
HAL Id: hal-01509423
https://hal.science/hal-01509423

Preprint submitted on 17 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On P versus NP
Frank Vega

To cite this version:

Frank Vega. On P versus NP. 2017. �hal-01509423�

https://hal.science/hal-01509423
https://hal.archives-ouvertes.fr

P VERSUS NP
A Millennium Prize Problem selected by the Clay Mathematics Institute

On P versus NP
Frank Vega

April 17, 2017

Abstract: P versus NP is considered one of the great open problems of science. This
consists in knowing the answer of the following question: Is P equal to NP? This incognita
was first mentioned in a letter written by John Nash to the National Security Agency in 1955.
However, a precise statement of the P versus NP problem was introduced independently in
1971 by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this
huge problem have failed. Another major complexity class is coNP. Whether NP = coNP is
another fundamental question that it is as important as it is unresolved. We prove there exists
a problem in coNP that is not in P. In this way, we show that P is not equal to coNP. Since P
= NP implies P = coNP, then we also demonstrate that P is not equal to NP.

Introduction

P versus NP is a major unsolved problem in computer science [3]. It is considered by many to be the
most important open problem in the field [3]. It is one of the seven Millennium Prize Problems selected
by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [3].

In 1936, Turing developed his theoretical computational model [1]. The deterministic and nondeter-
ministic Turing machines have become in two of the most important definitions related to this theoretical
model for computation. A deterministic Turing machine has only one next action for each step defined in
its program or transition function [6]. A nondeterministic Turing machine could contain more than one
action defined for each step of its program, where this one is no longer a function, but a relation [6].

Another huge advance in the last century has been the definition of a complexity class. A language
over an alphabet is any set of strings made up of symbols from that alphabet [2]. A complexity class is a

ACM Classification: F.1.3.3

AMS Classification: 68Q15, 68Q17

Key words and phrases: P, NP, coNP, coNP-complete, Minimum, Boolean circuit

http://en.wikipedia.org/wiki/P_versus_NP_problem

FRANK VEGA

set of problems, which are represented as a language, grouped by measures such as the running time,
memory, etc [2].

In the computational complexity theory, the class P contains those languages that can be decided in
polynomial time by a deterministic Turing machine [5]. The class NP consists in those languages that
can be decided in polynomial time by a nondeterministic Turing machine [5].

The biggest open question in theoretical computer science concerns the relationship between these
classes: Is P equal to NP? In 2002, a poll of 100 researchers showed that 61 believed that the answer was
not, 9 believed that the answer was yes, and 22 were unsure; 8 believed the question may be independent
of the currently accepted axioms and so impossible to prove or disprove [4]. All efforts to solve the P
versus NP problem have failed [6].

Another major complexity class is coNP [6]. We show a new kind of reduction that we called the
Conjunction reduction. Using this definition as an argument, we prove there is a problem in coNP that is
not in P. Since P = NP implies that every coNP problem is in P, then we can deduce that P 6= NP [6].

1 Theoretical notions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings over Σ [1]. A
Turing machine M has an associated input alphabet Σ [1]. For each string w in Σ∗ there is a computation
associated with M on input w [1]. We say that M accepts w if this computation terminates in the accepting
state, that is, M(w) = “yes” [1]. Note that M fails to accept w either if this computation ends in the
rejecting state, or if the computation fails to terminate [1].

The language accepted by a Turing machine M, denoted L(M), has an associated alphabet Σ and is
defined by

L(M) = {w ∈ Σ
∗ : M(w) = “yes”}.

We denote by tM(w) the number of steps in the computation of M on input w [1]. For n ∈ N we denote by
TM(n) the worst case run time of M; that is

TM(n) = max{tM(w) : w ∈ Σ
n}

where Σn is the set of all strings over Σ of length n [1]. We say that M runs in polynomial time if there
exists k such that for all n, TM(n)≤ nk + k [1].

A language L is in class P if L = L(M) for some deterministic Turing machine M which runs in
polynomial time [1]. We state the complexity class NP using the following definition:

A verifier for a language L is a deterministic Turing machine M, where

L = {w : M(w,c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in
polynomial time in the length of w [7]. A verifier uses additional information, represented by the symbol
c, to verify that a string w is a member of L. This information is called certificate.

For polynomial time verifiers, the certificate is polynomially bounded by the length of w, because
that is all the verifier can access in its time bound [7]. NP is the class of languages that have polynomial
time verifiers [7].

P VERSUS NP 2

http://en.wikipedia.org/wiki/P_versus_NP_problem

ON P VERSUS NP

If NP is the class of problems that have succinct certificates, then the complexity class coNP must
contain those problems that have succinct disqualifications [6]. That is, a “no” instance of a problem in
coNP possesses a short proof of its being a “no” instance [6].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic Turing
machine M, on every input w, halts in polynomial time with just f (w) on its tape [7]. Let {0,1}∗
be the infinite set of binary strings, we say that a language L1 ⊆ {0,1}∗ is polynomial time reducible
to a language L2 ⊆ {0,1}∗, written L1 ≤p L2, if there exists a polynomial time computable function
f : {0,1}∗→{0,1}∗ such that for all x ∈ {0,1}∗,

x ∈ L1 iff f (x) ∈ L2

where iff means “if and only if”. An important complexity class is coNP–complete [5]. A language
L⊆ {0,1}∗ is coNP–complete if

1. L ∈ coNP, and

2. L′ ≤p L for every L′ ∈ coNP.

Furthermore, if L is a language such that L′ ≤p L for some L′ ∈ coNP–complete, then L is in
coNP–hard [2]. Moreover, if L ∈ coNP, then L ∈ coNP–complete [2].

A principal coNP–complete problem is CIRCUIT–UNSAT [5]. An instance of CIRCUIT–UNSAT is a
Boolean circuit C which is a directed acyclic graph C = (V,E), where the nodes V = {1, ...,n} are called
the gates of C. We can assume that all edges are of the form (i, j) where i < j. All nodes in the graph
have in-degree (number of incoming edges) equal to 0, 1 and 2. Also, each gate i ∈ V has a sort c(i)
associated with it, where c(i) ∈ {true, f alse,∧,∨,⇁}∪{x1,x2, ...}. If c(i) ∈ {true, f alse}∪{x1,x2, ...},
then the in-degree of i is 0, that is, i must have no incoming edges. Gates with no incoming edges are
called the inputs of C. If c(i) =⇁, then i has in-degree one. If c(i) ∈ {∧,∨}, then the in-degree of i
must be two. Finally, node n (the largest numbered gate in the circuit, which necessarily has no outgoing
edges), is called the output gate of the circuit.

Let X(C) be the set of all Boolean variables that appear in the circuit C (that is, X(C) = {x ∈ X :
c(i) = x for some gate i in C}). We say that a truth assignment T is appropriate for C if it is defined for
all the variables in X(C). Given such a T , the truth value of gate i ∈V , T (i), is defined, by induction on i,
as follows: If c(i) = true then T (i) = true, and similarly if c(i) = f alse. If c(i) ∈ X , then T (i) = T (c(i)).
If now c(i) =⇁, then there is a unique gate j < i such that (j, i) ∈ E. By induction, we know T (j), and
then T (i) is true if T (j) = f alse, and vice versa. If c(i) = ∨, then there are two edges (j, i) and (j′, i)
entering i. T (i) is then true if and only if at least one of T (j), T (j′) is true. If c(i) = ∧, then T (i) is true
if and only if both T (j) and T (j′) are true, where (j, i) and (j′, i) are the incoming edges. Finally, the
value of the circuit, T (C), is T (n), where n is the output gate.

The CIRCUIT–UNSAT can be formulated as follows: Given a Boolean circuit C, is not there any truth
assignment T , appropriate to C, such that T (C) = true?

P VERSUS NP 3

http://en.wikipedia.org/wiki/P_versus_NP_problem

FRANK VEGA

2 Results

2.1 Conjunction reduction

Definition 2.1. We say that two languages L1 ⊆ {0,1}∗ and L2 ⊆ {0,1}∗ are conjunctive reducible to a
language L3 ⊆ {0,1}∗, written L1∧L2 ≤c L3, if for all x ∈ {0,1}∗, y ∈ {0,1}∗ and z ∈ {0,1}∗,

(x,y) ∈ L1∧ (y,z) ∈ L2 iff (x,z) ∈ L3

where iff means “if and only if”.

Just as O–notation provides an asymptotic upper bound, Ω–notation provides an asymptotic lower
bound [2]. In computer science, O–notation and Ω–notation are used to classify algorithms according to
their running time or space requirements [2].

Theorem 2.2. If L1∧L2 ≤c L3 with L1 /∈ O(g(n)) and L2 /∈ O(g(n)), then L3 /∈ O(g(n)).

Proof. Suppose that L1 ∧ L2 ≤c L3 with L1 /∈ O(g(n)) and L2 /∈ O(g(n)), but L3 ∈ O(g(n)). If L1 /∈
O(g(n)) and L2 /∈ O(g(n)), then for all x ∈ {0,1}∗, y ∈ {0,1}∗ and z ∈ {0,1}∗ the problem of deciding
whether (x,y) ∈ L1∧ (y,z) ∈ L2 will not be in O(g(n)) due to the properties of the O–notation, but this
is a contradiction since we assumed L3 ∈ O(g(n)). Certainly, if we would have L3 ∈ O(g(n)), then we
could solve (x,y) ∈ L1∧ (y,z) ∈ L2 in O(g(n)) too. But this is not possible, because O(g) is a convex
cone and thus f1 /∈ O(g)∧ f2 /∈ O(g)⇒ f1 + f2 /∈ O(g). Therefore, for the sake of contradiction we have
L3 /∈ O(g(n)).

2.2 The Problem MINIMUM

Definition 2.3. Given a set S of n positive integers, SEARCH–MINIMUM is the problem of finding the
minimum of S.

How many comparisons are necessary to determine the minimum of a set of n positive integers? We
can easily obtain an upper bound of n−1 comparisons: examine each integer of the set in turn and keep
track of the smallest element seen so far [2]. Is this the best we can do? Yes, since we can obtain a lower
bound of n−1 comparisons for the problem of determining the minimum [2]. Think of any algorithm
that determines the minimum as a tournament among the elements [2]. Each comparison is a match in
the tournament in which the smaller of the two elements wins [2]. The key observation is that every
element except the winner must lose at least one match [2]. Hence, n−1 comparisons are necessary to
determine the minimum, and the algorithm SEARCH–MINIMUM is optimal with respect to the number
of comparisons performed [2].

Definition 2.4. Given a number x and a set S of n positive integers, MINIMUM is the problem of deciding
whether x is the minimum of S.

How many comparisons are necessary to determine whether some x is the minimum of a set of n
positive integers? We can easily obtain an upper bound of n comparisons: find the minimum in the set and
check whether the result is equal to x. Is this the best we can do? Yes, since we can obtain a lower bound
of n−1 comparisons for the problem of determining the minimum and another obligatory comparison
for checking whether that minimum is equal to x.

P VERSUS NP 4

http://en.wikipedia.org/wiki/P_versus_NP_problem

ON P VERSUS NP

Theorem 2.5. MINIMUM /∈ O(
√
|S|).

Proof. As we mentioned above, the problem MINIMUM complies with MINIMUM ∈Ω(|S|) and there-
fore MINIMUM /∈ O(

√
|S|), where |S|= n is the cardinality of the set S with n positive integers.

2.3 The Problem REPRESENTATION

Definition 2.6. A representation of a set S with n positive integers is a Boolean circuit C, such that C
accepts the binary representation of a bit integer i (translated the bit 1 to true and 0 to false over the input
variable gates) iff i ∈ S.

Definition 2.7. Given a set S of n positive integers and a Boolean circuit C, REPRESENTATION is the
problem of deciding whether C is a representation of the set S.

Theorem 2.8. REPRESENTATION /∈ O(
√
|S|).

Proof. Since the empty set cannot be represented by a Boolean circuit C such that there is some truth
assignment T , appropriate to C, where T (C) = true, then we could make a polynomial time reduction as
follows:

C ∈ CIRCUIT–UNSAT iff (/0,C) ∈ REPRESENTATION.

However, this reduction can be made in constant time. That means we cannot decide every instance
(/0,C) ∈ REPRESENTATION in constant time, because that would mean we can solve CIRCUIT–UNSAT
in constant time. Indeed, even though we would have the assumption of P = NP, we could not solve a
coNP–complete problem in constant time [6]. Nevertheless, in an instance (/0,C) ∈ REPRESENTATION,
we would have S = /0 and |S| = 0. Thus, we can assure if REPRESENTATION ∈ O(

√
|S|), then we

could solve CIRCUIT–UNSAT in constant time. For that reason, we can confirm REPRESENTATION /∈
O(

√
|S|).

2.4 The Problem SUCCINCT-MINIMUM

Definition 2.9. Given a positive integer x and a Boolean circuit C, we define SUCCINCT–MINIMUM as
the problem of deciding whether x is the minimum bit integer which accepts C as input.

Theorem 2.10. MINIMUM∧REPRESENTATION≤c SUCCINCT–MINIMUM.

Proof. Certainly, for every instance (x,C) of SUCCINCT–MINIMUM we have the following property,

(x,S) ∈MINIMUM∧ (S,C) ∈ REPRESENTATION

iff (x,C) ∈ SUCCINCT–MINIMUM.

Theorem 2.11. SUCCINCT–MINIMUM /∈O(
√
|S|) where S is the set that represents the Boolean circuit

C.

P VERSUS NP 5

http://en.wikipedia.org/wiki/P_versus_NP_problem

FRANK VEGA

Proof. As result of Theorems 2.2, 2.5, 2.8 and 2.10, then we have SUCCINCT–MINIMUM /∈ O(
√
|S|).

Theorem 2.12. SUCCINCT–MINIMUM /∈ P.

Proof. For certain kind of instances, the input (x,C) is exponentially more succinct than the cardinality
of the set S that represents C. Since we have that SUCCINCT–MINIMUM /∈ O(

√
|S|), then we could not

decide every instance of SUCCINCT–MINIMUM in polynomial time.

Theorem 2.13. SUCCINCT–MINIMUM ∈ coNP.

Proof. If (x,C) /∈ SUCCINCT–MINIMUM, then it would exist a positive integer y such that y < x and C
accepts the bit integer y. Since we can evaluate whether C accepts the bit integer y in polynomial time and
we have that y is polynomially bounded by x, then we can confirm SUCCINCT–MINIMUM ∈ coNP.

Theorem 2.14. P 6= NP.

Proof. If any single coNP problem cannot be solved in polynomial time, then P 6= coNP [6]. Certainly,
P = NP implies P = coNP because P is closed under complement, and therefore, we can conclude
P 6= NP [6].

Conclusions

This proof explains why after decades of studying the NP problems no one has been able to find
a polynomial time algorithm for any of more than 300 important known NP–complete problems [5].
Indeed, it shows in a formal way that many currently mathematically problems cannot be solved efficiently,
so that the attention of researchers can be focused on partial solutions or solutions to other problems.

Although this demonstration removes the practical computational benefits of a proof that P = NP, it
would represent a very significant advance in computational complexity theory and provide guidance
for future research. In addition, it proves that could be safe most of the existing cryptosystems such as
the public key cryptography [5]. On the other hand, we will not be able to find a formal proof for every
theorem which has a proof of a reasonable length by a feasible algorithm.

References

[1] SANJEEV ARORA AND BOAZ BARAK: Computational complexity: A modern approach. Cambridge
University Press, 2009. 1, 2

[2] THOMAS H. CORMEN, CHARLES ERIC LEISERSON, RONALD L. RIVEST, AND CLIFFORD STEIN:
Introduction to Algorithms. MIT Press, 2 edition, 2001. 1, 2, 3, 4

[3] LANCE FORTNOW: The Golden Ticket: P, NP, and the Search for the Impossible. Princeton
University Press. Princeton, NJ, 2013. 1

[4] WILLIAM I. GASARCH: The P=?NP poll. SIGACT News, 33(2):34–47, 2002. 2

P VERSUS NP 6

http://en.wikipedia.org/wiki/P_versus_NP_problem

ON P VERSUS NP

[5] ODED GOLDREICH: P, Np, and Np-Completeness. Cambridge: Cambridge University Press, 2010.
2, 3, 6

[6] CHRISTOS H. PAPADIMITRIOU: Computational Complexity. Addison-Wesley, 1994. 1, 2, 3, 5, 6

[7] MICHAEL SIPSER: Introduction to the Theory of Computation. Thomson Course Technology, 2
edition, 2006. 2, 3

AUTHOR

Frank Vega
Joysonic
Uzun Mirkova 5
Belgrade, Serbia
vega frank gmail com

ABOUT THE AUTHOR

Frank Vega is graduated as Bachelor of Computer Science from The University of Havana
since 2007. He lives and works as computer programmer in Belgrade, Serbia. He loves
to write poems and stories in his free time and he has published a literary book called
Protesta.

P VERSUS NP 7

https://www.amazon.com/dp/B06XCX5GPZ/ref=cm_sw_r_fa_dp_t2_OzWTyb63CHAFA
http://en.wikipedia.org/wiki/P_versus_NP_problem

	Theoretical notions
	Results
	Conjunction reduction
	The Problem MINIMUM
	The Problem REPRESENTATION
	The Problem SUCCINCT-MINIMUM

	References

