O. M. Alifanov, E. A. Artioukhine, and S. V. Rumyantsev, Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems, 1995.

M. L. Anderson, W. Bangerth, and G. F. Carey, Analysis of parameter sensitivity and experimental design for a class of nonlinear partial differential equations, International Journal for Numerical Methods in Fluids, vol.19, issue.6, pp.48583-605, 2005.
DOI : 10.2140/pjm.1980.88.379

E. A. Artyukhin and S. A. Budnik, Optimal planning of measurements in numerical experiment determination of the characteristics of a heat flux, Journal of Engineering Physics, vol.48, issue.No. 3, pp.1453-1458, 1985.
DOI : 10.1007/BF00871299

B. B. Dresden, Simulation program for the calculation of coupled heat, moisture, air, pollutant, and salt transport, 2011.

J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science, 1977.

C. Belleudy, M. Woloszyn, M. Chhay, and M. Cosnier, A 2D model for coupled heat, air, and moisture transfer through porous media in contact with air channels, International Journal of Heat and Mass Transfer, vol.95, pp.453-465, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2015.12.030

J. Berger, Contribution à la modélisation hygrothermique des bâtiments: Application des méthodes de réduction de modèle, 2014.

J. Berger, T. Busser, D. Dutykh, and N. Mendes, On the estimation of moisture permeability and advection coefficients of a wood fibre material using the optimal experiment design approach, pp.30-43, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01498638

J. Berger, M. Chhay, S. Guernouti, and M. Woloszyn, Proper generalized decomposition for solving coupled heat and moisture transfer, Journal of Building Performance Simulation, vol.96, issue.3, pp.295-311
DOI : 10.1007/s12273-008-8106-z

J. Berger, D. Dutykh, and N. Mendes, On the optimal experiment design for heat and moisture parameter estimation, Experimental Thermal and Fluid Science, vol.81, pp.109-122, 2011.
DOI : 10.1016/j.expthermflusci.2016.10.008

J. Berger, S. Gasparin, D. Dutykh, and N. Mendes, Accurate numerical simulation of moisture front in porous material, Building and Environment, vol.118, pp.211-224, 2017.
DOI : 10.1016/j.buildenv.2017.03.016

URL : https://hal.archives-ouvertes.fr/hal-01419018

J. Berger, N. Mendes, S. Guernouti, M. Woloszyn, and F. Chinesta, Review of Reduced Order Models for Heat and Moisture Transfer in Building Physics with Emphasis in PGD Approaches, Archives of Computational Methods in Engineering, vol.16, issue.9, pp.1-13, 2005.
DOI : 10.1080/17415977.2016.1160395

J. Berger, H. R. Orlande, N. Mendes, and S. Guernouti, Bayesian inference for estimating thermal properties of a historic building wall, Building and Environment, vol.106, issue.6, pp.327-339
DOI : 10.1016/j.buildenv.2016.06.037

P. Biddulph, V. Gori, C. A. Elwell, C. Scott, C. Rye et al., Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements, Energy and Buildings, vol.78, issue.6, pp.10-16, 2014.
DOI : 10.1016/j.enbuild.2014.04.004

T. Busser, A. Piot, M. Pailha, T. Bejat, and M. Woloszyn, From materials properties to modelling hygrothermal transfers of highly hygroscopic walls, CESBP, p.13, 2016.

R. H. Byrd, J. C. Gilbert, and J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Mathematical Programming, vol.89, issue.1, pp.149-185, 2000.
DOI : 10.1007/PL00011391

URL : https://hal.archives-ouvertes.fr/inria-00073794

B. Czél and G. Gróf, Inverse identification of temperature-dependent thermal conductivity via genetic algorithm with cost function-based rearrangement of genes, International Journal of Heat and Mass Transfer, vol.55, issue.15-16, pp.15-164254, 2012.
DOI : 10.1016/j.ijheatmasstransfer.2012.03.067

E. P. Barrio, Multidimensional inverse heat conduction problems solution via lagrange theory and model size reduction techniques, Inverse Problems in Engineering, vol.10, issue.6, pp.515-539, 2003.
DOI : 10.1080/10407799808915035

J. W. Delleur, The handbook of groundwater engineering, 2006.
DOI : 10.1201/9781420048582

S. Dubois, F. Mcgregor, A. Evrard, A. Heath, and F. Lebeau, An inverse modelling approach to estimate the hygric parameters of clay-based masonry during a Moisture Buffer Value test, Building and Environment, vol.81, issue.6, pp.192-203, 2014.
DOI : 10.1016/j.buildenv.2014.06.018

A. F. Emery and A. V. Nenarokomov, Optimal experiment design, Measurement Science and Technology, vol.9, issue.6, pp.864-876, 1998.
DOI : 10.1088/0957-0233/9/6/003

T. D. Fadale, A. V. Nenarokomov, and A. F. Emery, Two Approaches to Optimal Sensor Locations, Journal of Heat Transfer, vol.117, issue.2, p.373, 1995.
DOI : 10.1115/1.2822532

S. Finsterle, Practical notes on local data-worth analysis, Water Resources Research, vol.65, issue.5, pp.9904-9924
DOI : 10.1016/j.cageo.2013.06.006

S. Gasparin, J. Berger, D. Dutykh, and N. Mendes, An improved explicit scheme for wholebuilding hygrothermal simulation, p.40, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01495737

S. Gasparin, J. Berger, D. Dutykh, and N. Mendes, Spectral reduced order model for predicting nonlinear moisture transfer in hygroscopic materials, p.30, 2017.

S. Gasparin, J. Berger, D. Dutykh, and N. Mendes, Stable explicit schemes for simulation of nonlinear moisture transfer in porous materials, Journal of Building Performance Simulation, vol.109, issue.1, pp.1-21, 2017.
DOI : 10.1007/s12273-008-8106-z

URL : https://hal.archives-ouvertes.fr/hal-01404578

C. James, C. J. Simonson, P. Talukdar, and S. Roels, Numerical and experimental data set for benchmarking hygroscopic buffering models, International Journal of Heat and Mass Transfer, vol.53, issue.19-20, pp.19-203638, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2010.03.039

H. Janssen, B. Blocken, and J. Carmeliet, Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation, International Journal of Heat and Mass Transfer, vol.50, issue.5-6, pp.5-61128, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2006.06.048

S. I. Kabanikhin, Definitions and examples of inverse and ill-posed problems, Journal of Inverse and Ill-posed Problems, vol.153, issue.4, pp.317-357, 2005.
DOI : 10.1002/cpa.3160390106

S. I. Kabanikhin, Inverse and ill-posed problems: theory and applications, 2011.
DOI : 10.1515/9783110224016

S. I. Kabanikhin, A. Hasanov, and A. V. Penenko, A gradient descent method for solving an inverse coefficient heat conduction problem, Numerical Analysis and Applications, vol.1, issue.1, pp.34-45, 1926.
DOI : 10.1134/S1995423908010047

A. S. Kalagasidis, P. Weitzmann, T. R. Nielsen, R. Peuhkuri, C. Hagentoft et al., The International Building Physics Toolbox in Simulink, Energy and Buildings, vol.39, issue.6, pp.665-674, 2007.
DOI : 10.1016/j.enbuild.2006.10.007

G. H. Kanevce, L. P. Kanevce, G. S. Dulikravich, and H. R. Orlande, Estimation of thermophysical properties of moist materials under different drying conditions, Inverse Problems in Science and Engineering, vol.13, issue.4, pp.341-353, 2005.
DOI : 10.1137/0111030

M. Karalashvili, W. Marquardt, and A. Mhamdi, Optimal experimental design for identification of transport coefficient models in convection???diffusion equations, Computers & Chemical Engineering, vol.80, pp.101-113
DOI : 10.1016/j.compchemeng.2015.04.036

I. V. Koptyug, S. I. Kabanikhin, K. T. Iskakov, V. B. Fenelonov, L. Y. Khitrina et al., A quantitative NMR imaging study of mass transport in porous solids during drying, Chemical Engineering Science, vol.55, issue.9, pp.1559-1571, 1926.
DOI : 10.1016/S0009-2509(99)00404-2

J. Kwiatkowski, M. Woloszyn, and J. Roux, Modelling of hysteresis influence on mass transfer in building materials, Building and Environment, vol.44, issue.3, pp.633-642, 2009.
DOI : 10.1016/j.buildenv.2008.05.006

A. V. Luikov, Heat and mass transfer in capillary-porous bodies, p.7, 1966.

N. Mendes, M. Chhay, J. Berger, and D. Dutykh, Numerical methods for diffusion phenomena in building physics, p.5, 2017.
DOI : 10.7213/978868324455

N. Mendes and P. C. Philippi, Multitridiagonal-Matrix Algorithm for Coupled Heat Transfer in Porous Media: Stability Analysis and Computational Performance, Journal of Porous Media, vol.7, issue.3, pp.193-212, 2004.
DOI : 10.1615/JPorMedia.v7.i3.40

N. Mendes and P. C. Philippi, A method for predicting heat and moisture transfer through multilayered walls based on temperature and moisture content gradients, International Journal of Heat and Mass Transfer, vol.48, issue.1, pp.37-51, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2004.08.011

N. Mendes, I. Ridley, R. Lamberts, P. C. Philippi, and K. Budag, Umidus: A PC program for the Prediction of Heat and Mass Transfer in Porous Building Elements, IBPSA 99 International Conference on Building Performance Simulation, pp.277-283, 1999.

A. Nassiopoulos and F. Bourquin, On-Site Building Walls Characterization. Numerical Heat Transfer, Part A: Applications, pp.179-200, 2006.
DOI : 10.1080/10407782.2013.730422

URL : https://hal.archives-ouvertes.fr/hal-00915784

A. V. Nenarokomov and D. V. Titov, Optimal experiment design to estimate the radiative properties of materials, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.93, issue.1-3, pp.313-323, 2005.
DOI : 10.1016/j.jqsrt.2004.07.036

M. N. Ozisik and H. R. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Applied Mechanics Reviews, vol.55, issue.1, 2000.
DOI : 10.1115/1.1445337

H. Rafidiarison, R. Rémond, and E. Mougel, Dataset for validating 1-D heat and mass transfer models within building walls with hygroscopic materials, Building and Environment, vol.89, pp.356-368, 2015.
DOI : 10.1016/j.buildenv.2015.03.008

S. Rouchier, T. Busser, M. Pailha, A. Piot, and M. Woloszyn, Hygric characterization of wood fiber insulation under uncertainty with dynamic measurements and Markov Chain Monte-Carlo algorithm, Building and Environment, vol.114, issue.6, pp.129-139
DOI : 10.1016/j.buildenv.2016.12.012

S. Rouchier, M. Woloszyn, G. Foray, and J. Roux, Influence of concrete fracture on the rain infiltration and thermal performance of building facades, International Journal of Heat and Mass Transfer, vol.61, pp.340-352, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2013.02.013

URL : https://hal.archives-ouvertes.fr/hal-00798374

S. Rouchier, M. Woloszyn, Y. Kedowide, and T. Béjat, Identification of the hygrothermal properties of a building envelope material by the covariance matrix adaptation evolution strategy, Journal of Building Performance Simulation, vol.27, issue.4, pp.101-114, 2006.
DOI : 10.1016/j.enbuild.2006.06.010

URL : https://hal.archives-ouvertes.fr/hal-01288774

F. Tariku, K. Kumaran, and P. Fazio, Transient model for coupled heat, air and moisture transfer through multilayered porous media, International Journal of Heat and Mass Transfer, vol.53, issue.15-16, pp.15-163035, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2010.03.024

D. Ucinski, Optimal Measurement Methods for Distributed Parameter System Identification, p.11, 2004.
DOI : 10.1201/9780203026786

A. Vande-wouwer, N. Point, S. Porteman, and M. Remy, An approach to the selection of optimal sensor locations in distributed parameter systems, Journal of Process Control, vol.10, issue.4, pp.291-300, 2000.
DOI : 10.1016/S0959-1524(99)00048-7

M. Woloszyn and C. Rode, Tools for performance simulation of heat, air and moisture conditions of whole buildings, Building Simulation, vol.2, issue.112, pp.5-24, 2008.
DOI : 10.1002/bapi.200710028

URL : https://hal.archives-ouvertes.fr/hal-00353433

X. Xu and S. Wang, Optimal simplified thermal models of building envelope based on frequency domain regression using genetic algorithm, Energy and Buildings, vol.39, issue.5, pp.525-536, 2007.
DOI : 10.1016/j.enbuild.2006.06.010

J. Berger, Julien@univ-smb.fr URL: https://www.researchgate.net/profile Campus Scientifique , F-73376 Le Bourget-du-Lac Cedex, France E-mail address: Thomas.Busser@univ-smb.fr URL: https://www.researchgate.net/profile Campus Scientifique , F-73376 Le Bourget-du-Lac Cedex, France E-mail address: Denys.Dutykh@univ-smb.fr URL: http://www.denys-dutykh, Busser: LOCIE, UMR 5271 CNRS Dutykh: LAMA, UMR 5127 CNRS, pp.80215-901