Finite-Size Scaling of a First-Order Dynamical Phase Transition: Adaptive Population Dynamics and an Effective Model

Abstract : We analyze large deviations of the time-averaged activity in the one dimensional Fredrickson-Andersen model, both numerically and analytically. The model exhibits a dynamical phase transition, which appears as a singularity in the large deviation function. We analyze the finite-size scaling of this phase transition numerically, by generalizing an existing cloning algorithm to include a multi-canonical feedback control: this significantly improves the computational efficiency. Motivated by these numerical results, we formulate an effective theory for the model in the vicinity of the phase transition, which accounts quantitatively for the observed behavior. We discuss potential applications of the numerical method and the effective theory in a range of more general contexts.
Type de document :
Pré-publication, Document de travail
20 pages, 10 figures. 2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01508206
Contributeur : Vivien Lecomte <>
Soumis le : vendredi 14 avril 2017 - 09:02:10
Dernière modification le : lundi 29 mai 2017 - 14:23:54

Identifiants

  • HAL Id : hal-01508206, version 1
  • ARXIV : 1611.08239

Collections

UPMC | LIPHY | PSL | UGA | USPC | PMA

Citation

Takahiro Nemoto, Robert L. Jack, Vivien Lecomte. Finite-Size Scaling of a First-Order Dynamical Phase Transition: Adaptive Population Dynamics and an Effective Model. 20 pages, 10 figures. 2017. <hal-01508206>

Partager

Métriques

Consultations de la notice

115