(\frac{b_1}{b_1 + x} \right)^a = \left(\frac{b_i}{b_1} \right)^a, \ \forall i \in \{2, \ldots, d\},$

and $F_{X_i} \in RV_{a+\tau}(+\infty)$ for all i in $\{1, \ldots, d\}$. In the Burr comonotonic case $\mu_{i,j} = \left(\frac{b_i}{b_j} \right)^{\frac{1}{\tau}} x_j$. The model is asymptotically equivalent to the Pareto one, but the margins are different, which helps to test the pertinence of the estimation processes compared to the theoretical resultants. Figures 5 and 6 present the obtained results for different $k(n)$ values in the independence and the comonotonic cases respectively. The simulations parameters are $a = 4, b_1 = 10, b_2 = 15, \tau = 0.75$ and $n = 10000$.
4.2.3. Student distributions. In order to illustrate the convergence of the two estimators for other distributions nature, we close this subsection by a Student model. We consider a risk vector \((X_1, \ldots, X_d)\) such that \(X_i = a_i T_i\) for all \(i \in \{1, \ldots, d\}\) and \((T_1)_i\)), are identically distributed following a t-distribution of parameter \(z\). Using L'Hôpital's rule, the tails are equivalent since

\[
\lim_{x \to +\infty} \frac{\bar{F}_{X_i}(x)}{\bar{F}_{X_1}(x)} = \lim_{x \to +\infty} \frac{\bar{F}_{T_i}(x/a_i)}{\bar{F}_{T_1}(x/a_1)} = \lim_{x \to +\infty} \frac{a_1 f_{T_1}(x/a_i)}{a_i f_{T_1}(x/a_1)} = \left(\frac{a_i}{a_1}\right)^z = c_i, \forall i \in \{2, \ldots, d\}.
\]
The marginal tails are all $RV_{-(z+1)}(+\infty)$. For the Student comonotonic model $\mu_{i,j} = \frac{a_j}{a_i} x_j$.

For the numerical illustration the parameters are $a_i = 2^{i-1}$ for $i = 1, \ldots, d$ and $z = 2$. In the case of the independence $(T_i)_i$ are supposed independent, and they are comonotonic in the comonotonic case. Figures 7 and 8 present an illustration of the obtained results in the two cases.

![Figure 7](image1.png)

Figure 7. Convergence of $\hat{e}^{\perp}_\alpha(X)$ (asymptotic independence case). On the left, the first coordinate of $e_\alpha(X)$ and $\hat{e}^{\perp}_\alpha(X)$ for various values of $k = k(n)$ are plotted. The right figure concerns the second coordinate.

![Figure 8](image2.png)

Figure 8. Convergence of $\hat{e}^{+}_\alpha(X)$ (comonotonic case). On the left, the first coordinate of $e_\alpha(X)$ and $\hat{e}^{+}_\alpha(X)$ for various values of $k = k(n)$ are plotted. The right figure concerns the second coordinate.

For the three Fréchet models, Pareto, Weibull, and Student, the different illustrations show that the convergence is better for values of α close to 1. This is natural since we are approaching the extreme level and therefore the
estimate value converges towards the theoretical value. The convergence seems to be stable for values of $k(n)$ in the convergence zone. When α moves away from 1, the difference with the theoretical value is apparently a function of the marginal risk level represented by the coefficients of tails’ equivalence c_i.

Conclusion

We have studied properties of extreme multivariate expectiles in a regular variations framework. We have seen that the asymptotic behavior of expectiles vectors strongly depends on the marginal tails behavior and on the nature of the asymptotic dependence. The main conclusion of this analysis, is that the equivalence of marginal tails leads to equivalence of the extreme expectile components.

The statistical estimation of the integrals of the tail dependence functions would allow to construct estimators of the extreme expectile vectors. This paper’s estimations are limited to the cases of asymptotic independence and comonotonicity which do not require the estimation of the tail dependence functions. The asymptotic normality of the estimators proposed in the last section of this paper requires a careful technical analysis which is not considered in this paper.

A natural perspective of this work, is to study the asymptotic behavior of Σ-expectiles in the case of equivalent tails of marginal distributions in the domains of attraction of Weibull and Gumbel. The Gumbel’s domain contains most of the usual distributions, especially the family of Weibull tail-distributions, which makes the analysis of its case an interesting task.

Acknowledgment

We are grateful to the editor and to the reviewers. We thank them for their valuable comments which helped to improve the quality of our manuscript.

References

Appendix A. Proofs

A.1. Lemma 2.2

Proof. We give some details on the proof for the first item, the second one may be obtained in the same way. Under H1 and H2, for all $i \in \{1, \ldots, d\}$

$$F_{X_i} \in RV_{-\vartheta}(\infty),$$

there exists for all i a positive measurable function $L_i \in RV_0(\infty)$ such that

$$F_{X_i}(x) = x^{-\theta} L_i(x), \forall x > 0,$$

then for all $(i, j) \in \{1, \ldots, d\}^2$ and all $t, s > 0$

$$\frac{s F_{X_i}(s)}{t F_{X_j}(t)} = \left(\frac{s}{t} \right)^{-\theta + 1} \frac{L_i(s)}{L_j(t)} = \left(\frac{s}{t} \right)^{-\theta + 1} \frac{L_i(s)}{L_i(t)} \frac{L_i(t)}{L_j(t)},$$

and under H2

$$\lim_{x \uparrow +\infty} \frac{L_i(x)}{L_j(x)} = \frac{c_i}{c_j}.$$

Using Karamata’s representation for slowly varying functions (Theorem 1.2), there exist a constant $c > 0$, a positive measurable function $c(\cdot)$ with $\lim_{x \uparrow +\infty} c(x) = c > 0$, such that $\forall \epsilon > 0, \exists t_0$ such that $\forall t > t_0$

$$\frac{L_i(s)}{L_i(t)} \leq \left(\frac{s}{t} \right)^{-\epsilon} \frac{c(s)}{c(t)},$$

Taking $0 < \epsilon < \theta - 1$, we conclude

$$\lim_{t \uparrow +\infty} \frac{s F_{X_i}(s)}{t F_{X_j}(t)} = 0, \forall (i, j) \in \{1, \ldots, d\}^2.$$

□

A.2. Proposition 2.3

Proof. We start by proving that

$$\lim_{\alpha \to 1} \frac{1 - \alpha}{F_{X_i}(e_i^\alpha(X))} < +\infty, \forall i \in \{2, \ldots, d\}.$$

Using H2, it is sufficient to show that

$$\lim_{\alpha \to 1} \frac{1 - \alpha}{F_{X_i}(e_i^\alpha(X))} < +\infty.$$

Assume that $\lim_{\alpha \to 1} \frac{1 - \alpha}{F_{X_i}(e_i^\alpha(X))} = +\infty$, we shall prove that, in that case, 2.3 cannot be satisfied. Taking if necessary a subsequence $(\alpha_n \to 1)$, we may assume that $\lim_{\alpha \to 1} \frac{1 - \alpha}{F_{X_i}(e_i^\alpha(X))} = +\infty$.

We have

$$\frac{L_{X_i}(x_1)}{(1 - \alpha)x_1} = \frac{\alpha E[(X_1 - x_1)_+] - (1 - \alpha)E[(X_1 - x_1)_-]}{(1 - \alpha)x_1} = \frac{(2\alpha - 1) E[(X_1 - x_1)_+] - (1 - \alpha)(x_1 - E[X_1])}{(1 - \alpha)x_1}$$

$$= \frac{(2\alpha - 1) E[(X_1 - x_1)_+] x_1 F_{X_1}(x_1)}{x_1 - (1 - \alpha) - 1 + \frac{E[X_1]}{x_1}} \xrightarrow{\alpha \uparrow 1} -1 \text{ recall (2.1).}$$

Furthermore, for all $i \in \{2, \ldots, d\}$

$$\frac{l_{X_i}^\alpha(x_1)}{(1 - \alpha)x_1} = \frac{\alpha E[(X_i - x_i)_+ \mathbb{1}_{X_i > x_1}] - (1 - \alpha)E[(X_i - x_i)_- \mathbb{1}_{X_i < x_1}]}{(1 - \alpha)x_1}$$

$$= \frac{\alpha E[(X_i - x_i)_+ \mathbb{1}_{X_i > x_1}]}{(1 - \alpha)x_1} - \frac{E[(X_i - x_i)_+ \mathbb{1}_{X_i < x_1}]}{x_1} - \frac{x_i E[X_1 < x_1]}{x_1} + \frac{E[X_i \mathbb{1}_{X_i < x_1}]}{x_1}.$$

On one side,

$$\frac{E[(X_i - x_i)_+ \mathbb{1}_{X_i > x_1}]}{(1 - \alpha)x_1} \leq \frac{E[(X_i - x_i)_+]}{(1 - \alpha)x_1} = \frac{F_{X_i}(x_1)}{1 - \alpha} \frac{E[(X_i - x_i)_+] x_i F_{X_1}(x_i)}{x_i F_{X_1}(x_i)}, \forall i \in \{2, \ldots, d\}.$$
So that, Lemma 2.2 implies

\[\lim_{\alpha \to 1} \frac{\mathbb{E}[(X_i - x_i) + \mathbb{I}_{\{X_i > x_i\}}]}{(1 - \alpha) x_i} = 0, \forall k \in J_1^0 \cup J_\infty^1. \]

Let \(i \in J_0^1 \), taking if necessary a subsequence, we may assume that \(\frac{x_i}{x_1} \to 0 \).

\[\mathbb{E}\left[\frac{X_i - x_i + \mathbb{I}_{\{X_i > x_i\}}}{(1 - \alpha) x_i}\right] = \int_{x_i}^{x_1} \frac{\mathbb{P}(X_i > t, X_i > x_i)}{(1 - \alpha) x_i} \, dt + \int_{x_i}^{+\infty} \frac{\mathbb{P}(X_i > t, X_i > x_i)}{(1 - \alpha) x_i} \, dt. \]

Now,

\[\int_{x_i}^{x_1} \frac{\mathbb{P}(X_i > t, X_i > x_i)}{(1 - \alpha) x_i} \, dt \leq \int_{x_i}^{x_1} \frac{\mathbb{P}(X_i > x_i)}{(1 - \alpha) x_i} \, dt = \frac{\bar{F}_{X_1}(x_i)}{1 - \alpha} \left(1 - \frac{x_i}{x_1}\right). \]

Thus,

\[\lim_{\alpha \to 1} \int_{x_i}^{x_1} \frac{\mathbb{P}(X_i > t, X_i > x_i)}{(1 - \alpha) x_i} \, dt = 0. \]

Consider the second term of (A.4)

\[\int_{x_i}^{+\infty} \frac{\mathbb{P}(X_i > t, X_i > x_i)}{(1 - \alpha) x_i} \, dt \leq \int_{x_i}^{+\infty} \frac{\mathbb{P}(X_i > t)}{(1 - \alpha) x_i} \, dt, \]

Karamata’s Theorem (Theorem 1.4) gives

\[\int_{x_i}^{+\infty} \frac{\mathbb{P}(X_k > t)}{(1 - \alpha)x_i} \, dt \sim_{\alpha \uparrow 1} \frac{1}{\theta - 1} \frac{\bar{F}_{X_k}(x_i)}{1 - \alpha}, \]

which leads to

\[\lim_{\alpha \to 1} \int_{x_i}^{+\infty} \frac{\mathbb{P}(X_i > t, X_i > x_i)}{(1 - \alpha) x_i} \, dt = 0. \]

Finally, we get

\[\lim_{\alpha \to 1} \frac{\mathbb{E}[(X_i - x_i) + \mathbb{I}_{\{X_i > x_i\}}]}{(1 - \alpha) x_i} = 0, \forall i \in J_0^1. \]

We have shown that

\[\lim_{\alpha \to 1} \frac{\mathbb{E}[X_k - x_k + \mathbb{I}_{\{X_k > x_k\}}]}{(1 - \alpha) x_i} = 0, \forall k \in \{2, \ldots, d\}, \]

so, the first equation of optimality system (2.3) implies that

\[- \lim_{\alpha \to 1} \left(\sum_{k \in J_0^1 \setminus J_\infty^1} \frac{I_{X_k,X_1}(x_k, x_1)}{(1 - \alpha)x_1} + \sum_{k \in J_C^1} \frac{I_{X_k,X_1}(x_k, x_1)}{(1 - \alpha)x_1} + \sum_{k \in J_\infty^1} \frac{I_{X_k,X_1}(x_k, x_1)}{(1 - \alpha)x_1}\right) = \lim_{\alpha \to 1} \sum_{k=2}^{d} \frac{x_k}{x_1} = -1, \]

this is absurd since the \(x_k \)'s are non negative, and consequently

\[\lim_{\alpha \to 1} \frac{1 - \alpha}{\bar{F}_{X_1}(x_1)} < +\infty. \]

Now, we prove that the components of the extreme multivariate expectile satisfy also

\[0 < \lim_{\alpha \to 1} \frac{1 - \alpha}{\bar{F}_{X_k}(e_{\alpha}(X))}, \forall i \in \{2, \ldots, d\}. \]

Using H2, it is sufficient to show that

\[0 < \lim_{\alpha \to 1} \frac{1 - \alpha}{\bar{F}_{X_1}(e_{\alpha}(X))}. \]
Let us assume that \(\lim_{\alpha \to 1} \frac{1-\alpha}{\bar{F}_{X_i}(x)} = 0 \), we shall see that in that case, (2.3) cannot be satisfied. Taking if necessary a convergent subsequence, we may assume that \(\lim_{\alpha \to 1} \frac{1-\alpha}{\bar{F}_{X_i}(x)} = 0 \). In this case,

\[
\frac{\bar{F}_{X_i}(x)}{x_1 \bar{F}_{X_i}(x)} = \left(2\alpha - 1 \right) \frac{\mathbb{E}[X_1 - x_1]^+}{x_1 \bar{F}_{X_i}(x)} - \frac{1-\alpha}{\bar{F}_{X_i}(x)} \left(1 - \frac{1-\alpha}{\bar{F}_{X_i}(x)} \right) \xrightarrow[\alpha \to 1]{} \frac{1}{\theta - 1} > 0.
\]

On another side, let \(i \in J_{1}^\infty \), taking if necessary a subsequence, we may assume that \(x_1 = o(x_i) \). Lemma 2.2 and Proposition 2.3 give:

\[
\frac{1-\alpha}{\bar{F}_{X_i}(x)} \xrightarrow[\alpha \to 1]{} 0 \text{ as } \alpha \to 1.
\]

Moreover,

\[
\frac{\mathbb{E}[X_i - x_i]^+ \mathbb{1}_{\{X_i > x_1\}}}{x_1 \bar{F}_{X_i}(x)} \leq \frac{\mathbb{E}[X_i - x_i]^+}{x_1 \bar{F}_{X_i}(x)} = \frac{\mathbb{E}[\mathbb{1}_{\{X_i > X_1\}}^+] x_i \bar{F}_{X_i}(x_i)}{x_i \bar{F}_{X_i}(x_i)}.
\]

We deduce

\[
\frac{l_{i,1}^2}{x_1 \bar{F}_{X_i}(x_i)} \to 0, \forall i \in J_{1}^\infty.
\]

Going through the limit \(\alpha \to 1 \) in the first equation of the optimality system (2.3) divided by \(x_1 \bar{F}_{X_i}(x_i) \), leads to

\[
\lim_{\alpha \to 1} \sum_{k \in J_{1}^\infty \cup J_{2}^\infty \setminus J_{\infty}^\infty} \frac{l_{k,1}^2}{x_1 \bar{F}_{X_i}(x_i)} = -\frac{1}{\theta - 1},
\]

which is absurd because

\[
\lim_{\alpha \to 1} \sum_{k \in J_{1}^\infty \cup J_{2}^\infty \setminus J_{\infty}^\infty} \frac{l_{k,1}^2}{x_1 \bar{F}_{X_i}(x_i)} = \lim_{\alpha \to 1} \sum_{k \in J_{1}^\infty \cup J_{2}^\infty \setminus J_{\infty}^\infty} \frac{\mathbb{E}[X_i - x_i]^+ \mathbb{1}_{\{X_i > x_1\}}}{x_1 \bar{F}_{X_i}(x)} \times \frac{1-\alpha}{\bar{F}_{X_i}(x)} \xrightarrow[\alpha \to 1]{} 0.
\]

We can finally conclude that

\[
\lim_{\alpha \to 1} \frac{1-\alpha}{\bar{F}_{X_i}(x)} > 0.
\]

\[\square\]

A.3. **Lemma 3.2**

Proof. Taking if necessary a convergent subsequence \((\alpha_n)_{n \in \mathbb{N}} \), \(\alpha_n \to 1 \), we consider that the limits \(\lim_{\alpha \to 1} \frac{x_i}{x_1} = \beta_i \) exist.

Using the notation \(J_C = \{ i \in \{2, \ldots, d\} | 0 < \beta_i < +\infty \} \), for all \(i \in J_C \)

\[
\lim_{\alpha \to 1} \frac{\mathbb{E}[X_i - x_i]^+ \mathbb{1}_{\{X_i > x_1\}}}{x_1 \bar{F}_{X_i}(x)} = \lim_{\alpha \to 1} \int_{\beta_i}^{+\infty} \frac{\mathbb{P}(X_i > tx_1, X_1 > x_1)}{\mathbb{P}(X_1 > x_1)} \, dt,
\]

because

\[
\frac{\mathbb{P}(X_i > tx_1, X_1 > x_1)}{\mathbb{P}(X_1 > x_1)} = \mathbb{P}(X_i > tx_1 | X_1 > x_1) \leq 1.
\]

On another hand,

\[
\frac{\mathbb{P}(X_i > tx_1, X_1 > x_1)}{\mathbb{P}(X_1 > x_1)} \leq \min\{1, \frac{\mathbb{P}(X_i > tx_1)}{\mathbb{P}(X_1 > x_1)}\},
\]

and

\[
\frac{\mathbb{P}(X_i > tx_1)}{\mathbb{P}(X_1 > x_1)} = \frac{\bar{F}_{X_i}(tx_1) \bar{F}_{X_i}(tx_1)}{\bar{F}_{X_i}(tx_1) \bar{F}_{X_i}(tx_1)}.
\]
then, using \(\lim_{\alpha \uparrow 1} F_{X_t}(tx_1) = 0 \) and the Potter’s bounds \([1.5]\) associated to \(F_{X_1}, \) we deduce that for all \(\epsilon_1 > 0 \) and \(0 < \epsilon_2 < 1, \) there exists \(x_i^0(\epsilon_1, \epsilon_2) \) such that for \(x_1 \geq x_i^0(\epsilon_1, \epsilon_2) / \min\{\beta_i\} \)

\[
\mathbb{P}(X_i > tx_1) / \mathbb{P}(X_1 > x_1) \leq \epsilon_1 (1 + \epsilon_2) \max\{t^{-\theta + \epsilon_2}, t^{-\theta - \epsilon_2}\}.
\]

And the application of the Dominated Convergence Theorem leads to

\[
\lim_{\alpha \uparrow 1} \mathbb{E}[(X_i - x_i) + \mathbb{I}_{\{X_i > x_i\}}] / x_1 F_{X_1}(x_1) = \int_{\beta_i}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) dt = 0, \quad \forall \alpha \in J_\infty.
\]

We denote by \(J_\infty \) the set \(J_\infty = \{t \in \{2, \ldots, d\} | \beta_i = +\infty\}. \) So, for all \(i \in J_\infty, \) \(x_i = o(x_i) \) and

\[
\mathbb{E}[(X_i - x_i) + \mathbb{I}_{\{X_i > x_i\}}] / x_1 F_{X_1}(x_1) \leq \int_{x_i}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / x_1 \mathbb{P}(X_1 > x_1) dt = \int_{x_i}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) dt.
\]

In the same way as in the previous case, and using the Potter’s bounds, we show that

\[
\lim_{\alpha \uparrow 1} \int_{1}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) dt = \lim_{\alpha \uparrow 1} \int_{1}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) dt = 0,
\]

from which we deduce that

\[
\lim_{\alpha \uparrow 1} \mathbb{E}[(X_i - x_i) + \mathbb{I}_{\{X_i > x_i\}}] / x_1 F_{X_1}(x_1) = 0, \quad \forall \alpha \in J_\infty.
\]

Let \(J_0 \) be the set \(J_0 = \{i \in \{2, \ldots, d\} | \beta_i = 0\}. \) For all \(i \in J_0, \) we have \(x_i = o(x_i), \) then

\[
\lim_{\alpha \uparrow 1} \mathbb{E}[(X_i - x_i) + \mathbb{I}_{\{X_i > x_i\}}] / x_1 F_{X_1}(x_1) = \lim_{\alpha \uparrow 1} \int_{x_i}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / x_1 \mathbb{P}(X_1 > x_1) dt = \lim_{\alpha \uparrow 1} \int_{0}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) dt,
\]

because \(\lim_{\alpha \uparrow 1} x_i = 0 \) and \(\mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) \leq 1. \)

In addition, for all \(\epsilon > 0, \) we have

\[
\lim_{\alpha \uparrow 1} \int_{\epsilon}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) dt = 0,
\]

because the Dominated Convergence Theorem is applicable using the Potter’s bounds, and \(\lim_{\alpha \uparrow 1} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) = 0 \) for all \(t > 0 \) since \(c_i = 0. \)

Let \(k > 0, \forall \epsilon > 0 \exists \alpha_0 \) such that \(\forall \alpha > \alpha_0 \)

\[
\int_{\epsilon}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) dt < k,
\]

then

\[
\int_{0}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) dt = \int_{0}^{\epsilon} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) dt + \int_{\epsilon}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) dt < \epsilon + k,
\]

we deduce that

\[
\lim_{\alpha \uparrow 1} \int_{0}^{+\infty} \mathbb{P}(X_i > tx_1, X_1 > x_1) / \mathbb{P}(X_1 > x_1) dt = 0,
\]

so,

\[
\lim_{\alpha \uparrow 1} \mathbb{E}[(X_i - x_i) + \mathbb{I}_{\{X_i > x_i\}}] / x_1 F_{X_1}(x_1) = 0, \quad \forall \alpha \in J_0.
\]

We have therefore shown that

\[
\lim_{\alpha \uparrow 1} \mathbb{E}[(X_i - x_i) + \mathbb{I}_{\{X_i > x_i\}}] / x_1 F_{X_1}(x_1) = 0, \quad \forall \alpha \in \{2, \ldots, d\}.
\]
A.4. Lemma 3.3.

Proof. We suppose that \(\lim \frac{1-\alpha}{\alpha \rightarrow 1} F_X(x_\alpha(x_i)) = +\infty \). Taking if necessary a convergent subsequence \((\alpha_n)_{n \in \mathbb{N}}\) with \(\alpha_n \rightarrow 1 \), we consider that the limits \(\lim \frac{\alpha_n}{\alpha_n} = \beta_i \) exist and that \(\lim \frac{1-\alpha_n}{\alpha_n} = +\infty \).

We use the notations \(J_C = \{ i \in \{2, \ldots, d\} \mid 0 < \beta_i < +\infty \} \), \(J_0 = \{ i \in \{2, \ldots, d\} \mid \beta_i = 0 \} \), and \(J_\infty = \{ i \in \{2, \ldots, d\} \mid \beta_i = +\infty \} \).

The first equation of the optimality system (0.1) divided by \(x_1 F_X(x_1) \) can be written

\[
(2\alpha - 1)E[(X_1 - x_1)_+] + \sum_{i=2}^{d} \alpha E[(X_i - x_i)_+ \mathbb{1}_{\{X_i > x_i\}}] = \frac{1 - \alpha}{F_X(x_1)} \left(\frac{x_1 - E[X_1]}{x_1} \right) + \frac{1 - \alpha}{x_1} \left(\sum_{i=2}^{d} \frac{E[(X_i - x_i)_- \mathbb{1}_{\{X_i < x_i\}}]}{x_1} \right).
\]

By (2.1)

\[
\lim_{\alpha \rightarrow 1} \frac{(2\alpha - 1)E[(X_1 - x_1)_+]}{x_1 F_X(x_1)} = \frac{1}{\theta - 1},
\]

and by Lemma 3.2

\[
\lim_{\alpha \rightarrow 1} \sum_{i=2}^{d} \frac{\alpha E[(X_i - x_i)_+ \mathbb{1}_{\{X_i > x_i\}}]}{x_1 F_X(x_1)} = 0,
\]

so, going through the limit \((\alpha \rightarrow 1)\) in the previous equation leads to

\[
\lim_{\alpha \rightarrow 1} \frac{1 - \alpha}{F_X(x_1)} \left(\frac{x_1 - E[X_1]}{x_1} + \sum_{i=2}^{d} \frac{E[(X_i - x_i)_- \mathbb{1}_{\{X_i < x_i\}}]}{x_1} \right) = \frac{1}{\theta - 1},
\]

nevertheless,

\[
\lim_{\alpha \rightarrow 1} \frac{1 - \alpha}{F_X(x_1)} \left(\frac{x_1 - E[X_1]}{x_1} + \sum_{i=2}^{d} \frac{E[(X_i - x_i)_- \mathbb{1}_{\{X_i < x_i\}}]}{x_1} \right) = \lim_{\alpha \rightarrow 1} \frac{1 - \alpha}{F_X(x_1)} \left(1 + \sum_{i=2}^{d} \frac{x_i}{x_1} \right) = +\infty.
\]

From this contradiction, we deduce that the case \(\lim \frac{1-\alpha}{\alpha \rightarrow 1} F_X(x_1) = +\infty \) is absurd.

Now, we suppose that \(\lim \frac{1-\alpha}{\alpha \rightarrow 1} F_X(x_1) = 0 \). Taking if necessary a subsequence \((\alpha_n)_{n \in \mathbb{N}}\) with \(\alpha_n \rightarrow 1 \), we consider that the limits \(\lim \frac{\alpha_n}{\alpha_n} = \beta_i \) exist and that \(\lim \frac{1-\alpha_n}{\alpha_n} = 0 \).

We denote \(J_C = \{ i \in \{2, \ldots, d\} \mid 0 < \beta_i < +\infty \} \), \(J_0 = \{ i \in \{2, \ldots, d\} \mid \beta_i = 0 \} \), and \(J_\infty = \{ i \in \{2, \ldots, d\} \mid \beta_i = +\infty \} \). Going through the limit \((\alpha \rightarrow 1)\) in the first equation of System (0.1) divided by \(x_1 F_X(x_1) \), and using Lemma 3.2 and Equation (2.1) leads to

\[
(A.8) \quad \lim_{\alpha \rightarrow 1} \left(\frac{1 - \alpha}{F_X(x_1)} \sum_{i \in J_\infty} \frac{x_i}{x_1} \right) = \frac{1}{\theta - 1}.
\]

If \(J_\infty \neq \emptyset \), so, there exists \(i \in \{2, \ldots, d\} \) such that \(i \in J_\infty \). In this case,

\[
\lim_{\alpha \rightarrow 1} \frac{E[(X_i - x_i)_+]}{x_1 F_X(x_1)} = \lim_{\alpha \rightarrow 1} \frac{F_X(x_i)}{x_1 F_X(x_1)} \frac{E[X_i - x_i_+]}{x_1 F_X(x_1)} = 0,
\]

because \(\lim_{\alpha \rightarrow 1} \frac{E[(X_i - x_i)_+]}{x_1 F_X(x_1)} = \frac{1}{\theta - 1} \lim_{\alpha \rightarrow 1} \frac{F_X(x_i)}{x_1 F_X(x_1)} = 0 \), and by Lemma 2.2 \((X_i = X_j = X_1) \lim_{\alpha \rightarrow 1} \frac{x_i F_X(x_i)}{F_X(x_1)} = 0 \).

On the other hand, for all \(j \in \{1, \ldots, d\} \setminus \{i\} \),

\[
\frac{E[(X_j - x_i)_+ \mathbb{1}_{\{X_j > x_i\}}]}{x_1 F_X(x_1)} = \int_{x_j}^{+\infty} \frac{P(X_j > x, X_i > x_i)}{x_1 P(X_1 > x)} dx,
\]

so if \(j \in J_C \), then

\[
\lim_{\alpha \rightarrow 1} \frac{E[(X_j - x_i)_+ \mathbb{1}_{\{X_j > x_i\}}]}{x_1 F_X(x_1)} = \lim_{\alpha \rightarrow 1} \int_{x_j}^{+\infty} \frac{P(X_j > x, X_i > x_i)}{P(X_1 > x)} dx = \lim_{\beta \rightarrow 1} \int_{\beta_j}^{+\infty} \frac{P(X_j > x, X_i > x_i)}{P(X_1 > x)} dx.
\]
because \(\frac{\mathbb{P}(X_j > tx_1, X_i > x_i)}{\mathbb{P}(X_i > x_i)} \leq \frac{\mathbb{P}(X_j > tx_1)}{\mathbb{P}(X_i > x_i)} \) and \(\lim_{t \uparrow 1} \frac{\mathbb{P}(X_j > tx_1)}{\mathbb{P}(X_i > x_i)} = 0 \) for all \(t > 0 \). We apply the dominated convergence Theorem, using Potter’s bounds associated to \(\bar{F}_{X_i} \), to get

\[
\lim_{t \uparrow 1} \mathbb{E}\left[(X_j - x_j) + \mathbb{1}_{\{X_i > x_i\}} \right] \frac{1}{x_1 \bar{F}_{X_i}(x_1)} = \int_0^{+\infty} \frac{\mathbb{P}(X_j > tx_1, X_i > x_i)}{\mathbb{P}(X_i > x_i)} dt,
\]

and since

\[
\frac{\mathbb{P}(X_j > tx_1, X_i > x_i)}{\mathbb{P}(X_i > x_i)} \leq \frac{\mathbb{P}(X_i > x_i)}{\mathbb{P}(X_i > x_i)} = \frac{1}{x_1 \bar{F}_{X_i}(x_1) \bar{F}_{X_j}(x_i)},
\]

so, by Lemma 2.2

\[
\lim_{t \uparrow 1} \mathbb{P}(X_j > tx_1, X_i > x_i) \frac{1}{\mathbb{P}(X_i > x_i)} = \lim_{t \uparrow 1} \frac{\mathbb{P}(X_i > x_i)}{\mathbb{P}(X_i > x_i)} = 0,
\]

we deduce finally that

\[
\lim_{t \uparrow 1} \mathbb{E}\left[(X_j - x_j) + \mathbb{1}_{\{X_i > x_i\}} \right] \frac{1}{x_1 \bar{F}_{X_i}(x_1)} = 0, \quad \forall j \in J_C.
\]

If \(j \in J_\infty \setminus \{i\} \), then

\[
\mathbb{E}\left[(X_j - x_j) + \mathbb{1}_{\{X_i > x_i\}} \right] \frac{1}{x_1 \bar{F}_{X_i}(x_1)} = \int_0^{+\infty} \frac{\mathbb{P}(X_j > t, X_i > x_i)}{x_1 \mathbb{P}(X_i > x_i)} dt \leq \int_0^{+\infty} \frac{\mathbb{P}(X_j > t, X_i > x_i)}{x_1 \mathbb{P}(X_i > x_i)} dt = \int_1^{+\infty} \frac{\mathbb{P}(X_j > tx_1, X_i > x_i)}{\mathbb{P}(X_i > x_i)} dt,
\]

we show in the same way as in the previous case that

\[
\lim_{t \uparrow 1} \int_1^{+\infty} \frac{\mathbb{P}(X_j > tx_1, X_i > x_i)}{\mathbb{P}(X_i > x_i)} dt = \int_1^{+\infty} \frac{\mathbb{P}(X_j > tx_1, X_i > x_i)}{\mathbb{P}(X_i > x_i)} dt = 0,
\]

then

\[
\lim_{t \uparrow 1} \mathbb{E}\left[(X_j - x_j) + \mathbb{1}_{\{X_i > x_i\}} \right] \frac{1}{x_1 \bar{F}_{X_i}(x_1)} = 0, \quad \forall j \in J_\infty \setminus \{i\}.
\]

If \(j \in J_0 \), then

\[
\mathbb{E}\left[(X_j - x_j) + \mathbb{1}_{\{X_i > x_i\}} \right] \frac{1}{x_1 \bar{F}_{X_i}(x_1)} = \int_0^{x_i} \frac{\mathbb{P}(X_j > tx_1, X_i > x_i)}{x_1 \mathbb{P}(X_i > x_i)} dt + \int_{x_i}^{+\infty} \frac{\mathbb{P}(X_j > tx_1, X_i > x_i)}{x_1 \mathbb{P}(X_i > x_i)} dt \leq \frac{x_i - x_j}{x_1} \bar{F}_{X_i}(x_i) + \int_1^{+\infty} \frac{\mathbb{P}(X_j > tx_1, X_i > x_i)}{\mathbb{P}(X_i > x_i)} dt,
\]

since \(\lim_{t \uparrow 1} \int_1^{+\infty} \frac{\mathbb{P}(X_j > tx_1, X_i > x_i)}{\mathbb{P}(X_i > x_i)} dt = 0 \), so, by Lemma 2.2, we get

\[
\lim_{t \uparrow 1} \frac{x_i - x_j}{x_1} \bar{F}_{X_i}(x_i) = \lim_{t \uparrow 1} \frac{x_i - x_j}{x_1} \bar{F}_{X_i}(x_i) \frac{x_i \bar{F}_{X_i}(x_i)}{x_1 \bar{F}_{X_i}(x_1) x_i} = 0,
\]

we obtain from that

\[
\lim_{t \uparrow 1} \mathbb{E}\left[(X_j - x_j) + \mathbb{1}_{\{X_i > x_i\}} \right] \frac{1}{x_1 \bar{F}_{X_i}(x_1)} = 0, \quad \forall j \in J_0,
\]

and consequently

\[
\lim_{t \uparrow 1} \mathbb{E}\left[(X_j - x_j) + \mathbb{1}_{\{X_i > x_i\}} \right] \frac{1}{x_1 \bar{F}_{X_i}(x_1)} = 0, \quad \forall j \in \{1, \ldots, d\} \setminus \{i\}.
\]
The i^{th} equation of System 0.1 divided by $x_1 F_{X_1}(x_1)$ can be written in the form

$$\frac{(2\alpha - 1) \mathbb{E}[(X_i - x_i)_+]}{x_1 F_{X_1}(x_1)} - \frac{1 - \alpha}{x_1} x_i - \mathbb{E}[X_i] = \sum_{j=1}^d \frac{(1 - \alpha) \mathbb{E}[(X_j - x_j)_- \mathbb{I}_{\{X_i < x_i\}}]}{x_1 F_{X_1}(x_1)}$$

$$- \sum_{j=1}^d \frac{\alpha \mathbb{E}[(X_j - x_j)_+ \mathbb{I}_{\{X_i > x_i\}}]}{x_1 F_{X_1}(x_1)},$$

going through the limit ($\alpha \rightarrow 1$) in this equation leads to

$$-\lim_{\alpha \uparrow 1} \frac{1 - \alpha}{x_1} x_i \frac{x_i}{F_{X_1}(x_1)} \frac{1 - \alpha}{x_1} \sum_{j=1}^d \frac{x_j}{x_1},$$

which is possible only if $\lim_{\alpha \uparrow 1} \frac{1 - \alpha}{x_1} \frac{x_i}{F_{X_1}(x_1)} = 0$, and that is contradictory with Equation A.8. □

Université de Lyon, Université Lyon 1, France, Institut Camille Jordan UMR 5208
E-mail address: veronique.maume@univ-lyon1.fr

Université de Lyon, Université Lyon 1, France, Laboratoire SAF EA 2429
E-mail address: didier.rulliere@univ-lyon1.fr

École d’Actuariat, Université Laval, Québec, Canada
E-mail address: khalil.said.1@ulaval.ca