Effect of a heat stress episode on feed and water intake in dairy goats bred under temperate climate
Sylvie Giger-Reverdin, Lina Jaber, Joseph-Alexandre Tessier, Christine Duvaux-Ponter

To cite this version:
Sylvie Giger-Reverdin, Lina Jaber, Joseph-Alexandre Tessier, Christine Duvaux-Ponter. Effect of a heat stress episode on feed and water intake in dairy goats bred under temperate climate. 14th International Seminar of the FAO-CIHEAM Sub-Network on Sheep & Goat Nutrition. Feeding and management strategies to improve livestock productivity, welfare and product quality under climate change, Jun 2012, Hammamet, Tunisia. hal-01508161

HAL Id: hal-01508161
https://hal.archives-ouvertes.fr/hal-01508161
Submitted on 13 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effect of a heat stress episode on feed and water intake in dairy goats bred under temperate climate

Giger-Reverdin S., Jaber L., Tessier J., Duvaux-Ponter C.

in

Zaragoza : CIHEAM / INRAT / OEP / IRESA / FAO
Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 107

2013
pages 271-275

Article available on line / Article disponible en ligne à l'adresse :

http://om.ciheam.org/article.php?IDPDF=00007041

To cite this article / Pour citer cet article

Effect of a heat stress episode on feed and water intake in dairy goats bred under temperate climate

S. Giger-Reverdin***, L. Jaber***, J. Tessier*** and C. Duvaux-Ponter***

*INRA, UMR791 Modélisation Systémique Appliquée aux Ruminants, F-75005 Paris (France)
**AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, F-75005 Paris (France)
***Animal and Veterinary Sciences Department, Faculty of Agricultural and Food Sciences, American University of Beirut, Riad el Solh 1107-2020, Beirut (Lebanon)

1E-mail: sylvie.giger-reverdin@agroparistech.fr

Abstract. The effect of a heat stress episode was studied in eight dairy goats bred under temperate climate with ad libitum access to water. The increase in temperature from 19 to 28°C (recorded at 5 pm) modified neither feed intake nor the global shapes of feed and water intake patterns. However, there was a 40% increase in water intake and the latency from the beginning of the afternoon meal to the first water intake decreased from 35 to 26 min. Blood PCO$_2$ decreased because the animals hyperventilated to reduce their body temperature, whereas rectal temperature increased by around 0.6°C. Milk production was not modified, but milk fat content decreased. A significant goat effect was observed for almost all the results. Goats from the Alpine breed drank more water when expressed on a dry matter intake basis than those from the Saanen breed. This could be explained either by their higher level of feed intake which enhanced the post-prandial heat production or by the difference in latent heat dissipated through sweating linked to coat colour.

I – Introduction

In recent years, temperate European regions suffered from unusually hot periods, as for example during the summer of 2003. The aim of this work was to study the effect of a hot period on feed and water intake of high-producing dairy goats bred in the Paris area, because most previous studies concerned ruminants under hot climates in areas where water is scarce. Moreover, drinking behavior is seldom studied in ruminants (Cardot et al., 2007).
II – Material and methods

This study was conducted at the Experimental Farm of the research Unit INRA-AgroParisTech MoSAR (Thiverval-Grignon, France (48°51' N; 1°55' E); 70 m above sea level). Four Alpine and four Saanen goats (160 DIM at the start of the experiment) were housed in individual pens with free access to feed and water. Goats were fed a total mixed ration (TMR) twice daily after milking, in the proportion of two thirds at 4 p.m. and one third at 8 a.m., according to the milking intervals. The ingredients of the diet, on a dry matter basis, were dehydrated lucerne (30%), meadow hay (20%), pressed sugar beet pulp (30%) and compound concentrate feed (20%). Animals were weighed weekly. Individual amounts of feed offered and refusals were weighed daily. Intakes of feed and water were recorded separately using, for each animal, two weighing-scales (Balea, Saint-Mathieu de Tréviers, France): one was fitted under the feeding trough and the other one under a water container linked to the drinking trough. This system continuously recorded every 2 min the weight of the feed in the feeding trough and of the water in the container with a precision of 5 g. Cumulative dry matter intake (DMI) or water drunk (WD) per kilogram of body weight (BW) was calculated for the 22 hours following the afternoon feeding, using the body weight and the dry matter percentage of the diet (ISO, 1983) measured weekly. Animals had no access to food during the two remaining hours of the 24 h period (around afternoon milking). The evolution of the percentages of DMI and water drunk was studied during the nycthemere by 20-min intervals. The percentage of DMI or water drunk during the first three hours after the afternoon feed allowance was also calculated and called P180DMI and P180WD respectively, because it was the period during which the maximum of variability between goats was observed for food and water intakes (Giger-Reverdin et al., 2011). The latency from the beginning of the afternoon meal to the first water intake was also calculated.

Two periods of five consecutive days were compared: the first one was between the 17th and the 22nd of June 2010, and the second one between the 26th of June and the 1st of July 2010. Milk production was measured at each milking and averaged for 5 days. Milk samples were analysed for fat and protein contents at the beginning and end of each period. Blood samples were also analysed twice at each period for gas composition with a blood gas analyzer ABL77 (Radiometer®). Temperature (T in °C) and humidity (H %) were measured in the experimental facility at three times each day: 9 am, 1.30 pm and 5 pm (GMT + 2 h). The temperature-humidity index (THI) was calculated according to the formula of West (1994):

\[\text{THI} = 0.81 \ T + (H/100) \times (T - 14.3) + 46.3. \]

Data were analysed using the MIXED procedure of SAS® for repeated measurements with the following model:

\[Y_{ij} = \mu + P_i + G_j + P_i^*G_j + e_{ij} \]

where \(\mu \) represents the overall mean, \(P_i \) the period effect, \(G_j \) the goat effect. \(P_i^*G_j \) the interaction between the period and the goat effects.

The model included the repetition of the day within the period with the use of a mixed procedure First autoregressive AR(1). For the temperature and humidity data, the only effect tested was that of the period.

III – Results

1. Temperature and humidity in the goat unit

During both periods, the temperature increased during the day while the humidity decreased. However, the modifications were very small in the first period and more marked in the second one. This last period can be considered as a heat episode for the country with a mean temperature of 27.5°C at 5 pm (26.7 to 28.4°C) and a mean humidity of 41% (35 to 50%).
period effect was significant except for the humidity in the morning (Table 1).

Table 1. Temperature and humidity in the goat unit during Periods 1 (control) and 2 (heat stress)

<table>
<thead>
<tr>
<th>Time</th>
<th>Period 1</th>
<th>Period 2</th>
<th>SEM</th>
<th>Period effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 am</td>
<td>17.0</td>
<td>21.3</td>
<td>0.52</td>
<td>0.001</td>
</tr>
<tr>
<td>1.30 pm</td>
<td>18.0</td>
<td>25.4</td>
<td>0.56</td>
<td><0.0001</td>
</tr>
<tr>
<td>5 pm</td>
<td>19.0</td>
<td>27.5</td>
<td>0.41</td>
<td><0.0001</td>
</tr>
<tr>
<td>Humidity (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 am</td>
<td>66.4</td>
<td>64.8</td>
<td>1.32</td>
<td>NS</td>
</tr>
<tr>
<td>1.30 pm</td>
<td>60.0</td>
<td>45.4</td>
<td>2.95</td>
<td>0.01</td>
</tr>
<tr>
<td>5 pm</td>
<td>57.4</td>
<td>40.6</td>
<td>2.83</td>
<td>0.01</td>
</tr>
</tbody>
</table>

NS: not significant.

2. Feed and water intake

Dry matter intake (DMI) was not modified by temperature, but water intake increased by 40% when the temperature increased (Table 2). The percentage of dry matter intake during the first three hours after the afternoon feeding did not vary, but there was a decrease in the percentage of water drunk. All the goats started to eat before drinking. Moreover, the latency to the first water intake after feeding allowance decreased with the increase in temperature. Feeding behavior expressed as % DMI per 20min intervals was not modified by heat stress (Fig. 1).

Table 2. Feed and water intakes during Periods 1 (control) and 2 (heat stress)

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 2</th>
<th>SEM</th>
<th>Effect</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Period*Goat</td>
</tr>
<tr>
<td>DMI¹</td>
<td>47.1</td>
<td>47.2</td>
<td>0.36</td>
<td>NS</td>
<td><0.0001</td>
</tr>
<tr>
<td>Water drunk²</td>
<td>107</td>
<td>143</td>
<td>2.3</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>P180DMI³</td>
<td>0.38</td>
<td>0.37</td>
<td>0.009</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>P180WD³</td>
<td>0.41</td>
<td>0.35</td>
<td>0.012</td>
<td>0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>Latency before the first water intake⁴</td>
<td>35</td>
<td>26</td>
<td>1.5</td>
<td>0.001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

¹in g per kg of body weight; ²in ml per kg of body weight; ³Proportion of the daily intake eaten (DMI) or drunk (WD) during the first 180 min after the afternoon feeding; ⁴in min after the afternoon feeding; NS: not significant.

Fig. 1. Evolution of the quantities of water drunk and feed intake during the nycthemere.
3. Blood parameters

Blood PCO$_2$ decreased with the increase in temperature, whereas rectal temperature increased:

Table 3. Blood parameters and rectal temperature during Periods 1 (control) and 2 (heat stress)

<table>
<thead>
<tr>
<th>Effect</th>
<th>Period 1</th>
<th>Period 2</th>
<th>SEM</th>
<th>Effect Period</th>
<th>Effect Goat</th>
<th>Interaction Period*Goat</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.39</td>
<td>7.40</td>
<td>0.004</td>
<td>0.04</td>
<td>0.001</td>
<td>NS</td>
</tr>
<tr>
<td>PCO$_2$ (mm Hg)</td>
<td>44.4</td>
<td>40.6</td>
<td>0.69</td>
<td>0.01</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>PO$_2$ (mm Hg)</td>
<td>35.6</td>
<td>36.6</td>
<td>1.12</td>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
</tr>
<tr>
<td>Bicarbonates (mmol/L)</td>
<td>25.6</td>
<td>24.7</td>
<td>0.37</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Rectal temperature °C</td>
<td>38.5</td>
<td>39.1</td>
<td>0.07</td>
<td><0.0001</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS: not significant

4. Milk production

Raw milk yield was not modified by heat stress, but the fat content and the fat yield decreased, (Table 4). Protein content and protein yield were not affected by the increase in temperature.

Table 4. Milk yield and composition during Periods 1 (control) and 2 (heat stress)

<table>
<thead>
<tr>
<th>Effect</th>
<th>Period 1</th>
<th>Period 2</th>
<th>SEM</th>
<th>Effect Period</th>
<th>Effect Goat</th>
<th>Interaction Period*Goat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw milk yield1</td>
<td>3.55</td>
<td>3.61</td>
<td>0.031</td>
<td>NS</td>
<td><0.0001</td>
<td>0.03</td>
</tr>
<tr>
<td>Fat content2</td>
<td>33.3</td>
<td>30.2</td>
<td>0.31</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.01</td>
</tr>
<tr>
<td>Protein content2</td>
<td>31.9</td>
<td>31.3</td>
<td>0.09</td>
<td>0.01</td>
<td><0.0001</td>
<td>NS</td>
</tr>
<tr>
<td>Fat yield3</td>
<td>116</td>
<td>108</td>
<td>1.7</td>
<td>0.01</td>
<td>0.001</td>
<td>NS</td>
</tr>
<tr>
<td>Protein yield3</td>
<td>113</td>
<td>113</td>
<td>1.0</td>
<td>NS</td>
<td><0.0001</td>
<td>0.02</td>
</tr>
</tbody>
</table>

1in kg/day (mean of 5 days); 2in g/kg of milk; 3in g/day; NS: not significant.

5. Breed and goat effects

There was a breed effect on live-weight (Alpine: 58.3 kg vs Saanen: 64.2 kg; SEM = 0.52; P < 0.001) and intake: Alpine goats ate more dry matter per kg of body weight than Saanen (49.3 vs 45.9 g DMI/kg BW; SEM = 1.15; P = 0.02), and drank more water when expressed on a dry matter intake basis: 2.82 vs 2.46 L/kg DMI; SEM = 0.073; P = 0.01). The increase in this latter ratio with the temperature was more pronounced for the Alpine goats (Period 1: 2.38; Period 2: 3.26) than for the Saanen goats (Period 1: 2.15; Period 2: 2.76).

IV – Discussion

In this experiment, heat stress can be considered as a very moderate one, because the THI index was slightly above 72 during the afternoon in Period 2 which is the threshold level above which there is heat stress (West, 1994). It did not modify eating behavior on the contrary to other situations where goats were bred in harsh conditions (Silanikove, 2000). Nevertheless, total water intake was increased and the latency between the afternoon feeding and the first water intake was decreased, meaning that the animals felt thirsty earlier after TMR allowance...
(Olsson et al., 1997). The respiratory alkalosis (decrease in PCO₂) observed during Period 2 could be explained by the hyperventilation of the animals during the heat stress as already observed in cows (Kadzere et al., 2002) or in goats (Augustinsson et al., 1986). When the animals are panting, which is a way to decrease their inner temperature, they release CO₂. Although moderately heat-stressed, the experimental goats showed increased rectal temperature as previously observed in other animals exposed to hot periods (Augustinsson et al., 1986; Kadzere et al., 2002). The decrease in milk fat content has already been observed in dairy cows under a mild heat stress (Bandaranayaka and Holmes, 1976). The difference between breeds in terms of the water/DMI ratio might be explained by the higher level of intake of Alpine compared to Saanen goats and probably by a need to dissipate more heat from rumen fermentation (West, 1994; Kadzere et al., 2002). It could also be due to the difference in coat colours: in Holstein cows, the temperature of the skin is higher in black areas than in white ones, leading to an increase in sweating rate in the black areas compared to the white ones (Da Silva and Maia, 2011). This could explain why Alpine goats with their dark-brown coat drank more water/kg DMI than the white coated Saanen goats.

V – Conclusion

High-producing European dairy goats seemed to cope well with short periods of moderate heat stress when water was available ad libitum. This study, which included feeding and drinking patterns, needs to be completed with a larger scale experiment and with measurements of the water fluxes and water losses via urine, faeces and milk. Long term adaptation and effects on production warrant future research in view of rampant global warming.

References

