Numerical Determination of Anomalies in Multifrequency Electrical Impedance Tomography

Abstract : The multifrequency electrical impedance tomography consists in retrieving the conductivity distribution of a sample by injecting a finite number of currents with multiple frequencies. In this paper we consider the case where the conductivity distribution is piecewise constant, takes a constant value outside a single smooth anomaly, and a frequency dependent function inside the anomaly itself. Using an original spectral decomposition of the solution of the forward conductivity problem in terms of Poincaré variational eigenelements, we retrieve the Cauchy data corresponding to the extreme case of a perfect conductor, and the conductivity profile. We then reconstruct the anomaly from the Cauchy data. The numerical experiments are conducted using gradient descent optimization algorithms.
Liste complète des métadonnées
Contributeur : Faouzi Triki <>
Soumis le : lundi 17 avril 2017 - 07:19:30
Dernière modification le : lundi 30 avril 2018 - 15:02:01
Document(s) archivé(s) le : mardi 18 juillet 2017 - 12:13:10


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01509354, version 1


Habib Ammari, Faouzi Triki, Chun-Hsiang Tsou. Numerical Determination of Anomalies in Multifrequency Electrical Impedance Tomography. 2017. 〈hal-01509354〉



Consultations de la notice


Téléchargements de fichiers