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Social scientists call Matthew e�ect the self-reinforcing mechanisms whereby initially small advantages accrued by individuals,
e.g. in reputation, capital, or access to opportunities, beget further advantage and result in growing inequality. While there is
extensive literature on the Matthew e�ect, the notion has not been explicitly de�ned. In this paper, we take a �rst step in this
direction by providing a formalisation of Matthew e�ects within the framework of team semantics, and by introducing a logic for
analysing the properties of the dependence relations involved in Matthew e�ects. We also show via an example how to use this
logic to formalise a statistical analysis of a Matthew e�ect.
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analysis; • Applied computing → Decision analysis;
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1 INTRODUCTION
We provide a logical formalisation of the social phenomenon termed Matthew e�ect using team semantics. First
introduced by Merton [12], the term Matthew e�ect refers to the self-reinforcing process whereby reputationally rich
academics tend to get richer over time. In Merton’s words, it corresponds to “the accruing of large increments of peer
recognition to scientists of great repute for particular contributions in contrast to the minimising or withholding of
such recognition for scientists who have not yet made their mark” [13]. Outside the realm of academia, the Matthew
e�ect has been invoked to explain positive feedbacks in e.g. the evaluation of athletes [10] and the conferral of public
subsidies to �rms [1]. Because of its ubiquity in social life, it has been recognized as a powerful engine of social,
economic, and cultural inequality [14].

The role of Matthew e�ects is particularly evident in markets, where the uncertainty buyers face about the quality
of products facilitates the consolidation of status hierarchies among sellers. This is because buyers consider the status
of sellers as a good proxy for the quality of their products, so that higher status leads to greater visibility and access
to resources, which help sellers achieve even greater status. For this reason, an extensive literature on the Matthew
e�ect exists in sociology, economics, and management science. However, the Matthew e�ect is not precisely de�ned
in this literature. As a result, researchers are hardly able to compare and integrate theoretical models and empirical
�ndings. This motivates our present attempt to formalise the Matthew e�ect in logic.

The logical framework we propose for our formalisation is the framework of team semantics. Introduced originally
by Hodges [8, 9] and later advanced by Väänänen [15], team semantics is a novel and e�ective logical tool for
analysing the notion of dependency that is fundamental to the social and natural sciences. These dependencies usually
manifest themselves only in the presence of multiple observations. Team semantics thus evalutes formulas under sets
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of assignments (called teams), instead of single assignments as in the standard Tarskian semantics. Teams can be easily
conceived as sets of rows in tables or data sets. The �exible and multidisciplinary interpretations of teams engendered
a rapid development of logics based on team semantics in recent years. Notable such logics are dependence logic [15],
independence logic [5] and inclusion logic [3, 4], which focus on characterising functional dependence, independence
and inclusion relations among variables, respectively. In this paper we focus on the dependence relations relevant to
Matthew e�ects. To the best of our knowledge, these have not been formalised in the literature. We take a �rst step in
this direction by introducing a new logic based on team semantics, called logic of Matthew e�ects (ML), and analysing
basic properties of these dependence relations within the framework of ML.

Structure of the paper. In Section 2, we de�ne the syntax and semantics of our logic ML. In Section 3, we formalise
four distinct types of Matthew e�ects and study their properties. In Section 4, we use ML to formalise an existing
study on the Matthew e�ect in science [2].

2 LOGIC OF MATTHEW EFFECTS
We �rst present the general framework of the logic ML, including team semantics, mathematical de�nitions, and
notation. We provide a brief presentation of time series regression, a common tool to analyse trends in dynamic data.
For more details on this topic, the reader can refer to [6]. In Section 2.2, we introduce the basic dependence relations
we use as building blocks to de�ne Matthew e�ects. In Section 2.3, we present the syntax and semantics of ML.

2.1 General framework
We introduce the general framework to talk about data sets and regressions over data sets. In Appendix A.1, we
present a toy example of a data set (Table 1) and a Matthew e�ect to exemplify the team semantics. We refer to this
example throughout this subsection. In this paper, we assume that the empirical context where the Matthew e�ect
occurs is described by a �rst-order model M of some signature L that will be speci�ed in the sequel. The model M is
assumed to have a three-sorted domain: data sort, regression sort, and duration sort.

Three-sorted domain. Elements of the data sort are all possible values in the data sets, e.g. real numbers or names.
We include the value undefined to the possible values for variables of type data sort. We use w,x ,y,z, . . . (possibly
with subscripts) to stand for variables of this sort. Data sets can be presented as tables (e.g. Table 1), and the variables
of data sort can be understood as attributes in such tables. We assume that the time attribute is present in every data
set, and we reserve the letter t for the time variable. In this setting, an observation in a data set or a row of a table
corresponds to an assignment s that assigns to each variable x of data sort a value a of data sort in the domain of the
underlying model M . Formally, a data set D consisting of several observations is a set of assignments, which we also
call team. In this paper, the terms data set and team are used interchangeably. As we explained in the introduction,
the logic we introduce for Matthew e�ects adopts team semantics, where formulas are evaluated on teams.

Elements of the regression sort are names of regressions, and we use r, r′, . . . to stand for variables of this sort.
For a given model M , we call granularity the minimal time interval δ , between two observations. For instance, in
Table 1 the granularity is δ = 1 year . Di�erent regressions can be performed on any data set using di�erent variables.
Consecutive observations for a single variable can be aggregated over time intervals that correspond to particular
multiples of the granularity δ . The intervals of time (i.e., the natural numbers that correspond to the multiples of the
minimal time interval) form the domain of the duration sort. We use `, `′, . . . to stand for variables of this sort.

Regression functions. Each regression generates one regression function for each dependent variable y under consid-
eration. A regression function can be represented informally as:

y(t) = ∑
{i1, ...,ik}∈X

βi1 ...ik (xi1)(t−lδ)⋯(xik )(t−lδ) + ϵ, (1)

where {x1, . . . ,xn} is a set of independent variables, z(t) is the value of variable z at time t, X is a non-empty
downward closed subset of P({1, . . . ,n}) (i.e., B ⊆ A ∈X implies B ∈X), the positive real number l ⋅ δ is the time
interval of the regression, l is a natural number, ϵ is an error term, and each coe�cient βi1 ...ik is a real number. Most
studies in the social sciences, including those on Matthew e�ects, use regressions of degree two or less, for instance:

y(t) = α + β1(x1)t−lδ + β2(x2)t−lδ + β3(x3)t−lδ + β4(x1)t−lδ (x2)t−lδ + β5(x2)t−lδ (x3)t−lδ + ϵ . (2)
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In a data setD, if s and s′ are two observations that respectively contain the data for time t and t−lδ (i.e., s(t) = s′(t)+l⋅δ ),
then the above regression equation (2) can be formally represented as:

s(y) = α + β1s
′
(x1) + β2s

′
(x2) + β3s

′
(x3) + β4s

′
(x1)s

′
(x2) + β5s

′
(x2)s

′
(x3) + ϵ .

If x1 and x2 are the focal variables, we will sometimes abbreviate the expression above as:

s(y) = β1s
′
(x1) + β2s

′
(x2) + β4s

′
(x1)s

′
(x2) + q(s

′
(x1), s

′
(x2), s

′
(x3)).

Analysed data set. We call a data set D associated with regression R1, . . . ,Rk with durations of time l1, . . . , lk,
respectively, an analysed data set, denoted (D,R1, l1, . . . ,Rk, lk). Formally, we view this analysed data set as a data
set extended from D by adding 2k columns with attributes r1, . . . , rk, `1, . . . , `k , where each column ri has a constant
value Ri, and each column `i has a constant value li. For simplicity, we denote this analysed data set also by D, and
write D(ri) for the unique value of the attribute ri in D, and D(`i) for the unique value of the attribute `i . Technically,
we may view a name R of a regression analysis as a function mapping each dependent variable y under consideration
to a polynomial R(y) of the form (1).

2.2 Basic dependence relations.
We de�ne basic dependence relations and atomic formulas that we later use to de�ne Matthew e�ects.

De�nition 2.1 (Basic dependence relations and their team semantics). Let x1, . . . ,xn ,y be data sort variables, r be a
regression sort variable, and ` be a duration sort variable.

● The atomic formula x1, . . . ,xn ¤r
` y characterises the notion of y being positively `-dependent on x1, . . . ,xn

with respect to the regression r. We say that the de�ned relation is true in a data set D with an underlying
model M , denoted M ⊧D x1, . . . ,xn ¤

r
` y, i� for all s, s′ ∈ D,

s(t) = s′(t) +D(`) ⋅ δM Ô⇒ s(y) = β1s
′
(x1) + ⋅ ⋅ ⋅ + βns

′
(xn) + q(s

′
(x⃗), s′(w⃗)).

where each βi is signi�cantly greater than 0 (see Appendix B.2), and D(r)(y) is the polynomial represented
above.

● The atomic formula x1, . . . ,xn §r
` y characterises the notion ofy being negatively `-dependent on x1, . . . ,xn

with respect to r, and we de�ne M ⊧D x1, . . . ,xn §
r
` y the same way as above except that we now require each

βi to be signi�cantly smaller than 0.
● The atomic formulax1 ⊗ . . . ⊗ xn ¤

r
` y characterises the notion ofy being positivelymoderated `-dependent

on x1, . . . ,xn with respect to r, and we de�ne M ⊧D x1 ⊗ . . . ⊗ xn ¤
r
` y i� for all s, s′ ∈ D,

s(t) = s′(t) +D(`) ⋅ δM Ô⇒ s(y) =
n

∑
k=1

∑
1≤i1<⋅⋅⋅<ik≤n

βi1 ...ik s
′
(xi1)⋯s

′
(xik ) + q(s

′
(x⃗), s′(w⃗)),

where βi ...n is signi�cantly greater than 0, and D(r)(y) is the polynomial represented as above.
● The atomic formulax1 ⊗ . . . ⊗ xn §

r
` y characterises the notion ofy beingnegativelymoderated `-dependent

on x1, . . . ,xn with respect to r, and we de�ne M ⊧D x1 ⊗ . . . ⊗ xn §
r
` y the same way as above except that we

now require βi ...n to be signi�cantly smaller than 0.

De�nition 2.2 (Atomic formulas for positive and negative dependency). Let X denote the set of strings X of dependent
variables of the form

x11 ⊗⋯⊗ x1n1 , . . . , xk1 ⊗⋯⊗ xknk .

For every string X ∈ X such that X = x11 ⊗⋯ ⊗ x1n1 , . . . , xk1 ⊗⋯ ⊗ xknk and for every duration of time ` ⋅ δ , we
introduce the atomic formulas X ¤r

` y and X §r
` y, de�ned as follows:

● M ⊧D x11 ⊗⋯⊗ x1n1 , . . . , xk1 ⊗⋯⊗ xknk ¤
r
` y i� for all s, s′ ∈ D,

s(t) = s′(t) +D(`) ⋅ δM Ô⇒ s(y) =
k

∑
i=1

ni
∑
m=1

∑
1≤j1<⋅⋅⋅<jm≤ni

βi, j1 ...jms
′
(xi j1)⋯s

′
(xi jm ) + q(s

′
(x⃗), s′(w⃗)), (3)

where each βi,1, ...,ni is signi�cantly greater than 0, and D(r)(y) is the polynomial represented represented as
above.

● M ⊧D x11 ⊗⋯⊗ x1n1 , . . . , xk1 ⊗⋯⊗ xknk §
r
` y i� the same as the above holds except that each βi,1, ...,ni is

now required to be signi�cantly smaller than 0.
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2.3 The logic for Ma�hew e�ects
Here, we de�ne the signature, the syntax, and the semantics of ML.

De�nition 2.3 (The signatureL). The signature L of ML contains the constant functions 0 and δ , the unary functions
{E�ecty,X ∣ y ∈ Var,X ∈ X}, the unary predicate Small, and the binary predicates ≫, ≪, and ≈.

The function symbols E�ecty,X are used to refer to certain combinations of the coe�cients in the polynomials of
the regression functions. For every variables x ,y, every string X of dependent variables, E�ecty,X (r) is a regression
sort argument, whose interpretation in the intended models M under a data set D is de�ned as:

● i� X = x11 ⊗ ⋯ ⊗ x1n1 , . . . , xk1 ⊗ ⋯ ⊗ xknk , and β1x11⋯x1n1 , ..., βkxk1⋯xknk are terms in the polynomial
D(r)(y), then for every s ∈ D, E�ectMy,X (s(r)) = β1 + ⋅ ⋅ ⋅ + βk . Otherwise, set E�ectMy,X (s(r)) = undefined.

We equivalently denote E�ecty,X (r) by E�ect(r,y,X). The use of these terms becomes clearer in Section 4. The
constant symbols 0 and δ are to be interpreted as the natural number 0 and the granularity of the data sets δ
respectively. The predicate symbols Small, ≪, ≫ and ≈ are to be interpreted as “small,” “signi�cantly smaller than,"
“signi�cantly greater than," and “equivalent to," respectively.

De�nition 2.4 (Syntax). Let Var0, Var1 and Var2 be respectively countable sets of variables of data sort, regression
sort, and duration sort. The syntax of ML is de�ned as follows:

Terms of data sort α ∶∶= x ∣ 0 ∣ δ ∣ E�ecty,X (r)
Terms of duration sort β ∶∶= `

Terms of regression sort γ ∶∶= r

Formulas ϕ ∶∶= X ¤r
` y ∣ X §

r
` y ∣ Small(α) ∣ α ≪ α ∣ α ≫ α ∣ α ≈ α ∣ ϕ ∧ ϕ ∣ ∃1 x ϕ ∣ ∃1 ` ϕ ∣ ∃1 r ϕ

where x ∈ Var0, r ∈ Var1 and ` ∈ Var2.

De�nition 2.5 (Free variables). For compound formulas, the sets of free variables of each sort are de�ned as usual.
For atomic formulas, the sets of free variables of each sort are de�ned as follows:

● The set Fv0(ϕ) of free variables of data sort is de�ned as
– for X = x11 ⊗⋯⊗ x1n1 , . . . , xk1 ⊗⋯⊗ xknk ,

Fv0(X ¤r
` y) = Fv0(X §r

` y) = {xi, j ∣ 1 ≤ i ≤ k and 1 ≤ j ≤ ni} ∪ {y, t}
1,

– Fv0(Small(α)) = Fv0(α),
– Fv0(α ≪ β) = Fv0(α ≫ β) = Fv0(α ≈ β) = Fv0(α) ∪ Fv0(β), and
– the set Fv0(α) is de�ned inductively as Fv0(x) = {x} and Fv0(0) = Fv0(δ) = Fv0(E�ecty,X (r)) = ∅.

● The set Fv1(ϕ) of free variables of regression sort is de�ned as
– Fv1(X ¤r

` y) = Fv1(X §r
` y) = {r},

– Fv1(Small(α)) = Fv1(α) and Fv1(α ≪ β) = Fv1(α ≫ β) = Fv1(α ≈ β) = Fv1(α) ∪ Fv1(β), and
– the set Fv1(α) is de�ned inductively as Fv1(x) = Fv1(0) = Fv1(δ) = ∅ and Fv1(E�ecty,X (r)) = {r}.

● The set Fv2(ϕ) of free variables of duration sort is de�ned as
– Fv2(X ¤r

` y) = Fv2(X §r
` y) = {`} and

– Fv2(ϕ) = ∅ for any other atomic formula.

Formulas with sets Var0,Var1,Var2 of free variables of data sort, regression sort, and duration sort are evaluated on
a model M with respect to teams over V0 ∪V1 ∪V2, i.e., sets D of assignments s ∶ V0 ∪V1 ∪V2 →M .

De�nition 2.6 (Semantics). We de�ne inductively the satisfaction relation M ⊧D ϕ as follows:
● See Theorem 2.2 for the team semantics of the atomic formulas X ¤r

k` y and X §r
k` y.

● For the other atomic formula θ , M ⊧D θ i� M ⊧s θ in the usual sense for all s ∈ D.
● M ⊧D ϕ ∧ψ i� M ⊧D ϕ and M ⊧D ψ .
● M ⊧D ∃1 x ϕ i� M ⊧D(a/x) ϕ for some element a ∈M of data sort, where D(a/x) = {s(a/x) ∣ s ∈ D}.
● M ⊧D ∃1 r ϕ and M ⊧D ∃1 ` ϕ are de�ned as above respecting the sorts of the variables.
1Notice that we assume the variable t to be always present in these atoms, although for simplicity we do not explicitly write the variable in the
formulas. Cf. the team semantics given in (3).
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For any set Γ ∪ {ϕ} of formulas, we write Γ ⊧ ϕ if for all models M and teams D, M ⊧D γ for all γ ∈ Γ implies
M ⊧D ϕ. We write ϕ ⊧ψ for {ϕ} ⊧ψ .

3 FORMALISING MATTHEW EFFECTS
In this section, we formalise four distinct types of Matthew e�ects in ML and we investigate the properties of the
dependence relations and Matthew e�ects.

De�nition 3.1 (Matthew e�ects). We de�ne the following notions:
● y being subject to a positive direct `-Ma�hew e�ect with respect to r (see also Table 2(b)):

DMEr
`y ∶∶= y ¤

r
` y .

● y being subject to a positive x-mediated `-Ma�hew e�ect with respect to r (see also Table 2(c)):

MMEr
`y(x) ∶∶= x ¤r

` y ∧y ¤
r
` x .

● y being subject to a positive x-complete `-Ma�hew e�ect with respect to r (see also Table 2(d)):

CMEr
`y(x) ∶∶= MMEr

`y(x) ∧DMEr
`y.

● x and y being subjects to a positive complete `-Ma�hew e�ect with respect to r (see also Table 2(e)):

CMEr
`(x ,y) ∶∶= MMEr

`y(x) ∧DMEr
`x ∧DMEr

`y.

Properties. It is not hard to verify that the dependence relation X ¤r
` y satis�es the following properties:

● (Re�exivity) ⊧ x ¤r
0 x

● (Enhancing) x ¤r
` x ⊧ ∃

1 r x ¤r
k` x

● (Commutativity) X1,⋯,Xn ¤
r
` y ⊧ Xi1 ,⋯,Xin ¤

r
` y andW ,x1 ⊗⋯⊗ xn ,Z ¤

r
` y ⊧W ,xi1 ⊗⋯⊗ xin ,Z ¤

r
` y,

where i1, . . . , in is any permutation of 1, . . . ,n
● (Duplication) X1, . . . ,Xn ¤

r
` y ⊧ Xi ,X1, . . . ,Xn ¤

r
` y, where Xi ∈ {X1, . . . ,Xn}

● (Projection) X1, . . . ,Xn ¤
r
` y ⊧ Xi1 , . . . ,Xik ¤

r
` y, where Xi1 , . . . ,Xik is any subsequence of X1, . . . ,Xn

● (Regrouping) (X ¤r
` y), (Z ¤

r
` y) ⊧ X ,Z ¤

r
` y

● (Transitivity) (X ¤r
` y), (y ¤

r
k` z) ⊧ ∃

1 r X ¤r
(k+1)` z

As a consequence of the transitivity of the dependence relation, mediated and direct Matthew e�ects satisfy the
following properties:

● (Transitivity) MMEr
`x(y),MMEr

`y(z) ⊧ ∃
1 r MMEr

2`x(z)
● (Scaling) MMEr

`y(x) ⊧ ∃
1 r0 DMEr0

2`x ∧ ∃
1 r1 DMEr1

2`y

Moreover, a direct Matthew e�ect of a variable x is clearly a mediated Matthew e�ect where x itself is the mediator,
namely, DMEr

`y ⊧MMEr
`y(y), and a mediated Matthew e�ect is reciprocal for the two variables involved, namely

MMEr
`y(x) ⊧MMEr

`x(y).

4 CASE STUDY
In Section 4.1, we informally present the results of Azoulay, Stuart, and Wang (henceforth: ASW) reported in [2]
about the Matthew e�ect in science. In Section 4.2, we formalise their analysis.

4.1 Informal presentation
ASW propose an empirical test for the following proposition: scientists of higher status will have even higher status
in the future. According to the de�nitions presented in Section 2, this is equivalent to saying that a direct Matthew
e�ect exists with regard to a scientist’s status. The empirical test revolves around the conferral to medical scientists
of the prestigious title of Howard Hughes Medical Investigator (HHMI). ASW examine how the yearly number of
citations for an article published by a HHMI-appointed scientist before the appointment changes as a result of the
appointment. ASW assume that both the HHMI appointment and an article’s yearly number of citations re�ect the
scientist’s status.

The hypothesis that a direct Matthew e�ect exists with regard to a scientist’s status is accepted if the articles
published by HHMI appointees receive more citations after the appointment, compared to articles of similar quality
published by non-appointees. The results of the analysis show that:
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● The citation boost is small and it a�ects only the articles published up to 1 year before the HHMI appointment.
Older articles do not witness a change in citations received as a result of the appointment.

● The citation boost is larger for articles published in journals with low impact factor, articles that use more
novel keywords, and articles that cite a greater number of studies from other �elds (i.e., that are recombinant).
ASW argue that this is because the quality of these articles is more di�cult to assess; therefore, the HHMI
appointment acts as a signal of quality and more strongly a�ects the yearly citations these articles receive.

● The citation boost is larger for articles published by scientists who have a smaller total number of citations
attached to their name or who are younger at the time of the HHMI appointment.

On the basis of these results, ASW conclude that there is a Matthew e�ect with regard to scientists’ status, but the
extent to which this is observable depends on the age of the articles published by scientists and on how easily the
quality of these articles can be assessed. In addition, they conclude that the Matthew e�ect more strongly a�ects
scientists who have lower status at the time they are appointed.

4.2 Formalisation
ASW perform a complex empirical test involving multiple variables and regression models. These are presented
in detail in Appendix B. In this subsection, we �rst formalise ASW’s statements in isolation, then we analyse the
reasoning they use to draw their conclusions.

Statements. Each statement is presented in natural language (text in italic) and then formalised using ML.
ASW aim at proving that there is a direct Matthew e�ect with regard to a scientist’s status. This can be formalised by

the formula:
∃
1 ` ∃1 ra DMEra

` Status. (4)
ASW observe (regression r1) that ACitAF positively depends on HHMI, but the e�ect is small [2, page 21], which can

be formalised by the formula:

HHMI¤r1
year ACitAF ∧ Small(r1,ACitAF,{HHMI}). (5)

In addition, they observe (regressions r2, r3, and r4) that this positive dependency only a�ects the articles published
up to 1 year before the HHMI appointment:

HHMI¤r2
year ACitAF (6)

∧ E�ect(r2,ACitAF,{HHMI}) ≫ E�ect(r1,ACitAF,{HHMI}) (7)
∧ E�ect(r3,ACitAF,{HHMI}) ≈ 0 ∧ E�ect(r4,ACitAF,{HHMI}) ≈ 0. (8)

Recall that the regressions r2, r3 and r4 are respectively based on articles published up to 1 year, 2 years, and 3 to 10
years before the HHMI appointment (see Table 4).

ASW also observe (regression r5) that there is a stronger increase in citations after the HHMI appointment if the
article is published in a journal with low impact factor :

HHMI⊗ LIF¤r5
year ACitAF (9)

Furthermore, they observe that there is a stronger increase in citations if the article is novel (regression r6):

HHMI⊗Novel¤r6
year ACitAF, (10)

or if it is recombinant (regression r7):

HHMI⊗ Recombinant¤r7
year ACitAF . (11)

ASW assume that the quality of articles is more uncertain if they are published in journals with low impact factor, if
they are novel, or if they are recombinant:

∃
1 ` ∃1 rb ({LIF,Novel,Recombinant} ¤rb

` UArtQ) . (12)

The assumption (12) and the observations (9), (10) and (11) suggest that the positive dependency of ACitAF on HHMI
more strongly a�ects articles of uncertain quality:

∃
1 ` ∃1 rc (HHMI¤rc

` ACitAF ∧ HHMI⊗UArtQ ¤rc
` ACitAF) . (13)
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Moreover, ASW observe that there is a stronger increase in the number of citations after the HHMI appointment if the
article is published by a scientist who is less cited at the time of the appointment (regression r8):

HHMI⊗Hnotwellcited¤r8
year ACitAF . (14)

or who is younger at the time of the appointment (regression r9):

HHMI⊗Hyoung¤r9
year ACitAF . (15)

The assumption that the variables Hnotwellcited and Hyoung have a negative e�ect on Status,

∃
1 ` ∃1 rd ({Hnotwellcited,Hyoung} §rd

` Status) , (16)

leads to the conclusion that the positive dependency of ACitAF on HHMI more strongly a�ects scientists who have lower
status at the time of the HHMI appointment than it a�ects scientists who have higher status:

∃
1 ` ∃1 re (HHMI¤re

` ACitAF ∧ HHMI⊗ Status§re
` ACitAF) . (17)

Reasoning. The observations (5), (6), (7), (8) (9), (10), (11), (14) and (15) and the assumptions (12) and (16) are
considered as axioms. Here we list the deduction steps ASW use to deduce (4), (13) and (17). To deduce (13), ASW
use the following reasoning: if ACitAF is subject to a positively moderated year -dependency on HHMI ⊗ LIF (resp.
HHMI⊗Novel or HHMI⊗ Recombinant) witnessed by the regression r, and if UArtQ is subject to a positive LIF (resp.
Novel or Recombinant) dependency, then there is an hypothetical regression r′ that witnesses the fact that ACitAF
is subject to a positively moderated `′-dependency on HHMI ⊗ UArtQ . This reasoning is captured by the following
deduction step:

h ⊗ n ¤r
` c ∃1 ` ∃1 r n ¤r

` u

∃1 `′ ∃1 r′ h ⊗u ¤r′
`′ c

.

To deduce (17), ASW use the following reasoning: if ACitAF is subject to a positively moderated year -dependency
on HHMI⊗Hnotwellcited (resp. HHMI⊗Hyoung) witnessed by the regression r8 (resp. r9), and if Hnotwellcited (resp.
Hyoung) has a negative e�ect on Status, then there is an hypothetical regression r′ that witnesses the fact that ACitAF
is subject to a positively moderated `′-dependency on HHMI ⊗ Status. This reasoning is captured by the following
deduction step:

h ⊗ n ¤r
` c ∃1 ` ∃1 r n §r

` s

∃1 `′ ∃1 r′ h ⊗ s §`′
r′ c

.

To deduce (4), one �rst need to express the assumption that HHMI is positively dependent on Status:

∃
1 ` ∃1 rf (Status¤rf

` HHMI) . (18)

Based on this, ASW use the following reasoning: if HHMI is positively dependent on Status, if ACitAF is positively
dependent on HHMI as witnessed by the regression r1, then Status is positively dependent on Status, which means that
Status is subject to a direct Matthew e�ect. This reasoning is captured by the following deduction steps:

∃1 ` ∃1 r s ¤r
` h h ¤r1

year c

∃1 ` ∃1 r s ¤r
` c

and
∃1 ` ∃1 r s ¤r

` c ∃1 ` ∃1 r c ¤r
` s

∃1 ` ∃1 r DMEr
`s .

5 CONCLUSION AND FURTHER RESEARCH
Conclusion. While there is a great deal of literature in the social sciences invoking the Matthew e�ect to explain

important phenomena, from career dynamics to economic inequality, the concept of Matthew e�ect has never been
properly formalised. This makes it di�cult to compare and synthesise the results of di�erent studies. This paper
o�ers a �rst formalisation of the Matthew e�ect via a logic based on team semantics.

An original contribution of this paper is that our formalisation allows for a clear distinction between di�erent types
of Matthew e�ects: direct, mediated, and complete. This shows just how complicated self-reinforcing phenomena
can be, because an observed Matthew e�ect can actually result from the interplay of direct and mediated Matthew
e�ects. In addition, our formalisation serves a number of interrelated purposes: �rst, as shown in our case study, it
can be used to better understand the import of empirical research and to make explicit the assumptions needed to
support the researchers’ conclusions; second, it can be used to compare and relate the results of di�erent studies to
one another, and thereby develop new theory on a �rmer foundation; third, it allows empirical scientists to ask new
research questions and formulate more precise hypotheses.
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This study is only a �rst step in exploring logical formalisms that address the intricate phenomena concerning the
Matthew e�ect. Further work will expand the logical analysis in the following directions:

Studying properties ofML. The logic ML, we introduced is de�ned on the basis of team semantics. A team or a data
set is essentially a relation of the model, which is a second-order object. As a consequence, logics based on team
semantics are usually second-order in expressive power. Indeed, the two major team-based logics, dependence logic
and independence logic, are expressibly equivalent to existential second-order logic [3, 15]. The atomic dependency
notions formalised in ML are more involved than the functional dependency, independence, and other dependency
notions studied so far in team-based logics. Yet the language of our ML is very simple, as the only complex formulas
are the conjunctions and the existentially quanti�ed statements with weak existential quanti�ers of team semantics.
One natural conjecture would be that this logic is strictly weaker in expressive power than existential second-order
or even �rst-order logic.

A richer language with a good proof calculus. Although we demonstrated in the case study that the simple language
of ML can already express interesting facts about Matthew e�ects, in future work we will introduce stronger logics
by expanding the language to include disjunction, negation, implication, and strong quanti�ers. We also want to
introduce proof calculi for these extensions or their su�ciently strong fragments.

Re�ecting the complexity of empirical tests. Our formalisation suggests that empirical �ndings about Matthew e�ects
are contingent on particular statistical analyses, performed on particular data, where particular variables are observed
over particular time intervals. Choices related to research design can thus a�ect the empirical evidence researchers
�nd about Matthew e�ects. For example, choosing to observe the variables yearly rather than monthly, weekly, or
daily can determine whether a direct Matthew e�ect is found in the place of a mediated one. Moreover, the fact that
some variables like quality and uncertainty about quality remain unobserved can conceal important dependencies; as
a result, a Matthew e�ect may appear to be mediated by a certain (observed) variable whereas in fact it is mediated by
another (unobserved) one, which depends or is dependent on the apparent mediator. In formalising Matthew e�ects,
or indeed any dependency tested via statistical analysis, one must be able to express these details within the syntax of
the logic.
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A APPENDIX - MATTHEW EFFECTS

A.1 Toy example of a Ma�hew e�ect
Matthew e�ects are often detected by researchers while analyzing empirical data. In the statistical literature, these
represent a form of autocorrelation [6]. Table 1 presents a hypothetical dataset that shows prima facie evidence of a
Matthew e�ect. This data concerns the careers of visual artists: each row contains information about an artist during
a given year. The �rst column includes the artist ID; the second column includes the number of artworks sold by
the artist during the observation year; the third column includes the number of times the artist or her work were
reviewed by the media during the observation year; the fourth column speci�es the observation year. Assume that all
artists started their career in 2010 and that they were equally productive during the study period. The data suggests
that Artist A started accumulating reviews from the very beginning, and sales quickly followed. A similar pattern can
be observed for Artist B, though with some delay. In the case of Artist C, however, this trend never began.

We may presume that both sales and reviews are subject to a Matthew e�ect because selling more artworks leads to
greater odds of selling artwork in the future. Similarly, being reviewed increases the odds of future reviews. However,
it is also possible—and indeed highly likely—that being reviewed increases the odds of future sales, and that selling
artwork increase the odds of future reviews. The fact that these dependencies occur at the same time makes the
individual e�ects di�cult to isolate.

Table 1. A data set (or a team)

Artist Sales Reviews Time . . .
A 0 1 2010 . . .
A 1 2 2011 . . .
A 1 1 2012 . . .
A 2 4 2013 . . .
A 4 7 2014 . . .
A 7 9 2015 . . .
⋮ ⋮ ⋮ ⋮

Artist Sales Reviews Time . . .
B 0 0 2010 . . .
B 0 0 2011 . . .
B 0 1 2012 . . .
B 0 2 2013 . . .
B 2 5 2014 . . .
B 4 8 2015 . . .
⋮ ⋮ ⋮ ⋮

Artist Sales Reviews Time . . .
C 0 0 2010 . . .
C 1 1 2011 . . .
C 0 0 2012 . . .
C 0 1 2013 . . .
C 1 2 2014 . . .
C 0 1 2015 . . .
⋮ ⋮ ⋮ ⋮

A.2 Di�erent Ma�hew e�ects
Table 2 contains a graphic representation of the de�nitions of the positive dependency introduced in Theorem 2.1
and of the Matthew e�ects de�ned in Section 3. To help understand the de�nitions of the di�erent Matthew e�ects
and Table 2, we present a simple example of positive dependency.

Example A.1. Consider a very simple dependence relation x ¤r
` y with a linear regression function

y(t) = α + βx(t−lδ) +γ1w1(t−lδ) + ⋅ ⋅ ⋅ +γ1w1(t−lδ) + ϵ,

where β is signi�cantly greater than 0. Since we also have

y(t−lδ) = α + βx(t−2lδ) +γ1w1(t−2lδ) + ⋅ ⋅ ⋅ +γ1w1(t−2lδ) + ϵ,

when all the independent variables except x are held constant, we obtain

y(t) −y(t−lδ) = β(x(t−lδ) − x(t−2lδ)),

meaning that the value of y increases as the value of x increases (see also Table 2(a)).
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Table 2. Types of Ma�hew e�ect

(a) Dependence relation
y(t)

x(t−l) y(t−l)

OO
::

x(t−2l)

OO

(b) Direct Matthew e�ect (c) Mediated Matthew e�ect

y(t)

y(t−l)

KSKS

y(t−2l)

OO

y(t)

y(t−l)

KS

x(t−l)

dd

y(t−2l) x(t−2l)

OO
::

y(t−3l)

OO

x(t−3l)

(d) Complete Matthew e�ect for y (e) Complete Matthew e�ect for (x ,y)

y x

● ●

●

KSKS

●

KS
::

●

KS

●

KSKS
dd

●

KSKS

●

OO

KSKS

::

●

OO

y x

● ●

●

KSKS

●

KS
::

●

KS

●

KSKS
dd

●

KSKS

●

OO

KSKS

::

KSKS

●

OO
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B APPENDIX - CASE STUDY

B.1 Variables
The key variables used by ASW to analyze the Matthew e�ect among scientists in [2] is reported in Table 3. Some of
these variables measure relevant characteristics of a scientist, including Author, HHMI, Hdate, Hage, and Hcit. Other
variables measure characteristics related to the article published by the scientist, including Article, ArtY, Journal,
NbAut, Apos, ACitAF, ACitBF, IF, Novelty, and Recombination.

In [2], the variables Hage, Hcit, IF, Novelty, and Recombination are split along the median value observed in the
data, giving rise to the following boolean variables: Hyoung, which is true if the scientist is younger than the median
at the time of the HHMI appointment; Hwellcited, which is true if the scientist has a greater number of total citations
than the median at the time of the HHMI appointment; HIF, which is true if the journal where the article is published
has higher impact factor than the median; Novel, which is true if the keywords associated with the article are more
novel than the median; and Recombinant, which is true if the proportion of out-of-�eld literature cited by the article
is greater than the median.

In addition to these variables, which are measured and actually used in ASW’s statistical analysis, the claims made
in [2] about the Matthew e�ect involve a number of additional variables, which cannot be measured directly but are
assumed to depend on some of the observed variables. These include Status, i.e., the status of the focal scientist, as
well as ArtQ and UArtQ , which represent the quality of the scientist’s article and the uncertainty about the quality of
the scientist’s article, respectively.

B.2 Regressions
A regression is performed via the application of an algorithm, i.e., an estimator, to the observed data. The algorithm
yields a set of coe�cients, which correspond to the β mentioned in Section 2. Each coe�cient represents an e�ect,
i.e., a change in the value of the dependent variable y that results from a one-unit increase in the value of the
independent variable x . Each coe�cient is associated with a level of statistical signi�cance, i.e., a value between 0 and
1 that represents the probability of observing the estimated e�ect in the data. The lower this value, the greater the
probability of observing the e�ect. A coe�cient with a level of statistical signi�cance below some predetermined
threshold is said to be signi�cantly greater than 0 if the coe�cient is positive, and signi�cantly smaller than 0 if the
coe�cient is negative. If the level of statistical signi�cance is above the predetermined threshold, the coe�cient is
said to be non-signi�cant or equivalent to zero. In [2], the chosen signi�cance threshold is 0.05, as is conventional in
the social sciences.

Table 4 reports the full list of the regressions performed by ASW in [2]. These are indexed by numbers 1–9. These
regressions concern the observed variables listed in Table 3. In addition, Table 4 reports a list regressions that are
not actually performed by ASW in [2], but their results are nonetheless relevant to ASW’s analysis. We call these
hypothetical regressions. These are not actually performed because they concern the unobserved variables listed
in Table 3. However, they could be performed if it were possible to observe these variables. These hypothetical
regressions are indexed by letters a–e . In every regression, the dependent variable is ACitAF.
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Table 3. List of variables

Variable Meaning Type Time
dependent

Author
related

Observed

Author Scientist ID N

HHMI Author is appointed HHMI 0/1
Hdate Date of the HHMI appointment N

Hage Age of the author N

at HHMI appointment
Hyoung Author was young 0/1

at HHMI appointment
Hold Author was old 0/1

at HHMI appointment
Hcit Author’s total citations N

at HHMI appointment
Hwellcited Author was well cited 0/1

at HHMI appointment
Hnotwellcited Author was not well cited 0/1

at HHMI appointment

Unobserved
Status Status of the author R

Article
related

Observed

Article Article ID N

ArtY Date of article publication N

Journal Journal ID N

NbAut Number of authors N

Apos Position of the focal author N

in the list of article authors
ACitBF Yearly number of article citations N yes

at author’s HHMI appointment
ACitAF Yearly number of article citations N yes

after author’s HHMI appointment
IF Impact factor of the journal R

HIF Journal has high impact factor 0/1
LIF Journal has low impact factor 0/1

Novelty Novelty of the article R

(i.e., mean age of the keywords)
Novel Article is novel 0/1

NotNovel Article is not novel 0/1
Recombination Level of recombination of the article R

(i.e., proportion of out-of-�eld literature cited)
Recombinant Article is recombinant 0/1

NotRecombinant Article is not recombinant 0/1

Unobserved
ArtQ Quality of the article R

UArtQ Uncertainty about the quality of the article R
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Table 4. List of regressions

Regression Description

r1 Based on the full sample. Independent variables include all the observed variables listed in Table 3
r2 Like r1, but the sample includes only articles published up to 1 year before the HHMI appointment
r3 Like r1, but the sample includes only articles published 2 years before the HHMI appointment
r4 Like r1, but the sample includes only articles published 3 to 10 years before the HHMI appointment
r5 Like r2, but estimating a di�erent e�ect of HHMI when HIF is true or false
r6 Like r2, but estimating a di�erent e�ect of HHMI when Novel is true or false
r7 Like r2, but estimating a di�erent e�ect of HHMI when Recombinant is true or false
r8 Like r2, but estimating a di�erent e�ect of HHMI when Hwellcited is true or false
r9 Like r2, but estimating a di�erent e�ect of HHMI when Hyoung is true or false

ra Hypothetical regression where the direct Matthew e�ect on Status is estimated
rb Hypothetical regression where the e�ects of HIF, Novel, and Recombinant on UArtQ are estimated
rc Hypothetical regression where the e�ect of UArtQ on ACitAF is estimated
rd Hypothetical regression where the e�ects of Hwellcited and Hyoung on Status are estimated
re Hypothetical regression where the e�ect of Status on ACitAF is estimated
rf Hypothetical regression where the e�ect of Status on HHMI is estimated
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