
HAL Id: hal-01509537
https://hal.science/hal-01509537

Submitted on 18 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximating MAX SAT by moderately exponential
algorithms

Bruno Escoffier, Vangelis Paschos, Emeric Tourniaire

To cite this version:
Bruno Escoffier, Vangelis Paschos, Emeric Tourniaire. Approximating MAX SAT by moderately
exponential algorithms. 9th Annual Conference on Theory and Applications of Models of Computation
TAMC 2012, May 2012, Beijing, China. pp.622, �10.1007/978-3-642-29952-0_23�. �hal-01509537�

https://hal.science/hal-01509537
https://hal.archives-ouvertes.fr

Laboratoire d'Analyse et Modélisation de Systèmes pour

l'Aide à la Décision
CNRS UMR 7243

CAHIER DU LAMSADE

304

Mars 2011

Approximating MAX SAT by moderately exponential
algorithms

Bruno Escoffier, Vangelis Th. Paschos, Emeric Tourniaire

Approximating MAX SAT by moderately

exponential algorithms∗

Bruno Escoffier1 Vangelis Th. Paschos1,2 Emeric Tourniaire1

1LAMSADE, CNRS and Université Paris-Dauphine, France

{escoffier,paschos,tourniaire}@lamsade.dauphine.fr
2Institut Universitaire de France

March 16, 2011

Abstract

We study approximation of the max sat problem by moderately exponential algorithms.

The general goal of the issue of moderately exponential approximation is to catch-up on

polynomial inapproximability, by providing algorithms achieving, with worst-case running

times importantly smaller than those needed for exact computation, approximation ratios

unachievable in polynomial time. We develop several approximation techniques that can be

applied to max sat in order to get approximation ratios arbitrarily close to 1.

1 Introduction

Optimum satisfiability problems are of great interest from both theoretical and practical points
of view. On the one hand, sat is the first complete problem for NP and max sat, min sat

have generalizations or restrictions that have been among the first problems proved complete
for numerous approximability classes under various approximability preserving reductions [2, 3,
18, 20]. On the other hand, in many fields (including artificial intelligence, database system,
mathematical logic, . . .) several problems can be expressed in terms of versions of sat [4].

Satisfiability problems have in particular drawn a major attention in the field of polynomial
time approximation as well as in the field of parameterized and exact solution by exponential
time algorithms (see Section 2). Our goal in this paper is to develop approximation algorithms
for max sat with running times which, though being exponential, are much lower than those
of exact algorithms, and with a better approximation ratio than the one achieved in polynomial
time. This approach has already been considered for max sat in [16], where interesting tradeoffs
between running time and approximation ratio are given. It has also been considered for several
other well known problems such as minimum set cover [10, 14], min coloring [6, 9], max

independent set and min vertex cover [8], min bandwidth [15, 19], . . . Similar issues arise
in the field of FPT algorithms, where approximation notions have been introduced, for instance,
in [11, 17]. In this article, we propose several improvements of the result of [16] using various
algorithmic techniques.

∗Research partially supported by the French Agency for Research under the DEFIS program TODO, ANR-

09-EMER-010.

1

The paper is organized as follows. In Section 2, we formally define the problem, mention some
known results and briefly sketch the ideas leading to some of the results in [16]. We propose
first improvements in Section 3: the first one uses the same technique as in [16] while the second
one uses a different approach consisting of splitting the instance in “small” sub-instances. In
Section 4, we further improve these results for some ratios using another technique consisting of
approximately pruning a search tree. All these results deal with complexity depending on the
number of clauses. In Section 5, we obtain the same kind of results when we are interested in
running times that depend on the number of variables. We conclude the article in Section 6
where we briefly mention the min sat problem.

2 Preliminaries and notations

Given a set of variables and a set of disjunctive clauses, max sat consists of finding a truth
assignment for the variables that maximizes the number of satisfied clauses. In what follows, we
denote by X = {x1, x2, . . . , xn} the set of variables and by C = {C1, C2, . . . Cm} the set of clauses.
Each clause consists of a disjunction of literals that are either a variable xi or the negation of a
variable ¬xi. A ρ-approximation algorithm for max sat (with ρ < 1) is an algorithm that finds
an assignment satisfying at least a fraction ρ of the maximal number of simultaneously satisfied
clauses. The best known ratio guaranteed by a polynomial time approximation algorithm is
α = 0.785 obtained in [1].

Dealing with exact solution, [12] gives an exact algorithm working in time O∗(1.3247m), which
is the best known bound so far. Dealing with the number of variables, the trivial O∗(2n) bound
has not yet been broken down, and this constitutes one of the main open problems in the field
of exact exponential algorithms. The parameterized version of max sat consists, given a set of
clauses C and an integer k, of finding a truth assignment that satisfies at least k clauses, or to
output an error if no such assignment exists. In [12] the authors give a parameterized algorithms
for max sat running in time O∗(1.3695k).

Using the same notation as in [12], we say that that a variable x is an (i, j)-variable if it
occurs positive in exactly i clauses and negative in exactly j clauses. For any instance C of max

sat, we will denote by OPT(C) (or OPT if no ambiguity occurs) an optimal set of satisfied
clauses. We use notation f(n) = O∗(g(n)), if and only if ∃c ∈ R, f(n) = O(g(n)nc). Finally,
we denote by α the ratio guaranteed by a polynomial time approximation algorithm (currently
α = 0.785 is the best value). In general, ρ will denote the approximation ratio of an algorithm,
and, when dealing with exponential complexity, γ will be the basis of the exponential expressing
it.

In order to fix ideas, let us give a first algorithm, very simple and useful to understand some
of our results. In particular, it is one of the basic stones of the results in [16]. It is based upon
the following two well known reduction rules.

Reduction 1. Any clause containing an (n, 0)- or a (0, n)-literal can be removed from the in-
stance. This is correct because we can set this literal to TRUE or FALSE and
satisfy the clauses that contain it.

Reduction 2. Any (1, 1)-literal can be removed too. Let C1 = x1 ∨ x2 ∨ · · · ∨ xp and C2 =
¬x1 ∨x′

2 ∨· · ·∨x′
q be the only two clauses containing the variable x1. If there exist

two opposite literals in C1 and C2, then we can satisfy these clauses by choosing
a correct value for x1 and therefore we can remove these clauses. Otherwise, we
can replace these clauses by C = x2 ∨ · · · ∨ xp ∨ x′

2 ∨ · · · ∨ x′
q. The optimum in

the initial instance is the optimum in the reduced instance plus 1.

2

Algorithm 1. Build a tree as follows. Each node is labeled with a sub-instance of max sat.
The root is the initial instance. The empty instances are the leaves. For each node whose label
is a non-empty sub-instance, if one of the reductions above applies, then the node has one child
labeled with the resulting (reduced) sub-instance. Else, a variable x is arbitrarily chosen and
the node has two children: in the first one, the instance has been transformed by setting x to
FALSE (the literals ¬x have been removed and the clauses containing the literal ¬x are satisfied);
in the second one, x is set to TRUE and the contrary happens. Finally, for both children the
empty clauses are marked unsatisfied. Thus, each node represents a partial truth assignment.
An optimal solution is a truth assignment corresponding to a leaf that has the largest number
of satisfied clauses. �

To evaluate the complexity of Algorithm 1, we count the number of leaves in the tree (note that
if the number of leaves is T (n), then the algorithm obviously works in time O∗(T (n)); in the
sequel, in order to simplify notations we will use T (n) to denote both the number of leaves (when
we express recurrences) and the complexity). There are two ways to count the number of leaves:

• On the one hand, each node has two children for which the number of remaining variables
decreases by 1. This leads to a number of leaves T (n) 6 2 × T (n − 1) and therefore
T (n) = O∗(2n).

• On the other hand, on each node, if the chosen variable is an (i, j)-variable, then the first
child will have its number of clauses decreased by at least i and the second child by at
least j. The worst case, using the two reduction rules given above, is i = 1 and j = 2, that
leads to T (m) = T (m − 1) + T (m − 2) and therefore T (m) = O∗(1.618m).

In [16], the authors showed a way to transform any polynomial time approximation algorithm
(with ratio α) into an approximation algorithm with ratio ρ (for any α ≤ ρ ≤ 1) and running

time O∗(1.618(ρ−α)(1−α)−1m). The basic idea of this algorithm is to build the same tree as in
Algorithm 1 up to the fact that we stop the branching when enough clauses are satisfied. Then
the α-approximation polynomial algorithm is applied on the resulting sub-instances. As already
mentioned, the best value of α is 0.785 [1].

3 First improvements

We provide in this sections two first improvements of the result given in [16]. The first one,
given in Section 3.1, uses the same idea as [16] while the second one uses a completely different
technique and achieve improved running times (for some approximation ratios) by splitting the
initial instance in sub-instances of smaller size.

3.1 Using a better parameterized algorithm

In this section we briefly mention that the same technique as in [16] leads to an improved result
when we build the search tree according to the algorithm from [12] instead of the branching tree
presented in Section 2. We so derive the following algorithm, that is strictly better than the one
of [16] (Figure 1).

Algorithm 2. Build a search-tree as the parameterized algorithm of [12] does. Stop the devel-
opment of this tree at each node where at least (m (ρ − α) / (1 − α)) clauses are satisfied (recall
that α is the best known polynomial approximation ratio for max sat), or when the instance
is empty. For each leaf of the so-pruned tree, apply a polynomial α-approximation algorithm to

3

ρ

γ

0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

Algorithm
of [16]

Algorithm 2

Figure 1: Comparison between the algorithm of [16] and Algorithm 2.

complete the assignment of the remaining variables; thus, each leaf of the tree corresponds to a
complete truth assignment. Return the assignment satisfying the largest number of clauses. �

Theorem 1. For any ρ such that α ≤ ρ ≤ 1, Algorithm 2 achieves approximation ratio ρ in
time O∗(1.3695m(ρ−α)/(1−α)).

Proof. First, let us consider the running time. The parameterized algorithm of [12] builds a
search tree where the worst case recurrence relation is T (k) ≤ 2T (k − 3) + 2T (k − 7), where the
parameter k is the number of satisfied clauses, leading to a global complexity of O∗(1.3695k).
Here, we build this tree and stop the construction in each leave where m(ρ − α)/(1 − α) clauses
are satisfied. This leads to a running time of O∗(1.3695m(ρ−α)/(1−α)).

No, let us consider the approximation ratio. First, if the number of satisfied clauses |OPT|
by an optimum solution OPT is less than m(ρ − α)/(1 − α), then Algorithm 2 obviously finds
an optimum solution. Otherwise, let us consider the branch of the branching tree where the leaf
corresponds to a partial optimal truth assignment satisfying clauses in OPT. Denote by k0 the
number of clauses satisfied in this leaf (k0 > m(ρ−α)/(1−α)), i.e. by the partial assignment cor-
responding to this leaf. Using this assignment, we get a resulting instance in which it is possible
to satisfy |OPT| − k0 clauses (because the optimal assignment satisfies |OPT| clauses). Conse-
quently, the α-approximation algorithm called by Algorithm 2 will satisfy at least α (|OPT| − k0)
more clauses.

So, finally, at least k0 + α (|OPT| − k0) = k0(1 − α) + α|OPT| > m (ρ − α) + α|OPT| >

|OPT|(ρ − α) + α|OPT| = ρ|OPT| clauses will be satisfied.

3.2 Splitting the clauses

In [8, 7], it is shown that a generic method can give interesting moderately exponential approxi-
mation algorithms if applied in (maximization) problems satisfying some hereditary property (a

4

Instance C
divided in q subsets

· · · · · ·

Subset C1

Subset C2

Subset C3

...
. . .

Subset Cq−1

Subset Cq

Figure 2: Forming the q subsets of clauses.

property is said to be hereditary if for any set A satisfying this property, and any B ⊂ A, B
satisfies this property too).

max sat can be seen as searching for a maximum subset of clauses satisfying the property
“can be satisfied by a truth assignment”, and this property is clearly hereditary. Therefore, we
can adapt the splitting method introduced in [8, 7] to transform any exact algorithm into a
ρ-approximation algorithm, for any rational ρ, and with running time exponentially increasing
with ρ.

Algorithm 3. Let p, q be two integers such that ρ = p/q. Split the set of clauses into q pairwise
disjoint subsets A1, · · · , Aq of size m/q (at most ⌈m/q⌉ if m/q is not an integer). Then, consider
as described in Figure 2 the q subsets Ci = Ai ∪ Ai+1 ∪ · · · ∪ Ai+p−1 (if the index is larger than
q, take it modulo q) for i = 1, · · · , q. On each subset, apply some exact algorithm for max sat.
Return the best truth assignment among them as solution for the whole instance. �

Theorem 2. Given an exact algorithm for max sat running in time O∗(γm), Algorithm 3
achieves approximation ratio ρ in time O∗(γρm).

Proof. Algorithm 3 calls q times an exact algorithm (whose running time is O∗(γm)). Then the
bound of the running time easily follows from the fact that each subset Ci contains at most
p⌈m/q⌉ ≤ ρm + p clauses.

For the approximation ratio, note first that if we restrict an instance with a set C of clauses
to a new instance with a new set C′ ⊂ C of clauses, then an optimal solution for C′ satisfies
at least the same amount of clauses in C′ than an optimal solution for C (in other words, the
restriction of any solution for C to C′ is feasible for C′), i.e., |OPT(C) ∩ C′| 6 |OPT(C′)|. In
particular, for i = 1, . . . , q, |OPT(Ci)| > |OPT(C) ∩ Ci|.

Now, note that by construction of the Ci’s, we easily see that each clause appears in exactly p
among the q subsets C1, C2, . . . , Cq, and this holds in particular for any clause in OPT. Thus,
∑q

i=1 |OPT(C)∩Ci| = p×|OPT(C)|. By the discussion above,
∑q

i=1 |OPT(Ci)| > p×|OPT(C)|.
Since

∑q
i=1 |OPT(Ci)| 6 q × maxq

i=1 |OPT(Ci)|, then maxq
i=1 |OPT(Ci)| >

p
q |OPT(C)|.

It is worth noticing that Algorithm 3 is faster that Algorithm 2 for ratios close to 1 (see
Figure 3 in Section 4).

5

4 Approximate pruning of the search tree

Informally, the idea of an approximate pruning of the search tree is based upon the fact that, if
we seek, say, a 1/2-approximation for a maximization problem, then when a search-tree based
algorithm selects a particular datum d for inclusion in the solution, one may remove one other
datum d′ from the instance (without, of course, including it in the solution). At worst, d′ is
part of an optimal solution and is lost by our solution. Thus, globally, the number of data in an
optimum solution is at most two times the number of data in the built solution. On the other
hand, with the removal of d′, the size of the surviving instance is reduced not by 1 (due to the
removal of d) but by 2.

This method can be adapted to max sat in the following way: revisit Algorithm 1 and
recall that its worst case with respect to m is to branch on a (1, 2)-literal and to fix 1 (satisfied)
clause on the one side and 2 (satisfied) clauses on the other side. If we decide to also remove 1
more clause (arbitrarily chosen) in the former case and 2 more clauses (arbitrarily chosen) in
the latter one, this leads to a running time T (m) satisfying T (m) 6 T (m − 2) + T (m − 4),
i.e., T (m) 6 O∗(1.27m). Since in the branches we have satisfied at least s ≥ 1 clause (resp.,
s ≥ 2 clauses) while the optimum satisfies at most s + 1 clauses (resp., s + 2 clauses), we get an
approximation ratio 0.5.

This basic principle is not sufficient to get interesting result for max sat, but it can be
improved as follows. Let us consider the left branch where the (1, 2)-literal is set to true, satisfying
a clause C1. Instead of throwing away one other clause, we pick two clauses C2 and C3 such
that C2 contains a literal ℓ and C3 contains the literal ¬ℓ, and we remove these two clauses. Any
truth assignment satisfies either C2 or C3, meaning that in this branch we will satisfy at least 2
clauses (C1 and one among C2 and C3), while at worst the optimum will satisfy these three
clauses. In the other branch where 2 clauses are satisfied, we pick two pairs of clauses containing
opposite literals and we remove them. This trick improves both the approximation ratio and
the running time: now we have an approximation ratio 2/3 (2 clauses satisfied among 3 clauses
removed in one branch, 4 clauses satisfied among 6 clauses removed in the other branch), and
the running time satisfies T (m) 6 T (m − 3) + T (m − 6), i.e., T (m) = O∗(1.17m).

In what follows, we generalize the ideas sketched above in order to work for any ratio ρ ∈ Q.

Algorithm 4. Let p and q be two integers such as p
q = ρ−1

1−2ρ . We build the search tree and, on

any of its nodes, we count the number of satisfied clauses since the root (we do not count here the
clauses that have been arbitrarily removed). Each time we reach a multiple of q, we pick p pairs
of clauses with opposite literals and we remove them from the remaining sub-instance. When
such a sub-instance on a node is empty, we arbitrarily assign a value on any still unassigned
variable. Finally, we return the best truth assignment so constructed. �

Note that it might be the case that at some point it is impossible to find p pairs of clauses
with opposite literals. But this means that (after removing q < p pairs) each variable appears
only positively or only negatively, and the remaining instance is clearly easily solvable in linear
time.

Theorem 3. Algorithm 4 satisfies at least ρ|OPT| clauses and runs in time O∗(1.618m(2ρ−1)).

Proof. Consider the leaf where the variables are set like in an optimum solution. In this leaf,
assume that the number of satisfied clauses is s × q + s′ (where s′ < q) - again, we do not count
the clauses that have been arbitrarily removed. Then, the algorithm has removed s × 2p clauses
arbitrarily, among which at least s × p are necessarily satisfied. In the worst case, the s × p other
clauses are in OPT; hence, |OPT| 6 2sp + sq + s′. So, the approximation ratio of Algorithm 4

6

is at least:
sq + sp + s′

sq + 2sp + s′
≥

q + p

q + 2p
=

1 + p
q

1 + 2 p
q

= ρ

We now estimate the running time of Algorithm 4. For each node i of the tree, denote by mi the
number of clauses left in the surviving sub-instance of this node, by zi the number of satisfied
clauses since the root of the tree (we do not count the clauses that have been arbitrarily removed)
and set ti = mi − (2p/q)(zi mod q).

For the root of the tree, zi = 0 and therefore ti = m. Let i be a node with two children j
(at least one clause satisfied) and g (at least two clauses satisfied). Let us examine quantity tj

when exactly one clause is satisfied. In this case, zj = zi + 1. On the other hand:

i) If zj mod q 6= 0, then we do not have reached the threshold necessary to remove the 2p
clauses. Then, mj = mi−1 and tj = mj−2p/q(zj mod q) = mi−1−2p/q((zi mod q)+1) =
ti − 1 − 2p/q.

ii) If zj mod q = 0, then zi mod q = q − 1 and the threshold has been reached; so 2p clauses
have been removed. Then, mj = mi−1−2p, tj = mj = mi−1−2p and ti = mi−2p/q(q−1) =
mi − 2p + 2p/q. Finally, tj = ti − 1 − 2p/q.

Therefore, in both cases, tj 6 ti − 1 − 2p/q. Of course, by a similar argument, if we satisfy g
clauses, then the quantity ti is reduced by g(1 + 2p/q). This leads to a running time T (t) 6

T (t − 1 − 2p/q) + T (t − 2 − 4p/q) and hence T (t) = 1.618t/(1+2p/q). Since initially t = m, we get
T (m) = 1.618m/(1+2p/q). Taking into account that p/q = (ρ − 1)/(1 − 2ρ), we get immediately
1/(1 + 2p/q) = 2ρ − 1, that completes the proof.

Finally, Algorithm 4 can be improved if instead of using the simple branching rule in the tree,
the more involved case analysis of [12] is used. This derives the following algorithm.

Algorithm 5. Let p and q be two integers such as p
q = ρ−1

1−2ρ . Build the search-tree of [12] and,
on each node of it, count the number of satisfied clauses since the root. Each time a multiple
of q is reached, pick p pairs of clauses with opposite literals and remove them from the resulting
sub-instance. Return the best truth assignment so constructed. �

To estimate the running time of Algorithm 5, we use nearly the same analysis as in [12]. The
only difference is that, at each step of the branching tree, [12] counts without distinction the
satisfied and the unsatisfied clauses (because left empty), whereas we have to make a difference
in the complexity analysis: a satisfied clause reduces the quantity t by 1+2p/q in our algorithm,
while an unsatisfied clause reduces it by only 1.

We illustrate this analysis for the case 4.2 of [12] (“there is (2, 2)-literal x that occurs at least
once as a unit clause”). In this case, a branching is done on the variable x. On the one side, 2
clauses are satisfied while, on the other side, 2 are satisfied and 1 becomes empty and thus it is
removed from the instance. For [12], this leads to a complexity T (m) 6 T (m − 2) + T (m − 3).
For Algorithm 5, this gives T (m) 6 T (m−2−4p/q)+T (m−3−4p/q). To simplify these results,
set χ = 2p/q. Then T (m) 6 T (m − 2 − 2χ) + T (m − 3 − 2χ), which leads to T (m) = O∗(γm)
with γ the largest real solution of the equation γ2χ+3 − γ − 1 = 0.

For the other cases, a comparative study between the algorithm of [12] and Algorithm 5 is
summarized in Table 1. Its third column gives equations whose largest real solutions are the
worst case running times for Algorithm 5.

Now, depending on the seeked ratio ρ, the running time of the algorithm is given by the worst
case of all the cases given in Table 1. However, one can show that for any ρ the worst case is
always reached by the case 4.2. Let us show an example (the other cases are similar). Consider

7

Case [12] Algorithm 5

4.0 a) T (m) = T (m − 1) + T (m − 5) T (m) = T (m − 1 − χ) + T (m − 5 − 4χ)
4.0 b) T (m) = T (m − 1) + T (m − 7) + T (m − 10) T (m) = T (m−1−χ)+T (m−7−6χ)+

T (m − 10 − 9χ)
4.1 T (m) = 2T (m − 3) T (m) = 2T (m − 3 − 3χ)
4.2 T (m) = T (m − 2) + T (m − 3) T (m) = T (m − 2 − 2χ) + T (m − 3 − 2χ)
4.3 T (m) = 2T (m − 6) + T (m − 2) T (m) = 2T (m−6−6χ)+T (m−2−2χ)
4.4 T (m) = T (m − 3) + T (m − 2) T (m) = T (m − 3 − 3χ) + T (m − 2 − 2χ)
4.5 Same as for 4.3
4.6 Same as for 4.4
4.7 T (m) = 2T (m − 5) T (m) = 2T (m − 5 − 5χ)
4.8 T (m) = 2T (m − 5) + 2T (m − 7) T (m) = 2T (m−5−5χ)+2T (m−7−6χ)
4.9 a) Same as for 4.1
4.9 b) Same as for 4.0 a)
4.10 T (m) = T (m − 1) + 1 T (m) = T (m − 1) + 1
4.11 a) T (m) = 2T (m − 4) T (m) = 2T (m − 4 − 4χ)
4.11 b) Same as for 4.0 a)
4.12 a) Same as for 4.0 a)
4.12 b) T (m) = 2T (m − 8) + T (m − 1) T (m) = 2T (m − 8 − 7χ) + T (m − 1 − χ)

Table 1: Running times for the algorithm of [12] and Algorithm 5.

the equations f4.2(X) = X2χ+3 − X − 1 = 0 and f4.0(X) = X4χ+5 − X3χ+4 − 1 = 0. The largest
real solution of the former is always larger than the largest real solution of the latter one. Indeed,
let χ be any positive value. Remark first that f ′

4.0(X) = (4χ + 5)X4χ+4 − (3χ + 4)X3χ+3 > 0;
hence, function f4.0 is increasing with X > 1. What we now need to show is that if f4.2(X) = 0,
then f4.0(X) > 0 (this means that the zero of f4.0 is before that of f4.2):

f4.2(X) = 0 ⇔ X2χ+3 = X + 1 ⇔ X3χ+4 = Xχ+2 + Xχ+1

⇔ X4χ+5 = X2χ+3 + X2χ+2 ⇔ X4χ+5 = X2χ+2 + X + 1

⇒ X4χ+5 − X3χ+4 − 1 = X2χ+2 + X − Xχ+2 − Xχ+1

⇒ f4.0(X) = X2χ+2 + X − Xχ+2 − Xχ+1

⇒ f4.0(X) =
(

Xχ+1 − 1
) (

Xχ+1 − X
)

> 0

and the result follows.
Also, it is easy to see that the result of Theorem 3 dealing with the approximation ratio of

Algorithm 4 identically applies also for Algorithm 5. Putting all the above together, the following
theorem holds and concludes the section.

Theorem 4. For any ρ < 1, Algorithm 5 achieves approximation ratio ρ on max sat with
running time T (m) = O∗(γm), where γ is real solution of the equation X2α+3 − X − 1 = 0 and
α = 2ρ−2

1−2ρ .

Figure 3 illustrates the relationship approximation ratio - running time of the different meth-
ods seen so far. The numeric analysis shows that, with the current value of α, and with the
algorithm of [12] as the best currently known algorithm for max sat, Algorithm 2 is the most
efficient for ratios less than 0.967 while Algorithm 5 dominates the other ones for ratios above
this value.

8

ρ

γ

0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

0.96727

Algorithm 5 Algorithm 2

Algorithm 3

Figure 3: Evaluation of the running times for the different methods.

5 Splitting the variables

In this section, we present two algorithms that approximate max sat within any approximation
ratio smaller than 1, and with a computation time depending on n (the number of variables). The
first algorithm of this section builds several trees. Then, in each of them, as for Algorithm 2 in
Section 3.1, it cuts the tree at some point and completes variables’ assignment using a polynomial
approximation algorithm, as it is illustrated in Figure 4.

Algorithm 6. Let p and q be two integers such that p/q = (ρ − α)/(1 − α). Build q subsets
X1, · · · , Xq of variables, each one containing roughly p/q × n variables, where each variable
appears in exactly p subsets (as in Figure 2 in Section 3.2). For each subset Xi, construct a
complete branching tree, considering only the variables in the subset (i.e., the depth of each of
these trees is exactly |Xi| ≃ p/q × n). For each of the leaves of these trees, run a polynomial
time algorithm guaranteeing a ratio α on the surviving sub-instance. Return the best truth
assignment among those built. �

Each of the trees built by Algorithm 6 is a binary tree and has depth roughly pn/q (at most
pn/q + p to be precise). So its running time is O∗(2np/q). Note also that, on each of these trees,
at least one leaf is a partial assignment of an optimal (global) truth assignment. We will call
such a leaf an optimal leaf.

Lemma 1. At least one of optimal leaf has at least p
q × |OPT| satisfied clauses (before applying

the polytime approximation algorithm).

Proof. Remark that every clause Ci in OPT contains at least one true literal; pick one of them
from each clause Ci and denote the variable corresponding to this literal by Var(Ci). Let, for
each variable x, C(x) be the set of clauses from OPT for which x or ¬x is the picked literal, i.e.,
∀x ∈ X , C(x) = {Ci ∈ OPT/Var(Ci) = x}. Based upon this, OPT =

⋃

x∈X C(x).
In the tree obtained on the set Xi, denote by Λi the set of satisfied clauses on some optimal

leaf and set λi = |Λi|. Then,
⋃

x∈Xi
C(x) ⊆ Λi and, by construction, ∀i, j, C (xi) ∩ C (xj) = ∅.

9

X1

· · ·

· · · Xq

b
ra

n
ch

-a
n
d
-c

u
t

a
lg

o
ri

th
m

w
it

h
n

p q
va

ri
a
b
le

s
p

o
ly

n
o
m

ia
l

a
lg

o
ri

th
m

The best assignment among these is returned

Figure 4: Illustration of Algorithm 6.

We so have:

λi >
∑

x∈Xi

|C(x)|

q
∑

i=1

λi >

q
∑

i=1

∑

x∈Xi

|C(x)|

As every x belongs to exactly p subsets among the q sets Xi, it holds that:

(1)

q
∑

i=1

|λi| > p ×
∑

x∈X

|C(x)| = p × |OPT|

From (1), it is immediately derived that:

q
max
i=1

|λi| >
1

q

q
∑

i=1

|λi| >
p

q
×
∑

x∈X

|C(x)| =
p

q
× |OPT|

that concludes the proof.

Proposition 1. Algorithm 6 achieves approximation ratio ρ.

Proof. By Lemma 1, among all the optimal leaves, at least one satisfies λ >
p
q × |OPT| clauses.

As an optimal leaf corresponds to an optimal truth assignment, it is possible to complete this
assignment into an optimal (global) solution. In other words, there exist |OPT| − λ remaining
clauses that become true on the surviving sub-instance. If the polynomial algorithm called by
Algorithm 6 achieves approximation ratio α, it will compute a solution that satisfies at least
α × (|OPT − |λ|) clauses. Hence, the number of satisfied clauses will be at least:

|λ| + α × (|OPT − |λ|) = α|OPT| + (1 − α)λ > α|OPT| + (1 − α)
p

q
|OPT|

10

that leads to an approximation ratio of α + (1 − α)p
q = ρ.

Putting all the above together, the following theorem holds.

Theorem 5. Algorithm 6 achieves approximation ratio ρ in time O∗(2n(ρ−α)/(1−α)), for any
ρ ≤ 1.

The previous algorithm builds a full branching tree on each subset of variables. In particular,
when the seek ratio ρ tends to 1, the basis of the exponent in the complexity tends to 2. Then,
one might ask the following question: suppose that there is an exact algorithm solving max sat

in O∗(γn) (for some γ < 2), is it possible to find a ρ approximation algorithm in time O∗(γn
ρ)

where γρ < γ for some ρ ∈]α, 1]? for any ρ ∈]α, 1]? This kind of reduction from an approximate
solution to an exact one would allow to take advantage of any possible improvement of the exact
solution of max sat, which is not the case in Algorithm 6. Note that finding an exact algorithm
in time O∗(γn) for some γ < 2 is a famous open question for max sat as well as for some other
combinatorial problems. It has very recently received a positive answer for the Hamiltonian cycle
problem in [5].

We propose in the following a positive answer to our question, i.e., ρ-approximation algo-
rithms working in time O∗(γn

ρ) with γρ < γ for any ρ ∈]α, 1]. We first give a simple solution
(Algorithm 7) that we improve later (Algorithm 8). Algorithm 7 moves in the same spirit as
Algorithm 6 but, instead of building a full branching tree on Xi, calls an exact algorithm on the
sub-instance induced by the set Xi.

Algorithm 7. Let ρ ∈ Q and p and q two integers such that p/q = ρ. Build q subsets of variables,
each one containing p/q × n variables (as in Algorithm 6). For each subset of variables Xi:

a) Remove from the instance the variables not in Xi and any empty clause.

b) Run the exact algorithm on the resulting sub-instance, thus obtaining a truth assignment for
the variables in Xi.

c) Complete this assignment with arbitrary truth-values for the variables not in Xi.

Among all the truth assignments produced, return the one that satisfies the largest number of
clauses in the whole instance. �

In Algorithm 7, the exact algorithm called in step b) runs in time O∗(γρn). Its approximation
ratio is the one claimed in Lemma 1. Indeed, the exact algorithm satisfies at least the same
amount of clauses as the optimal branching (for the global instance) would do. More precisely, for
each Xi, and for any x ∈ Xi, the clauses containing x (and in particular the clauses in C(x)) are
not removed from the instance. The optimal branching would then satisfy at least

∑

x∈Xi
|C(x)|

clauses and, obviously, the exact algorithm would satisfy even more. In other words, we have
the following results.

Proposition 2. Algorithm 7 achieves approximation ratio ρ in time O∗(γρn), where O∗(γn) is
the running time of an exact algorithm for max sat.

As one can see, in step c of Algorithm 7, variables outside Xi, i = 1, . . . , q, are assigned
arbitrarily, so, at worst their truth value may satisfy no additional clause. Note that one might
want to use an approximation algorithm in the remaining instance as in Algorithm 6; however,
the same analysis would not work since the exact solution obtained by the exact algorithm on
the sub-instance might be completely different from the partial assignment of a global optimal
solution. Nevertheless, we are able to propose an improvement by completing partial solutions
in such a way that, roughly speaking, at least half of the remaining clauses are satisfied.

11

Algorithm 8. Let p, q ∈ Q be such that p/q = 2ρ − 1. Build q subsets of variables X1, . . . , Xq,
each one containing p/q × n variables (as in Algorithm 7). For each Xi proceed as follows:

i) Assign weight 2 to every clause.

ii) Remove from the instance the variables not in Xi. For each clause missing (at least) one
variable from Xi set its weight to 1; remove empty clauses.

iii) Solve exactly this max weighted Sat resulting instance, thus obtaining a truth assignment
for the variables in Xi.

iv) Complete the assignment with a greedy algorithm: for each (i, j)-literal, if i > j, then the
literal is set to TRUE, else it is set to FALSE (and the instance is modified accordingly).

Return the best among the truth-assignments so-produced. �

Lemma 2. If there is a max sat-algorithm working in time O∗(γn), then the instances of max
weighted Sat in Algorithm 8 can be solved with the same bound on the running time.

Proof. Note that the only weights assigned by Algorithm 8 are 1 and 2. In such a weighted
instance, we can add a new variable x0 and replace each clause c of weight 2 by three new
clauses: c, c ∨ x0 and c ∨ ¬x0. Thus, if c is satisfied, then it will count in the new instance as
three satisfied clauses. Otherwise, exactly one of the three new clauses will be satisfied. Thus,
the so-built instance of max sat is equivalent to the initial max weighted sat-instance built
by Algorithm 7.

Theorem 6. Algorithm 8 achieves approximation ratio ρ in time O∗(γ(2ρ−1)n), where O∗(γn)
is the running time of an exact algorithm for max sat.

Proof. For the running time: we apply q times an exact algorithm O∗(γn) on instances of size
(2ρ − 1)n.

For the approximation ratio, using the same notation as before, consider one particular literal
in each clause satisfied by some optimum solution OPT, and let C(x) be the subset of these clauses
such that the picked literal is x or ¬x. Then, as shown before, there exists a subset Xi such that
∑

x∈Xi
|C(x)| > p

q |OPT|. Then, let us consider such a Xi, and denote by (see Figure 5):

• A the subset of clauses containing only variables in X \ Xi, A+ (resp., A−) the subset of
clauses from A that are in the optimum (resp., are not in the optimum).

• B the subset of clauses containing at least one variable in Xi and one variable in X \
Xi; B1

+ (resp., B2
+) the subset of clauses from B that are in the optimum and whose chosen

variable Var(c) is in Xi (resp., not in Xi); B− the subset of clauses from B that are not in
the optimum.

• C the remaining clauses, i.e., the clauses that contain only variables in Xi, C+ (resp., C−)
the subset of clauses from C that are in the optimum (resp., are not in the optimum).

Note that when removing variables in X \ Xi, clauses in A become empty, so the remaining
clauses are exactly those in B ∪ C. With these notations, OPT = A+ ∪ B1

+ ∪ B2
+ ∪ C+ and

∑

x∈Xi
|C(x)| = |B1

+| + |C+|. Then, for the chosen Xi:

(2) |B1
+| + |C+| >

p

q
|OPT| =

p

q

(

|A+| + |B1
+| + |B2

+| + |C+|
)

12

Clauses in OPT

Clauses not in OPT

A+ A− B1
+ B2

+ B− C+ C−

A: variables
from X\Xi

B: variables
from both

C: variables
from Xi

Part remaining of the instance
after step 2, on which we apply

the max weighted sat algorithm

Figure 5: Division of clauses according to a subset Xi of variables.

With respect to step iii) of Algorithm 8, denote by B1 the subset of satisfied clauses from B
and by C1 the subset of satisfied clauses from C. As OPT is a particular solution of weight
|B1

+| + 2|C+| for this weighted Sat problem, we have:

(3) |B1| + 2 |C1| >
∣

∣B1
+

∣

∣+ 2 |C+|

The greedy algorithm in step iv) will satisfy at least half of the remaining clauses containing at
least one literal from X \ Xi, i.e., the set (B\B1) ∪ A. Finally, the number of satisfied clauses is
at least:

|B1| + |C1| +
|B| − |B1| + |A|

2
= |C1| +

|B1|

2
+

|B|

2
+

|A|

2

(3)

>

∣

∣B1
+

∣

∣

2
+ |C+| +

|B|

2
+

|A|

2

>
∣

∣B1
+

∣

∣+ |C+| +

∣

∣B+
2

∣

∣

2
+

|A+|

2

So, the approximation ratio achieved is at least:

∣

∣B1
+

∣

∣+ |C+| +
|B2

+|+|A+|

2
∣

∣B1
+

∣

∣+ |C+| +
∣

∣B2
+

∣

∣+ |A+|
=

1

2

(

1 +

∣

∣B1
+

∣

∣+ |C+|
∣

∣B1
+

∣

∣+ |C+| +
∣

∣B2
+

∣

∣+ |A+|

)

(2)

>
1

2

(

1 +
p

q

)

=
q + p

2q
= ρ

that completes the proof.

For instance, suppose that max sat is solvable in O∗(1.657n), which is the running time to
solve Hamiltonian cycle in [5]. Then Algorithm 8 achieves a 0.9-approximation in time O∗(1.576n)
while Algorithm 6 achieves the same ratio in time O∗(1.703n).

6 Discussion

We have proposed in this paper several algorithms that constitute a kind of “moderately expo-
nential approximation schemata” for max sat. They guarantee approximation ratios that are
unachievable in polynomial time unless P = NP. To obtain these schemata, several techniques
have been used coming either form the polynomial approximation or from the exact computa-
tion. Furthermore, Algorithm 8 in Section 5 is a kind of polynomial reduction between exact
computation and moderately exponential approximation transforming exact algorithms running
on “small” sub-instances into approximation algorithms guaranteeing good ratios for the whole

13

instance. We think that research in moderately exponential approximation is an interesting
research issue for overcoming limits posed to the polynomial approximation due to the strong
inapproximability results proved in the latter paradigm.

We conclude this paper with a word about another very well known optimum satisfiability
problem, the min sat problem that, given a set of variables and a set of disjunctive clauses,
consists of finding a truth assignment that minimizes the number of satisfied clauses. A ρ-
approximation algorithm for min sat (with ρ > 1) is an algorithm that finds an assignment
satisfying at most ρ times the minimal number of simultaneously satisfied clauses.

In [13] an approximability-preserving reduction between min vertex cover and min sat

is presented transforming any ρ-approximation for the former problem into a ρ-approximation
for the latter problem. This reduction can be used to translate any result on the min vertex

cover problem into a result on the min sat, the number of vertices in the min vertex cover

instance being the number of clauses in the min sat instance. For instance, the results from [8]
for min vertex cover lead to the following parameterized approximation result for min sat:
for every instance of min sat and for any r ∈ Q, if there exists a solution for min sat satisfying
at most k clauses, it is possible to determine with complexity O∗(1.28rk) a 2 − r-approximation
of it.

We also note that the method used in Algorithm 6 can be applied as well to min sat with
the following modification of the algorithm. Let p, q ∈ Q be such that p/q = 2ρ − 1. Build q
subsets of variables, each one containing p/q × n variables (as in Figure 2). For each subset,
construct a branching tree, considering only the variables in the subset (the depth of the trees
is p/q × n). For each leaf of any of the so-built trees, use some polynomial algorithm with ratio
α on the surviving sub-instance. Return the best of the truth assignments computed. �

The complexity of the modification just described is the same as that of Algorithm 6, i.e.,
O∗(2n(α−ρ)/(α−1)) (the best known ratio is α = 2). According to Lemma 1 (that also holds),
some of the optimal leaves will have at least λ >

p
q |OPT| clauses satisfied. On the surviving

sub-instance, it is possible to satisfy only (|OPT − λ) clauses. Thus, the polynomial algorithm
called cannot satisfy more than α(|OPT|−λ) clauses, so that the total number of satisfied clauses
will be at most |λ| + α × (|OPT − |λ|) = α|OPT| − (α − 1)λ 6 α|OPT| − (1 − α)p

q |OPT|, deriving

an approximation ratio α − (α − 1)p
q = ρ.

References

[1] T. Asano and D. P. Williamson. Improved approximation algorithms for max sat. J. Al-
gorithms, 42(1):173–202, 2002.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and approximation. Combinatorial optimization problems and their approxima-
bility properties. Springer-Verlag, Berlin, 1999.

[3] G. Ausiello and V. Th. Paschos. Reductions that preserve approximability. In T. F. Gon-
zalez, editor, Handbook of approximation algorithms and metaheuristics, chapter 15, pages
15–1–15–16. Chapman & Hall, Boca Raton, 2007.

[4] R. Battiti and M. Protasi. Algorithms and heuristics for max-sat. In D. Z. Du and P. M.
Pardalos, editors, Handbook of Combinatorial Optimization, volume 1, pages 77–148. Kluwer
Academic Publishers, 1998.

[5] A. Björklund. Determinant sums for undirected Hamiltonicity. In Proc. FOCS’10, pages
173–182. IEEE Computer Society, 2010.

14

[6] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM
J. Comput. To appear in the special issue dedicated to selected papers from FOCS’06.

[7] N. Bourgeois, B. Escoffier, and V. Th. Paschos. Efficient approximation by “low-
complexity” exponential algorithms. Cahier du LAMSADE 271, LAMSADE, Univer-
sité Paris-Dauphine, December 2007. Available at http://www.lamsade.dauphine.fr/

cahiers/PDF/cahierLamsade271.pdf.

[8] N. Bourgeois, B. Escoffier, and V. Th. Paschos. Efficient approximation of combinatorial
problems by moderately exponential algorithms. In F. Dehne, M. Gavrilova, J.-R. Sack, and
C. D. Tóth, editors, Proc. Algorithms and Data Structures Symposium, WADS’09, volume
5664 of Lecture Notes in Computer Science, pages 507–518. Springer-Verlag, 2009.

[9] N. Bourgeois, B. Escoffier, and V. Th. Paschos. Efficient approximation of min coloring

by moderately exponential algorithms. Inform. Process. Lett., 109(16):950–954, 2009.

[10] N. Bourgeois, B. Escoffier, and V. Th. Paschos. Efficient approximation of min set cover

by moderately exponential algorithms. Theoret. Comput. Sci., 410(21-23):2184–2195, 2009.

[11] L. Cai and X. Huang. Fixed-parameter approximation: conceptual framework and approx-
imability results. In H. L. Bodlaender and M. A. Langston, editors, Proc. International
Workshop on Parameterized and Exact Computation, IWPEC’06, volume 4169 of Lecture
Notes in Computer Science, pages 96–108. Springer-Verlag, 2006.

[12] J. Chen and I. A. Kanj. Improved exact algorithms for max sat. Discrete Appl. Math.,
142:17–27, 2004.

[13] P. Crescenzi, R. Silvestri, and L. Trevisan. To weight or not to weight: where is the question?
In Proc. Israeli Symposium on Theory of Computing and Systems, ISTCS’96, pages 68–77.
IEEE, 1996.

[14] M. Cygan, L. Kowalik, and M. Wykurz. Exponential-time approximation of weighted set
cover. Inform. Process. Lett., 109(16):957–961, 2009.

[15] M. Cygan and M. Pilipczuk. Exact and approximate bandwidth. Theoret. Comput. Sci.,
411(40–42):3701–3713, 2010.

[16] E. Dantsin, M. Gavrilovich, E. A. Hirsch, and B. Konev. max sat approximation beyond
the limits of polynomial-time approximation. Ann. Pure and Appl. Logic, 113:81–94, 2002.

[17] R. G. Downey, M. R. Fellows, and C. McCartin. Parameterized approximation problems.
In H. L. Bodlaender and M. A. Langston, editors, Proc. International Workshop on Param-
eterized and Exact Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer
Science, pages 121–129. Springer-Verlag, 2006.

[18] B. Escoffier and V. Th. Paschos. A survey on the structure of approximation classes. Com-
puter Science Review, 4(1):19–40, 2010.

[19] M. Fürer, S. Gaspers, and S. P. Kasiviswanathan. An exponential time 2-approximation
algorithm for bandwidth. In Proc. International Workshop on Parameterized and Exact
Computation, IWPEC’09, volume 5917 of Lecture Notes in Computer Science, pages 173–
184. Springer, 2009.

[20] V. Vazirani. Approximation algorithms. Springer, Berlin, 2001.

15

	cah304
	cahier304.pdf

