A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, and N. Von-goetz, Titanium Dioxide Nanoparticles in Food and Personal Care Products, Environmental Science & Technology, vol.46, issue.4, pp.2242-2250, 2012.
DOI : 10.1021/es204168d

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288463

R. J. Peters, Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles, Journal of Agricultural and Food Chemistry, vol.62, issue.27, pp.6285-6293, 2014.
DOI : 10.1021/jf5011885

Y. Yang, Characterization of Food-Grade Titanium Dioxide: The Presence of Nanosized Particles, Environmental Science & Technology, vol.48, issue.11, pp.6391-6400, 2014.
DOI : 10.1021/es500436x

X. X. Chen, Characterization and Preliminary Toxicity Assay of Nano-Titanium Dioxide Additive in Sugar-Coated Chewing Gum, Small, vol.7, issue.9-10, pp.1765-1774, 2013.
DOI : 10.1002/smll.201201506

H. Shi, R. Magaye, V. Castranova, and J. Zhao, Titanium dioxide nanoparticles: a review of current toxicological data, Particle and Fibre Toxicology, vol.10, issue.1, p.15, 2013.
DOI : 10.1016/j.tiv.2009.12.007

E. Brun, Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia, Particle and Fibre Toxicology, vol.11, issue.1, p.13, 2014.
DOI : 10.1016/j.biomaterials.2011.10.025

URL : https://hal.archives-ouvertes.fr/inserm-00971511

K. Gerloff, Rutile/Anatase Mixed Phase Nanoparticles on Caco-2 Cells, Chemical Research in Toxicology, vol.25, issue.3, pp.646-655, 2012.
DOI : 10.1021/tx200334k

C. Gitrowski, A. R. Jubory, and R. D. Handy, Uptake of different crystal structures of TiO2 nanoparticles by Caco-2 intestinal cells, Toxicology Letters, vol.226, issue.3, pp.264-276, 2014.
DOI : 10.1016/j.toxlet.2014.02.014

B. A. Koeneman, Toxicity and cellular responses of intestinal cells exposed to titanium dioxide, Cell Biology and Toxicology, vol.67, issue.Pt 2, pp.225-238, 2010.
DOI : 10.1007/s10565-009-9132-z

Y. Wang, Susceptibility of Young and Adult Rats to the Oral Toxicity of Titanium Dioxide Nanoparticles, Small, vol.74, issue.9-10, pp.1742-1752, 2013.
DOI : 10.1002/smll.201201185

W. S. Cho, Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration, Particle and Fibre Toxicology, vol.10, issue.1, p.9, 2013.
DOI : 10.1016/j.taap.2010.02.013

L. Geraets, Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats, Particle and Fibre Toxicology, vol.11, issue.1, p.30, 2014.
DOI : 10.1186/1743-8977-11-30

URL : https://hal.archives-ouvertes.fr/hal-01143801

K. Jones, Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles, Toxicology Letters, vol.233, issue.2, pp.95-101, 2015.
DOI : 10.1016/j.toxlet.2014.12.005

G. Janer, E. Mas-del-molino, E. Fernandez-rosas, A. Fernandez, and S. Vazquez-campos, Cell uptake and oral absorption of titanium dioxide nanoparticles, Toxicology Letters, vol.228, issue.2, pp.103-110, 2014.
DOI : 10.1016/j.toxlet.2014.04.014

J. J. Powell, Characterisation of inorganic microparticles in pigment cells of human gut associated lymphoid tissue., Gut, vol.38, issue.3, pp.390-395, 1996.
DOI : 10.1136/gut.38.3.390

T. Z. Hummel, A. Kindermann, P. C. Stokkers, M. A. Benninga, and F. J. Ten-kate, Exogenous Pigment in Peyer Patches of Children Suspected of Having IBD, Journal of Pediatric Gastroenterology and Nutrition, vol.58, issue.4, pp.477-480, 2014.
DOI : 10.1097/MPG.0000000000000221

M. Winter, nanoparticles in murine dendritic cells, Nanotoxicology, vol.6, issue.8, pp.326-340, 2011.
DOI : 10.1016/S1074-7613(00)80005-9

R. A. Baan, Working Group, Inhalation Toxicology, vol.288, issue.1, pp.213-228, 2007.
DOI : 10.1136/oem.59.2.98

P. Hoppe, S. Cohen, and A. Meibom, NanoSIMS: Technical Aspects and Applications in Cosmochemistry and Biological Geochemistry, Geostandards and Geoanalytical Research, vol.17, issue.Suppl S2, pp.111-154, 2013.
DOI : 10.1111/j.1751-908X.2013.00239.x

URL : http://hdl.handle.net/11858/00-001M-0000-0014-C390-7

A. M. Mowat and W. W. Agace, Regional specialization within the intestinal immune system, Nature Reviews Immunology, vol.12, issue.10, pp.667-685, 2014.
DOI : 10.1111/j.1749-6632.2010.05708.x

J. L. Coombes and K. J. Maloy, Control of intestinal homeostasis by regulatory T cells and dendritic cells, Seminars in Immunology, vol.19, issue.2, pp.116-126, 2007.
DOI : 10.1016/j.smim.2007.01.001

C. M. Sun, Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid, The Journal of Experimental Medicine, vol.398, issue.8, pp.1775-1785, 2007.
DOI : 10.1084/jem.188.2.287

J. Wang, Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration, Toxicology Letters, vol.168, issue.2, pp.176-185, 2007.
DOI : 10.1016/j.toxlet.2006.12.001

R. Tassinari, Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen, Nanotoxicology, vol.8, issue.6, pp.654-662, 2014.
DOI : 10.1080/15287390903212287

L. C. Pele, Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers, Particle and Fibre Toxicology, vol.30, issue.2, p.26, 2015.
DOI : 10.1186/s12989-015-0101-9

L. Ahlinder, B. Ekstrand-hammarstrom, P. Geladi, and L. Osterlund, Large Uptake of Titania and Iron Oxide Nanoparticles in the Nucleus of Lung Epithelial Cells as Measured by Raman Imaging and Multivariate Classification, Biophysical Journal, vol.105, issue.2, pp.310-319, 2013.
DOI : 10.1016/j.bpj.2013.06.017

N. Li, Interaction Between Nano-Anatase TiO2 and Liver DNA from Mice In Vivo, Nanoscale Research Letters, vol.156, issue.1, pp.108-115, 2009.
DOI : 10.1007/s11671-009-9451-2

C. Jin, evaluation of the interaction between titanium dioxide nanoparticle and rat liver DNA, Toxicology and Industrial Health, vol.75, issue.199, pp.235-244, 2013.
DOI : 10.1177/0748233713479898

J. Soto-alvaredo, 40373 | DOI: 10.1038/srep40373 32 Evaluation of the biological effect of Ti generated debris from metal implants: ions and nanoparticles, Metallomics, vol.7, issue.6, pp.1702-1708, 2014.

T. Chen, J. Yan, and Y. Li, Genotoxicity of titanium dioxide nanoparticles, Journal of Food and Drug Analysis, vol.22, issue.1, pp.95-104, 2014.
DOI : 10.1016/j.jfda.2014.01.008

T. Suzuki, Genotoxicity assessment of intravenously injected titanium dioxide nanoparticles in gpt delta transgenic mice, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.802, pp.30-37, 2016.
DOI : 10.1016/j.mrgentox.2016.03.007

P. R. Burkett, G. Meyer-zu-horste, and V. K. Kuchroo, Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity, Journal of Clinical Investigation, vol.125, issue.6, pp.2211-2219, 2015.
DOI : 10.1172/JCI78085

J. Yang, M. S. Sundrud, J. Skepner, and T. Yamagata, Targeting Th17 cells in autoimmune diseases, Trends in Pharmacological Sciences, vol.35, issue.10, pp.493-500, 2014.
DOI : 10.1016/j.tips.2014.07.006

M. Butler, J. J. Boyle, J. J. Powell, R. J. Playford, and S. Ghosh, Dietary microparticles implicated in Crohn???s disease can impair macrophage phagocytic activity and act as adjuvants in the presence of bacterial stimuli, Inflammation Research, vol.56, issue.9, pp.353-361, 2007.
DOI : 10.1007/s00011-007-7068-4

J. D. Lord, D. M. Shows, J. Chen, and R. C. Thirlby, Human Blood and Mucosal Regulatory T Cells Express Activation Markers and Inhibitory Receptors in Inflammatory Bowel Disease, PLOS ONE, vol.22, issue.1, p.136485, 2015.
DOI : 10.1371/journal.pone.0136485.s001

M. F. Neurath, Cytokines in inflammatory bowel disease, Nature Reviews Immunology, vol.3, issue.5, pp.329-342, 2014.
DOI : 10.1038/nri3661

C. M. Nogueira, Titanium dioxide induced inflammation in the small intestine, World Journal of Gastroenterology, vol.18, issue.34, pp.4729-4735, 2012.
DOI : 10.3748/wjg.v18.i34.4729

A. Geremia, P. Biancheri, P. Allan, G. R. Corazza, and A. Di-sabatino, Innate and adaptive immunity in inflammatory bowel disease, Autoimmunity Reviews, vol.13, issue.1, pp.3-10, 2014.
DOI : 10.1016/j.autrev.2013.06.004

I. J. Fuss, Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5, J Immunol, vol.157, pp.1261-1270, 1996.
DOI : 10.1097/00024382-199703001-00528

E. Houdeau, Sex Steroid Regulation of Macrophage Migration Inhibitory Factor in Normal and Inflamed Colon in the Female Rat, Gastroenterology, vol.132, issue.3, pp.982-993, 2007.
DOI : 10.1053/j.gastro.2006.12.028

V. Valatas, M. Vakas, and G. Kolios, The value of experimental models of colitis in predicting efficacy of biological therapies for inflammatory bowel diseases, AJP: Gastrointestinal and Liver Physiology, vol.305, issue.11, pp.763-785, 2013.
DOI : 10.1152/ajpgi.00004.2013

R. B. Sartor, Mechanisms of Disease: pathogenesis of Crohn's disease and ulcerative colitis, Nature Clinical Practice Gastroenterology & Hepatology, vol.124, issue.7, pp.390-407, 2006.
DOI : 10.1038/ncpgasthep0528

P. A. Ruiz, Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut Published Online First, pp.10-1136, 2016.

P. P. Elia, Y. F. Tolentino, C. Bernardazzi, and H. S. De-souza, The Role of Innate Immunity Receptors in the Pathogenesis of Inflammatory Bowel Disease, Mediators of Inflammation, vol.163, issue.1, p.936193, 2015.
DOI : 10.1016/j.immuni.2012.03.012

D. E. Corpet and F. Pierre, How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men, European Journal of Cancer, vol.41, issue.13, pp.1911-1922, 2005.
DOI : 10.1016/j.ejca.2005.06.006

URL : https://hal.archives-ouvertes.fr/hal-00334699

H. Bouzourene, P. Chaubert, W. Seelentag, F. T. Bosman, and E. Saraga, Aberrant crypt foci in patients with neoplastic and nonneoplastic colonic disease, Human Pathology, vol.30, issue.1, pp.66-71, 1999.
DOI : 10.1016/S0046-8177(99)90302-7

I. M. Urrutia-ortega, Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model, Food and Chemical Toxicology, vol.93, pp.20-31, 2016.
DOI : 10.1016/j.fct.2016.04.014

A. I. Thaker, A. Shaker, M. S. Rao, and M. A. Ciorba, Modeling Colitis-Associated Cancer with Azoxymethane (AOM) and Dextran Sulfate Sodium (DSS), Journal of Visualized Experiments, vol.67, issue.67, p.4100, 2012.
DOI : 10.3791/4100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490277

J. C. Anderson, Aberrant crypt foci as predictors of colorectal neoplasia on repeat colonoscopy, Cancer Causes & Control, vol.70, issue.2, pp.355-361, 2012.
DOI : 10.1007/s10552-011-9884-7

D. E. Corpet and F. Pierre, Point: From animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system, Cancer Epidemiol Biomarkers Prev, vol.12, pp.391-400, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00411768

N. R. West, S. Mccuaig, F. Franchini, and F. Powrie, Emerging cytokine networks in colorectal cancer, Nature Reviews Immunology, vol.9, issue.10, pp.615-629, 2015.
DOI : 10.1038/nri3896

Y. Ning, Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models, International Journal of Cancer, vol.7, issue.9, pp.2038-2049, 2011.
DOI : 10.1002/ijc.25562

E. Voronov and R. N. Apte, IL-1 in Colon Inflammation, Colon Carcinogenesis and Invasiveness of Colon Cancer, Cancer Microenvironment, vol.42, issue.Suppl 1, pp.187-200, 2015.
DOI : 10.1007/s12307-015-0177-7

K. Rasmussen, Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico- Chemical Properties, JRC, 2014.

K. A. Jensen, Final protocol for producing suitable manufactured nanomaterial exposure media (Nanogenotox, 2011) Available at: http://www.nanogenotox

S. Menard, Food intolerance at adulthood after perinatal exposure to the endocrine disruptor bisphenol A, The FASEB Journal, vol.28, issue.11, pp.4893-4900, 2014.
DOI : 10.1096/fj.14-255380

V. Forest, M. Clement, F. Pierre, K. Meflah, and J. Menanteau, Butyrate Restores Motile Function and Actin Cytoskeletal Network Integrity in Apc Mutated Mouse Colon Epithelial Cells, Nutrition and Cancer, vol.45, issue.1, pp.84-92, 2003.
DOI : 10.1207/S15327914NC4501_10

R. P. Bird, Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: Preliminary findings, Cancer Letters, vol.37, issue.2, pp.147-151, 1987.
DOI : 10.1016/0304-3835(87)90157-1