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ISOTOPES OF OCTONION ALGEBRAS, G2-TORSORS AND

TRIALITY

SEIDON ALSAODY AND PHILIPPE GILLE

Abstract. Octonion algebras over rings are, in contrast to those over fields,
not determined by their norm forms. Octonion algebras whose norm is iso-
metric to the norm q of a given algebra C are twisted forms of C by means of
the Aut(C)–torsor O(C) → O(q)/Aut(C).

We show that, over any commutative unital ring, these twisted forms are
precisely the isotopes Ca,b of C, with multiplication given by x∗y = (xa)(by),

for unit norm octonions a, b ∈ C. The link is provided by the triality phenome-
non, which we study from new and classical perspectives. We then study these
twisted forms using the interplay, thus obtained, between torsor geometry and
isotope computations, thus obtaining new results on octonion algebras over
e.g. rings of (Laurent) polynomials.

Keywords: Octonion algebras, isotopes, triality, homogeneous spaces, torsors.

MSC: 17D05, 14L30, 20G10.

1. Introduction

The aim of this paper is to give a concrete construction, over unital commutative
rings, of all pairwise non-isomorphic octonion algebras having isometric norm forms.
To this end we develop the framework of triality over rings. We begin by outlining
our philosophy and intuition.

Let C be an octonion algebra over a unital, commutative ring R. In particular
C is equipped with a multiplicative, regular quadratic form q. Then every auto-
morphism of C is an isometry with respect to q, but the converse is far from being
true. More precisely, the automorphism group of C is a 14-dimensional exceptional
group scheme of type G2, while the orthogonal group of C has dimension 28. De-
spite this, if R is a field or, more generally, a local ring, then every octonion algebra
whose quadratic form is isometric to q is isomorphic, as an algebra, to C. This was
proved false by the second author in [Gi2] over more general rings, using torsors
and homotopy theory to study the homogeneous space SO(q)/Aut(C).

This space measures, in a sense, the gap between the (special) orthogonal group
of q and the automorphism group. Our initial observation in the current work is
that any element of the spin group of q induces an isomorphism from C to a certain
isotope Ca,b with a, b ∈ SC(R), the 7-dimensional unit sphere of C, that is the
sphere for the octonionic norm on C. The algebra Ca,b is simply the module C
with multiplication x ∗ y = (xa)(by). As a and b run through SC(R), we exhaust
the special orthogonal group modulo the automorphism group. As the match in
dimensions (28 − 14 = 7 + 7) roughly indicates, these isotopes essentially account
for the full gap between isometries and automorphisms.

The key to this observation is the phenomenon of triality. Well known over fields,
it was extended to rings in [KPS]. We give another formulation of this phenomenon
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over rings, in a way more streamlined for our arguments. With this tool we are
able to show that the isotopes above arise naturally as twists of C by torsors of
the type considered in [Gi2]. Moreover we show that these isotopes account for all
octonion algebras with isometric norms.

The paper is organized as follows. In Section 2, we introduce the isotopes of a
given octonion R–algebra and recall background information on octonions and their
isotopes. In Section 3, we prove using scheme theoretic arguments that the spin
group of an octonion algebra over any unital commutative ring can be described
in terms of triality and so called related triples. This enables us to give a precise
description of the Aut(C)–torsor Π : Spin(q) → Spin(q)/Aut(C). For the sake of
completeness we also give a concrete construction of the spin-triality correspondence
by extending arguments valid over fields in a slightly different way than was done
in [KPS].

Our main results are found in Sections 4 and 6. One the one hand, we show
that the Π–twists of C correspond canonically to the isotopes Ca,b (Theorem 4.6).
On the other hand, in Theorem 6.6, we show that all octonion algebras with norm
isometric to that of C are obtained in this way. This is done by showing that the
torsor Π gives the same objects as theO(q) → O(q)/Aut(C) (i.e. the corresponding
cohomology kernels coincide). In the same theorem we obtain similar coincidences
for a number of other torsors. We then relate our results to that of so-called
compositions of quadratic forms.

Finally in Section 7 we discuss interesting special cases, such as rings over which
all isotopes are isomorphic, and isotopes which are isomorphic over all rings.

We fix, once and for all, a unital commutative ring R. By an R–ring we mean a
unital, commutative and associative R–algebra.

1.1. Acknowledgements. We are grateful to E. Neher and K. Zainoulline for
fruitful discussions. To E. Neher we are also indebted for his thorough reading of
an earlier version and his remarks that helped improve the paper. We would also
like to thank A. Asok, M. Hoyois and M. Wendt for communicating their preprint
[AHW] to us.

2. Background

2.1. Octonion algebras and isotopy. Isotopy of algebras is a very general no-
tion, which offers a way of deforming the multiplicative structure of an algebra.
The notion goes back to Albert [Al]. We will outline it here in order to derive,
from its generality, the proper context needed for our purposes in a self contained
manner. The contents of this subsection can otherwise be found in [McC].

An algebra A = (A, ∗) = (A, ∗A) over R is an R–module A endowed with an R–
bilinear multiplication ∗. In this generality, neither associativity nor commutativity
nor the existence of a unity is required. For each a ∈ A we write La or L∗

a for the
linear map x 7→ a ∗ x on A, and Ra or R∗

a for the linear map x 7→ x ∗ a. If A is
alternative, then LaRa = RaLa for any a ∈ A, and we denote this map by Ba.

An octonion algebra is an R-algebra whose underlying module is projective of
constant rank 8, and which is endowed with a regular multiplicative quadratic
form. (See also [LPR, §4] for further discussion.) Equivalently, it is a composition
algebra of constant rank 8. (An algebra A is a composition algebra if the underlying
module is finitely generated, faithfully projective, and if A is endowed with a non-
singular multiplicative quadratic form q = qA, referred to as the norm of A. We
moreover always require that composition algebras be unital.) It is known that
locally, composition algebras have rank 1, 2, 4 or 8.
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Two arbitrary R–algebras (A, ∗A) and (B, ∗B) said to be isotopic or isotopes of
one another if there exist invertible linear maps fi : A → B, i = 1, 2, 3, such that

f1(x ∗A y) = f2(x) ∗B f3(y)

for all x, y ∈ A. The triple (f1, f2, f3) is then called an isotopy from A to B. It
is an easy known fact that isotopy is an equivalence relation. Then A and B are
isomorphic as R–modules, but not necessarily as R–algebras. However, the map
f1 : A → B is an isomorphism of algebras between A and (B, ∗′B), where the new
multiplication on B is defined by

x ∗′B y = f2f
−1
1 (x) ∗B f3f

−1
1 (y).

An algebra (B, ∗′) is said to be a principal isotope of (B, ∗) if there exist invertible
linear maps g, h : B → B such that x ∗′ y = g(x) ∗ h(y) holds for all x, y ∈ B. Then
we denote (B, ∗′) by Bg,h and note that B and Bg,h are isotopic. Conversely, the
previous paragraph implies that two algebras A and B is isotopic if and only if
A is isomorphic to a principal isotope of B. Thus restricting to principal isotopes
induces no loss of generality

In this paper, we are mainly concerned with unital algebras. Let (A, ∗) be an
R–algebra and let g, h be invertible maps on A. Then Ag,h is unital precisely when
there exists e ∈ A such that

g(x) ∗ h(e) = g(e) ∗ h(x) = x

for all x ∈ A. This is equivalent to the condition

g−1 = R∗
h(e) and h−1 = L∗

g(e).

If A is moreover a unital alternative algebra, then by [McC, Proposition 2] the
above implies that g(e) and h(e) are invertible, and denoting the inverses by b and
a, respectively, the above condition becomes

g = R∗
a and h = L∗

b .

Conversely, for any a, b ∈ A∗, the algebra ARa,Lb
is unital with unity (ab)−1. In

fact [McC] shows the following result.

Proposition 2.1. Let C be a unital alternative algebra over R and let C′ be isotopic
to C. Then C′ is unital if and only if C′ ≃ CRa,Lb

for some a, b ∈ C∗.

Here C∗ denotes the set of invertible elements of C. If C is a composition algebra,
then we have the equality C∗ = {x ∈ C|qC(x) = 0}.

To lighten notation, we will henceforth write Aa,b instead of ARa,Lb
.

Remark 2.2. This construction is stable under base change, i.e. if φ : R → S is
a map of R–rings and a, b ∈ SC(R), then (Ca,b)S = (CS)

φ(a),φ(b) follows from the

bilinearity of the multiplication. Therefore, we may write Ca,b
S without ambiguity.

Remark 2.3. If C is a composition algebra with quadratic form q, then C′ = Ca,b

is a composition algebra as well, with norm q′ = λq, where λ = q(a ∗C b). Since
q ◦ La∗Cb = λq = q′, it follows that (C, qC) and (C′, qC′) are isometric quadratic
spaces. Note that this isometry maps 1C to 1C′.

2.2. Relations between isotopes. As the previous subsection shows, if C is an
octonion algebra, then any unital algebra isotopic to C is again an octonion algebra
and is isomorphic to Ca,b for some a, b ∈ C∗. We will simplify the presentation
further by exhibiting some basic isomorphisms between certain isotopes. This is
the content of the following result.

Proposition 2.4. Let C be a unital alternative R–algebra and let a, b ∈ C∗.
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(1) In the commutative diagram

Ca,b

C1,aba

La

::✈✈✈✈✈✈✈✈✈

R
b−1La

//Cbab,1

Rb

dd❍❍❍❍❍❍❍❍❍

each arrow is an isomorphism of algebras.
(2) In the commutative diagram

Ca,a−1

Ra

$$❏
❏❏

❏❏
❏❏

❏❏

C1,a

La

;;✈✈✈✈✈✈✈✈✈

Ba

//Ca−1,1

each arrow is an isomorphism of algebras.

(3) The maps Ba : Ca,b → C1,ba−1

and Bb : C
a,b → Cb−1a,1 are isomorphisms

of algebras. In particular Ca,a ≃ C.

(4) The maps Bba−1Ba : Ca,b → Cab−1,1 and Bb−1aBb : Ca,b → C1,a−1b are
isomorphisms of algebras.

Proof. All map are clearly invertible and (1) was established by McCrimmon [McC,
prop. 6]. Assertion (2) is the special case b = a−1 of (1). For, (3) We check the
first fact, the second being similar. Given x, y ∈ C, we have

Ba(x ∗a,b y) = Ba((xa)(by))

= (a(xa)) ((by)a) [middle Moufang law]

= (a(xa))
(
((ba−1)a)y)a

)

= (a(xa))
(
(ba−1)(a(ya))

)
[one-sided Moufang law]

= Ba(x) ∗1,ba−1 Ba(y).

Finally, (4) follows by combining (2) and (3).
�

Remark 2.5. Knus–Parimala–Sridharan introduced another kind of isotope [KPS,
Rem. 4.7]. For an R–alternative algebra C and an element u ∈ C∗, they defined
the new multiplication x⋆u y = (x(yu))u−1 on C. We leave it to the reader to check

that the map Ru : C → C induces an isomorphism of R–algebras Ru : (C, ⋆u)
∼
−→

(C, ∗u−1,1) = Cu−1,1 ≃ C1,u.

Remark 2.6. The above proposition in fact implies that if C is a composition
algebra, then any composition algebra C′ isotopic to C is isomorphic to e.g. C1,a

with q(a) = 1. Indeed, combining items (2) and (3) of the proposition, we have

C′ ≃ Cc−1,c ≃ C1,c2 .

As multiplication by q(c) is an isomorphism C1,c2 → C1,q(c)−1c2 , the claim follows.

These relations will be explained partly by triality in Section 5.2.

2.3. Direct summands of octonion algebras. Let C be an octonion algebra
over R. As for Azumaya algebras, we recall the following fact, which is of course
obvious if 2 belongs to R∗. The trace map tr : C → R is defined by tr(x) = bqC (x, 1).

Lemma 2.7. The trace map tr : C → R admits a section.

Proof. By means of partition of unity, we can assume that R is local with maximal
ideal M. We know that tr(c) = bq(1, c) for each c ∈ C. Since bq is a non-degenerate
bilinear form, there exists cK ∈ K = R/M such that tr(cK) 6= 0. Let c be a lift of
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cK in CR/M. Then tr(c) ∈ R∗ so that tr : C → R is surjective. Thus tr : C → R
admits a section. �

Let us recall also the next fact.

Lemma 2.8. We have

R1 =
{
x ∈ C | xy = yx ∀y ∈ C

}
=

{
x ∈ C | y(xz) = (yx)z ∀y, z ∈ C

}
.

Proof. We prove it for the right hand side (denoted by M) and the middle term
can be done analogously. Let (ci)i=1,...,n be a generating family of the R–module
C. By bilinearity of the product, we have

M =
{
x ∈ C | ci(xcj) = (cix)cj ∀i, j = 1, . . . , n

}
.

By using the classical trick to writeR as the limit of its finitely generated Z-algebras,
we may assume that R is noetherian, so that M is finitely presented.

Let M be a maximal ideal of R. By the corresponding result over fields [SV,
Proposition 1.9.2], we have R/M = M ⊗R (R/M) ≃ M/MM . Nakayama’s lemma
shows that RM = M ⊗R RM. Since it holds for all maximal ideals, we conclude
that R = M as desired. �

For the next lemma we recall the identity bq(x, ay) = bq(ax, y), which implies
that

{y ∈ C | bq(ay, x) = 0} = (ax)⊥

for all a, x ∈ C. Here ⊥ denotes the orthogonal complement with respect to bq.

Lemma 2.9. Let x ∈ C be an invertible element and let a ∈ C be an element of
trace 1.1 Then

(1) C = Rx⊕ (ax)⊥, and
(2) x⊥ is a direct summand of C which is locally free of rank 7. Furthermore

the restriction qx of q to x⊥ is a non-singular quadratic form.

Proof. (1) For each z ∈ C, the element

z − q(x)−1bq(az, x)x

is orthogonal to ax, whence C = Rx + (ax)⊥. The sum is moreover direct since
bq(x, ax) = q(x) ∈ R∗, so that λx ∈ (ax)⊥ only holds with λ = 0.

(2) Again we can assume that R is local with maximal ideal M. Since bq is non-
degenerate, there exists yK ∈ K = CR/M such that bq(xK , yK) 6= 0 ∈ K. We lift

yK to an element y ∈ C and we have bq(x, y) ∈ R∗. It follows that C = x⊥ ⊕Ry.
To show that qx is a non-singular quadratic form it suffices to consider the case

when R = k is an algebraically closed field. We consider the radical

rad(qx) =
{
z ∈ x⊥ | q(z) = bq(z, x

⊥) = 0
}
.

Since bq is regular, (x⊥)⊥ is of dimension 1, whence it is equal to kx. But q(x) 6= 0,
whence rad(qx) = {0} in any characteristic, and qx is non-singular. �

Remark 2.10. If 2 ∈ R∗, then a = 1
2 works, and C = Rx⊕ (12x)

⊥ = Rx⊕ x⊥.

We denote by P(C∨) the projective space attached to C∨ = HomR(C,R) using
EGA’s conventions. For each R–ring S, the set P(C∨)(S) is that of invertible
S–submodules of CS which are locally direct summands of CS . Each point a of
SC(S) defines the free S–submodule Sa of CS . Since a is an invertible octonion,
Sa is a direct summand of C by Lemma 2.9. We have thus defined an R–map
u : SC → P(C∨). It is µ2–invariant, thus it induces an R–map u : SC → P(C∨).2

1Such an element exists by Lemma 2.7.
2The quotient SC is defined and discussed in the appendix.
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Lemma 2.11. The R–map u : SC → P(C∨) is an open R–immersion. The pro-
jective R–quadric QC = {qC = 0} ⊂ P(C∨) is a closed complement of the image of
u.

Proof. Let us first show that u is a monomorphism. We are given an R–ring S and
x, y ∈ SC(S) such that u(x) = u(y) in P(C∨)(S). Let S′ be a flat R–cover of S such
that xS′ (resp. y

S′
) lifts to an S′–point x′ ∈ SC(S

′) (resp. y′ ∈ SC(S
′). We then

have S′x′ = S′y′. Then x′ = λy′ for λ ∈ (S′)∗. By taking the norms we get 1 = λ2,
i.e. λ ∈ µ2(S

′). It follows that xS′ = y
S′

∈ SC(S
′) and thus x = y ∈ SC(S).

The R–morphism u is thus a monomorphism from a flat R–scheme to a smooth
R–scheme and such that fibres over S are of the same dimension 7. According to
[EGAIV, 4.18.10.5], u is an open immersion.

For the last fact it is enough to check that QC(k) ⊔ SC(k) = P(C∨)(k) for each
R–field k which is algebraically closed. In this case SC(k) = SC(k)/µ2(k) and it
is clear that ∅ = QC(k) ∩ SC(k). Further, a point of P(C∨)(k) is a line L = kx in
C ⊗R k. If qC(x) = 0, it follows that [kx] ∈ QC(k). If qC(x) 6= 0, we may write
qC(x) = a−2 with a ∈ k∗, and then L = [k(ax)] ∈ SC(k). �

2.4. A result of Knus–Parimala–Sridharan. As in Remark 2.3, given a com-
position algebra C′ whose norm is isometric to λqC , we can always find an isometry
(C, qC) ≃ (C′, qC′) mapping 1C to 1C′ . In the following special case, Knus, Pari-
mala and Sridharan noticed that another kind of isotopes describes such objects.

Proposition 2.12. [KPS, Remark 4.7] Assume that R is a connected ring and that
Pic(R) = 0. If C, C′ are octonion R–algebras such that there exists an isometry

f : (C, qC)
∼
−→ (C′, qC′) with f(1C) = 1C′ , then there exists u ∈ C∗ such that

f(x) ∗C′ f(y) = f
(
(x(yu))u−1

)
.

According to Remark 2.5, this algebra C′ is isomorphic to Cu−1,u ≃ C1,u, hence
is an isotope. Their work, as ours, involves the triality phenomenon, and this
statement is in some sense the starting point of the present paper. However, as
will be seen below, our approach is independent of theirs, and our point of view
via torsors is of a different flavour. Moreover, our take on triality differs as well. A
consequence is the avoidance of discriminant modules, which lightens the burden
of necessary technicalities and enables us to formulate all results over general rings
and without reference to the Picard group.

3. Triality

3.1. Framework and properties. Let henceforth C always denote an octonion
R–algebra. In particular, C is endowed with a regular, multiplicative quadratic
form q = qC and a natural involution κ : x 7→ x. We denote by Aut(C) its
automorphism group scheme, which is a semisimple R–group scheme of type G2 and
is a closed R–subgroup scheme of the linear R–group scheme GL(C). Let further
SO(qC) be the special orthogonal group scheme [CF, §4.3] associated to qC . This
is a semisimple R–group scheme of type D4, and the embedding Aut(C) → GL(C)
induces a closed immersion Aut(C) → SO(qC).

We denote by RT(C) the closed R–subscheme of SO(qC)
3 such that for each

R–algebra S, we have

RT(C)(S) =
{
(t1, t2, t3) ∈ SO(q)(S)3 | t1T (xy) = t2T (x) t3T (y)

for any S–ring T and any x, y ∈ CT

}
.
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Remark 3.1. Since the multiplication in CT is T –bilinear, it follows that

RT(C)(S) =
{
(t1, t2, t3) ∈ SO(q)(S)3 | ∀x, y ∈ CS : t1(xy) = t2(x) t3(y)

}
.

Moreover, if (t1, t2, t3) ∈ O(q)(S)3 satisfies the above identity, then one can show
that (t1, t2, t3) ∈ SO(q)(S)3 and thus (t1, t2, t3) ∈ RT(q)(S). We will use and show
this later on.

An element ofRT(C)(S) for an R–ring S is called a related triple. In fact, RT(C)
is a closed R–subgroup scheme of SO(qC)

3 (i.e. related triples can be multiplied
component-wise).

Remark 3.2. The definition of related triples here differs from that of [SV] and
[KPS], where instead the condition is

t1(xy) = t2(x)t3(y).

(I.e. (t1, t2, t3) is an isotopy from CS to itself, in the literature sometimes called an
autotopy.) As defined here, a triple is related if and only if it satisfies

t1(x • y) = t2(x) • t3(y),

i.e. it is an isotopy with respect to the para-octonion multiplication • on C, defined
by x•y = x y. The (non-unital) composition algebra (C, •) is an instance of what is
over fields known as a symmetric composition algebra. This is the approach taken
in [KMRT]. Note that if (t1, t2, t3) is related in this sense, then (t1, κt2κ, κt3κ)
is related in the sense of [SV] and [KPS]. It follows that the two definitions give
isomorphic groups.

The following lemma, extended from [E], shows that the subgroup A3 of S3 acts
on RT(C) by permuting the ti’s. The fact that the action of A3 takes this simple
form is the main advantage of using this version of the definition.

Lemma 3.3. Let S be an R–ring. For (t1, t2, t3) ∈ SO(qC)(S)
3, the following are

equivalent.

(1) (t1, t2, t3) ∈ RT(C)(S).
(2) (t2, t3, t1) ∈ RT(C)(S).
(3) (t3, t1, t2) ∈ RT(C)(S).
(4) The trilinear form ∆q defined on CS by ∆q(w, x, y) = bq(w, x y) satisfies

∆q(t1(w), t2(x), t3(y)) = ∆q(w, x, y)

for all w, x, y ∈ CS .

Proof. It is readily verified that ∆q(w, x, y) = ∆q(x, y, w) = ∆q(y, w, x). Thus ∆q

is invariant under cyclic permutations, and it suffices to prove the equivalence of
the first and last statement. Since t1 is orthogonal, the last statement is equivalent
to

∀w, x, y ∈ C : bq(t1(w), t2(x) t3(y)) = bq(t1(w), t1(x y)),

which by regularity of q is equivalent to the first statement. �

Example 3.4. If c ∈ C satisfies q(c) = 1, then the middle Moufang identity
c(xy)c = (cx)(yc) implies that (Bc, Rc, Lc) ∈ RT(C)(R). By Lemma 3.3, the same
holds for (Rc, Lc, Bc) and (Lc, Bc, Rc). These, in a sense, basic triples will be useful
in the sequel.

The following lemma provides other examples of related triples.

Lemma 3.5. Let S be an R–ring and t ∈ SO(qC)(S). Then (t, t, t) ∈ RT(C)(S)
if and only if t ∈ Aut(C)(S).
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Proof. If t ∈ Aut(C)(S), then t commutes with the involution of CS and satisfies
t(xy) = t(x)t(y) for all x, y ∈ CS . From this it follows that (t, t, t) ∈ RT(C)(S).

Conversely, assume that (t, t, t) ∈ RT(C)(S). To show that t ∈ Aut(C)(S) it
suffices to show that t commutes with the involution. By definition of a related
triple we have

t(x) = t(x) t(1) = t(1) t(x)

for all x ∈ CS . Surjectivity of t implies that t(1) belongs to the centre S1 of CS ,

whereby t(1) = α1 = t(1) for some α ∈ S. Since t is an isometry we get α2 = 1.
But then

α = t(1) = t(1)t(1) = α2 = 1.

Thus t fixes 1 and by the above we get t(x) = t(x) for all x ∈ CS , as required. �

Thus Aut(C) embeds in RT(C) by means of the diagonal mapping, and we
denote by i : Aut(C) → RT(C) that closed embedding, which we will henceforth
view as an inclusion. We also define fi : RT(C) → SO(C) as the projection on the
ith component, for i = 1, 2, 3.

Proposition 3.6. Aut(C) ≃ RT(C)A3 ≃ RT(C)S3 .

Proof. By the Lemma 3.5, the embedding i maps Aut(C) into RT(C)A3 , and
the projection f1 maps RT(C)A3 into Aut(C) and satisfies f1 ◦ i = IdAut(C) and
i◦f1 = IdRT(C)A3 . The first isomorphism follows as both these maps are functorial,
and the second holds as all elements of S3 act trivially on the image of i. �

The centre of SO(qC)
3 is µ3

2 and its intersection with RT(C) is

µ := ker(µ3
2

mult
−−−→ µ2).

As the following proposition shows, related triples are determined, modulo µ2, by
any of their components.

Lemma 3.7. (1) Let (t1, t2, t3) ∈ RT(C)(R) with t1 = Id. Then t2 = t3 = ηId for
η ∈ µ2(R).

(2) The kernel of f1 is isomorphic to µ2 embedded in µ by η 7→ (1, η, η) and similarly
for f2 and f3.

Proof. (1) The proof is inspired by [E]. Let (t1, t2, t3) ∈ RT(R)(S) with t1 = Id.
Then

t2(x) t3(y) = x y,

or equivalently

t3(y)t2(x) = yx

for any x, y ∈ CS , whereby

zt2(x) = t−1
3 (z)x

for any x, z ∈ CS . Setting z = 1 gives t2 = Lc with c = t−1
3 (1), and setting x = 1

gives t−1
3 = Rd with d = t2(1). Thus in general

z(cx) = (zd)x

for any x, z ∈ C. In particular with x = z = 1 we conclude that d = c, and then
z(cx) = (zc)x for all x, z ∈ C. But such an associativity relation only holds if c = η
for some η ∈ R1 (Lemma 2.8). Thus t2 = t−1

3 = ηId. Since e.g. t2 is an isometry,
this gives

1 = q(t2(1)) = q(η1) = η2,

whence the claim.
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(2) The first statement shows that the kernel is contained in µ2. Conversely, if
t2 = ηId and t3 = ηId with η2 = 1, then for all x ∈ C,

t1(x) = t1(x1) = t2(x) t3(1) = η2x1 = x,

whereby the proof is complete. �

Given this, we observe the following addition to the above discussion on auto-
morphisms.

Proposition 3.8. A triple (t1, t2, t3) ∈ RT(C)(S) satisfies t3(1) = t2(1) ∈ µ2(S)1
if and only if t1 ∈ Aut(CS). Moreover, a triple (t1, t2, t3) ∈ RT(C)(S) satisfies
t3(1) = t2(1) = 1 if and only if (t1, t2, t3) ∈ iS(Aut(C)(S)).

Proof. Assume that t1 is an automorphism. Then by Lemma 3.5, (t1, t1, t1) is a
related triple, and by Lemma 3.7 we have t2 = t3 = ηt1 for some η ∈ µ2(S), whence
t3(1) = t2(1) ∈ µ2(S)1. Conversely assume that t3(1) = t2(1) = η1 with η ∈ µ2(S).
Then for all x ∈ CS ,

t1(x) = t1(x1) = t2(x) t3(1) = ηt2(x),

whence t1 = ηκt2κ. Similarly one concludes that t1 = ηκt3κ. Thus for all x, y ∈ CS ,

t1(x)t1(y) = η2κt2κ(x)κt3κ(y) = t2(x) t3(y) = t1(xy),

Thus t1 is an automorphism and t2 = t3 = ηt1. This proves the first statement and,
with η = 1, the only if-direction of the second. The other direction is clear. �

Theorem 3.9. The R–group scheme RT(C) is semisimple simply connected of
type D4. Moreover, for any i = 1, 2, 3, the mapping fi : RT(C) → SO(qC) is the
universal cover of SO(qC).

The term universal cover is understood in the sense of SGA3; see [Co, 6.5.2].

Proof. We start with the first statement. Let C0 be the Zorn octonion algebra over
Z. We know that there exists a flat cover (that is a finitely presented faithfully
flat R-ring S) such that C ⊗R S ≃ C0 ⊗Z S [LPR, Cor. 4.11]. It follows that
RT(C)×R S ≃ RT(C0)×Z S and the statement boils down to the case of C0 over
Z.

According to [SV, Prop. 3.6.3] and Remark 3.2 above, RT(C0) ×Z Q and
RT(C0)×Z Fp (p prime) are semisimple simply connected algebraic groups of type
D4, in particular smooth and connected. Lemma B.1 then shows that RT(C0) is
smooth over Z. The affine smooth Z–group scheme RT(C0) thus has geometric
fibres which are semisimple simply connected, whence by definition, RT(C0) is a
semisimple simply connected Z–group scheme.

For the second statement, it is enough to deal with f1. According to Lemma
3.7, µ2 = ker(f1) and is a central subgroup of RT(C). We denote by RT(C) =
RT(C)/µ2 the quotient [SGA3, XXII.4.3.1]; it is a semisimple R–group scheme as
well. Then the induced map f1 : RT(C) → SO(qC) has trivial kernel. For each

point s ∈ Spec(R), f1s : RT(C)s → SO(qC)s is a closed immersion between smooth

connected algebraic κ(s)–groups of the same relative dimension 28. Hence f1s is

an isomorphism. Since RT(C) is flat over R, the fibre-wise isomorphism criterion
[EGAIV, 4.17.9.5] enables us to conclude that f1 is an isomorphism. Then f1 is a

central isogeny and since RT(C) is semisimple simply connected, it follows that it
is the simply connected cover of the semisimple R–group scheme SO(qC). �

On the other hand, we have the universal R–cover χ : Spin(qC) → SO(qC) [CF,

8.4.0.63]. It follows that there is a unique R–isomorphism F : Spin(qC)
∼
−→ RT(C)

such that f1 ◦ F = χ. A construction of this isomorphism will be given in the next
subsection.
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3.2. Explicit construction. For coherence, and in order to relate our work to
its predecessors, we will give a constructive proof that the spin group of (C, q) is
isomorphic to the group of related triples on C. A closely related version can be
found in [KPS]. We closely follow the approach of [KMRT] (who work over fields
with 2 6= 0), and [E] (who considers fields of any characteristic). It is independent
of the proof given in the previous section. (Conversely, the remainder of the paper
is independent of this section.)

To this end, we write Cl(C, q) for the Clifford algebra of the quadratic space
(C, q), and Cl0(C, q) for its even part. Multiplication in Cl(C, q) will always be
denoted by ·. Consider the R–group scheme Spin(q) defined, for each R–ring S,
by3

Spin(q)(S) = {u ∈ Cl0(C, q)
∗
S |u · CS · u−1 = CS and uσ(u) = 1}.

We also introduce the R–group scheme RT′(C), defined by

RT′(C)(S) =
{
(t1, t2, t3) ∈ O(q)(S)3 | ∀x, y ∈ CS : t1(xy) = t2(x) t3(y)

}
.

Similarly to RT(C)(S), this is a subgroup scheme of O(q)3. The reason for intro-
ducing RT′(C) is merely for technical convenience; we will later show that in fact
RT′(C) = RT(C).

Recall from [K, IV.1.2.3] that for any R–ring S, the map incl ⊗ Id : C ⊗ S →
Cl(C, q) ⊗ S induces an isomorphism of S–algebras

Cl(C ⊗ S, q ⊗ 1) ≃ Cl(C, q) ⊗ S,

which obviously preserves the grading and which we shall view as an identification.

Proposition 3.10. Let S be a unital commutative ring and C be an octonion
algebra over S with quadratic form q. The map α : C → EndS(C ⊕ C) defined by

x 7→
(

0 Lxκ
κLx 0

)

induces isomorphisms

α′ : (Cl(C, q), σ) → (EndS(C ⊕ C), σq⊥q)

and

α′′ : (Cl0(C, q), σ) → (EndS(C), σq)× (EndS(C), σq)

of algebras with involution. Moreover α′ is a morphism of Z/2Z-graded algebras
with respect to the Clifford and chequerboard gradings.

Here σ is the main involution on Cl(C, q), σq is the involution on EndS(C)
associated to bq, and σq⊥q is the involution on EndS(C ⊕ C) induced by σq.

Remark 3.11. Note that the entry Lxκ (resp. κLx) in the matrix of α is the map
of left (resp. right) multiplication by x with respect to the para-octonion algebra
structure on C of Remark 3.2. While there are other possible ways to construct the
map α, this choice leads to a cleaner presentation. (See also [KMRT, §35].) We are
grateful to A. Quéguiner-Mathieu for pointing this out. Note moreover that

α(x) =
(

0 κRx

κLx 0

)
=

(
0 Lxκ

Rxκ 0

)
.

Proof of Proposition 3.10. The map α is linear and satisfies

α(x)2 =
(
LxLx 0

0 κLxLxκ

)
=

(
q(x)IdC 0

0 q(x)κ2

)
= q(x)IdC⊕C ,

whereby it induces a homomorphism α′ as above by the universal property of Clif-
ford algebras. The source of α′ is, by [K, IV.2.2.3] and [IV.1.5.2], an Azumaya

3The condition u · CS · u−1 = CS implies, as an easy calculation shows, that the map x 7→

u · x · u−1 is an orthogonal operator on CS . In [K] this latter property is put into the definition.
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algebra of constant rank 28. Since C is faithfully projective, the target is an Azu-
maya algebra of constant rank 162 = 28. Thus by [K, III.5.1.18], the map α′ is an
isomorphism of algebras. It respects the grading by construction, from which fol-
lows that α′′ is an isomorphism as well. To show that α′ and α′′ are isomorphisms
of algebras with involution, it suffices to show that α′(σ(x)) = σq⊥q(α

′(x)) for all
x ∈ C. But then σ(x) = x, and, setting A = α′(x), we have, for any a, b, c, d ∈ C,

bq⊥q (A ( ab ) , (
c
d )) = bq(x b, c) + bq((xa), d) = bq(bx, c) + bq(xa, d)

as κ is an involutory isometry. By the identities bq(zv, w) = bq(v, zw) = bq(z, wv),
this equals

bq(b, (xc)) + bq(a, x d) = bq⊥q ((
a
b ) , A ( c

d )) .

Thus A = σq⊥q(A) as required. �

Let now C be an octonion algebra over R. The morphism

χ′ : Spin(qC) → O(qC)

given, for any R–ring S and u ∈ Spin(qC)(S), by u 7→ u1, where for all x ∈ CS ,
u1 : x 7→ u · x · u−1, maps Spin(qC) inside SO(qC) [K, IV.6]. We moreover define
u2, u3 by

α′(u) =
(
u3 0
0 u2

)
,

noting that they are invertible linear operators on CS as well. We will write ui(S)
for ui, i = 1, 2, 3, whenever the ring S needs to be emphasized.

Theorem 3.12. Let C be an octonion algebra over R. The map

F : Spin(qC) → RT′(C),

defined, for each R–ring S and for each u ∈ Spin(qC)(S), by

FS(u) = (u1(S), u2(S), u3(S)),

is an isomorphism of affine group schemes.

The following basic lemma, extended from [E], will be useful.

Lemma 3.13. Let (M, q) be a regular quadratic module over a ring S, and assume
that f is a similitude with multiplier λ ∈ R, i.e. q(f(x)) = λq(x) for all x ∈ M ,
and moreover satisfies bq(f(x), f(y)) = bq(x, y) for all x, y ∈ M . Then λ = 1.

Proof. We have

bq(x, y) = bq(f(x), f(y)) = q(f(x) + f(y))− q(f(x)) − q(f(y))

which, by the hypothesis on f , equals

λq(x + y)− λq(x)− λq(y) = λbq(x, y)

for all x, y ∈ M . Thus b∨q (x) = λb∨q (x) ∈ M∗ for all x ∈ M , whereby b∨q = λb∨q ,
and, being invertible

IdM∗ = λb∨q (b
∨
q )

−1 = λId,

whereby λ = 1. �

Proof of Theorem 3.12. Fix an R–ring S. We begin by showing that the map FS

is well defined. To begin with, ui(S) ∈ O(q)(S) for each i. For i = 1, this holds by
construction. For i = 2, 3, the fact that α′′ is a morphism of algebras of involution,
together with σ(u) = u−1, implies that

(3.1) bq(ui(x), ui(y)) = bq(σ(ui)ui(x), y) = bq((ui)
−1ui(x), y) = bq(x, y).

Arguing as in [E], we note that for any x ∈ C,

α′(u)α′(x) = α′(u · x · u−1 · u) = α′(u1(x))α
′(u).
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Inserting the definition of α′ into this equality yields

(3.2) u2κLx = κLu1(x)u3 and u3Lxκ = Lu1(x)
κu2,

and applying both sides of both equations to 1 ∈ C one obtains (substituting x for
x)

u2(x) = u3(1) u1(x) and u3(x) = u1(x) u2(1).

Now using the fact that u1 and y 7→ y are isometries of the multiplicative quadratic
form q on C, this gives

q(u2(x)) = q(u3(1))q(x) and q(u3(x)) = q(u2(1))q(x).

With (3.1) and the above lemma we conclude that u2 and u3 are isometries, whence
FS(u) ∈ O(q)(S)3. To show that FS(u) ∈ RT′(C)(S), we apply the second equation
of (3.2) to an arbitrary y ∈ C. This gives

u3(x y) = u1(x) u2(y),

whereby (u3, u1, u2) is a related triple, and, by Lemma 3.3, so is FS(u). Thus the
map FS is well-defined; it is a group homomorphism since χ′ and α′ preserve the
multiplication, and injective since so is α′.

To show that it is onto, let (t1, t2, t3) ∈ RT′(C)(S). Then by Proposition 3.10,
(t3, t2) is the image under α′′ of a unique u ∈ Cl0(q). The element u satisfies, for
all x ∈ CS ,

α′(u · x · u−1) =
(
t3 0
0 t2

) (
0 Lxκ

κLx 0

) ( t−1
3 0

0 t−1
2

)
=

(
0 κt3Lxκt

−1
2

t2κLxt
−1
3 κ 0

)
.

Using the fact that (t1, t2, t3) is related together with Lemma 3.3, and the definition
of a related triple, the right hand side simplifies to give

α′(u · x · u−1) =
(

0 L
t1(x)

κ

R
t1(x)

κ 0

)
= α′(t1(x)).

Thus by injectivity, u · x · u−1 = t1(x) ∈ CS . Moreover, since α′′ is a morphism of
algebras with involution, and since t2 and t3 are isometries, we have

α′′(σ(u)) = (σq(t3), σq(t2)) = (t−1
3 , t−1

2 ),

whereby
α′′(uσ(u)) = α′′(u)α′′(σ(u)) = (Id, Id),

whence by injectivity uσ(u) = 1. Thus u ∈ Spin(q)(S) and FS(u) = (t1, t2, t3).
This proves that FS is surjective, hence a group isomorphism. Functoriality is clear,
and the theorem is proved. �

Corollary 3.14. The group schemes RT′(C) and RT(C) coincide.

Proof. It suffices to show that RT′(C) ⊆ SO(q)3, i.e. for each R–ring S and each
(t1, t2, t3) ∈ RT′(C)(S) we have ti ∈ SO(C)(S). Now Lemma 3.3 holds, with the
same proof, if RT(C) is replaced by RT′(C) and SO(qC) by O(qC). Thus it suffices
to show that t1 ∈ SO(q)(S). But the theorem provides u ∈ Spin(q)(S) such that
t1 = u1, whereby t1 ∈ SO(q)(S). �

Proposition 3.15. In the following diagram of affine group schemes, the rows are
exact, the vertical arrows are natural isomorphisms, and the squares commute.

1 //µ2
ι //Spin(q)

χ′

//

F

��

SO(q) //1

1 //µ2
j //RT(C)

f1 //SO(q) //1

.

Here, i and j are defined by setting, for each R–ring S,

• ιS(η) = η1 and
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• jS(η) = (Id, ηId, ηId),

while F and χ′ are defined above.

Proof. Let S be an R–ring and consider the diagram

1 //µ2(S)
ι //Spin(q)(S)

χ′

//

F

��

SO(q)(S)
SN //Disc(S)

1 //µ2(S)
j //RT(C)(S)

f1 //SO(q)(S)
SN //Disc(S)

,

where SN denotes the spinorial norm and Disc(S) the discriminant module (see
the appendix). The upper row is exact by [K, IV.6.2.6]. If u ∈ Spin(q)(S), then
by the above theorem

f1 ◦ FS(u) = f1(u1, u2, u3) = u1 = χ′(u),

whereby the middle square commutes. If η ∈ µ2(S), then

FS ◦ ι(η) = FS(η1) = ((η1)1, (η1)2, (η1)3) = (Id, (η1)2, (η1)3).

The left square commutes, since

((η1)2, (η1)3)) = α′′(ηId) = (ηId, ηId) = η(Id, Id),

as α′′ is a morphism of algebras. The statement follows since all maps are functo-
riality is clear, and since Disc(S) is trivial for a faithfully flat R–ring S. �

Remark 3.16. The map χ′ : Spin(q) → SO(q) of Proposition 3.15 is a central
isogeny. Since Spin(q) is a semisimple simply connected R–group scheme, χ′ is
then a universal cover in the SGA3 sense [Co, 6.5.2]. Since Aut(µ2) = 1, the map
χ′ coincide then with the universal cover χ considered at the end of §3.1.

4. Twisting

4.1. Torsors. We consider the usual action of SO(qC) on the octonionic unit
sphere SC = SqC . Recall that

SC(S) = {c ∈ CS | qCS
(c) = 1}

for any R–ring S. An important point is that SC is smooth over R (Lemma A.1).
We have three actions of RT(C) on SC and will, throughout, consider the action
of RT(C) on SC × SC defined by

t.(u, v) = (t3(u), t2(v))

for any t = (t1, t2, t3) ∈ RT(C)(S) and u, v ∈ SC(S).
We establish now in the ring setting a result by Jacobson over fields of nice

characteristic [J, page 93], see also [Ha, th. 14.69] in the real case. Our proof is
self-contained.

Theorem 4.1. (1) The stabilizer StabRT(C)(1, 1) is i(Aut(C)).
(2) The fppf quotient sheaf RT(C)/Aut(C) is representable by an affine R–

scheme and the induced map RT(C)/Aut(C)
∼
−→ S2

C is an R–isomorphism.

Proof. (1) This follows from Proposition 3.8.

(2) Since Aut(C) is flat over R, it follows that the fppf quotient RT(C)/Aut(C) is
representable by an R–scheme and the induced map h : RT(C)/Aut(C) → S2

C is
a monomorphism [SGA3, XVI.2.2] . Furthermore RT(C)/Aut(C) is smooth since
RT(C) is smooth [SGA3, VIB.9.2.(xii)]. Since RT(C)/Aut(C) and S2

C are smooth
over R of the same relative dimension 14, we know that h is an open immersion by
[EGAIV, 4.18.10.5]. The proof that h is an isomorphism boils down, by the trick
used in the proof of Theorem 3.9, to the case of R = Z and C = C0.
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Claim. For each prime p, hp = h×Z Fp is an isomorphism.

Since hp is an open immersion, it is enough to show that RT(C0)(Fp) acts

transitively on S2
C0

(Fp) and a fortiori to show that for each q = pn, RT(C0)(Fq)

acts transitively on S2
C0

(Fq). The coset Σ := RT(C0)(Fq)/Aut(C0)(Fq) is the

RT(C0)(Fq)–orbit of (1, 1) in S2
C0

(Fq). Using [Hu, Table page 6], we have

♯Σ =
q12(q2 − 1)(q4 − 1)2(q6 − 1)

q6(q2 − 1)(q6 − 1)
=

(
q3(q4 − 1)

)2
.

On the other hand, since C0 is hyperbolic of dimension 8, we set V = F4
q and view

the Fq–points of SC0 as the points of V ⊕ V ∨ having hyperbolic norm 1, i.e. the
pairs (v, φ) where v ∈ V and φ ∈ V ∨ satisfy φ(v) = 1. It follows that SC0(Fq) has
cardinality ♯(V \ {0})× ♯(F3

q) = (q4 − 1)q3. Thus ♯Σ = ♯
(
S2
C0

(Fq)
)
, implying that

Σ = S2
C0

(Fq), and a fortiori that RT(C0)(Fq) acts transitively on S2
C0

(Fq).

The Claim is proved. Now S2
C0

is a Jacobson scheme, i.e. its closed points are

dense [EGAIV, 3.10.4.6]. Furthermore the mapping S2
C0

→ Spec(Z) maps closed
points to closed points (ibid, 3.10.4.7). The Claim implies that the image of h
contains all closed points of S2

C0
; hence h is surjective. Thus h is a surjective open

immersion and thereby an isomorphism. �

By the above, the map Π : RT(C) → SC × SC given, for each R–ring S and
each t ∈ RT(C)(S), by

ΠS : t = (t1, t2, t3) 7→ (t3(1), t2(1)),

is a G–torsor in the fppf-topology [DG, III.4.1.8], where G = Aut(C). Since
G is smooth over R, it is additionally a G–torsor for the étale topology [SGA3,
XXIV.8.1]. We can actually prove a stronger result.

Theorem 4.2. (1) There is a natural bijection

RT(C)(R)\
(
SC(R)× SC(R)

)
∼
−→ ker

(
H1

Zar

(
R,Aut(C)

)
→ H1

Zar

(
R,RT(C)

))
.

(2) The Aut(C)–torsor Π : RT(C) → SC × SC is trivial for the Zariski topology.

The statement shows that the defect in transitivity for the action of RT(C)(R)
over SC(R) × SC(R) is encoded in a nice subset of H1

Zar(R,Aut(C)), namely a
subset of isomorphism classes of Zariski twists of C.

We write W(C) for the vector R–group scheme of C, so that

W(C)(S) = CS (= C ⊗R S)

for any R–ring S. Let E be a G = Aut(C)–torsor and let E∧GW(C) be the fppf-
twist of W(C) by E. This is the sheaf associated to the presheaf E(C) defined, for
each R–ring S, by

E(C)(S) = (E(S)× CS)/ ∼,

where
(u, x) ∼ (u′, x′) ⇐⇒ ∃g ∈ G(S) : (ug, g−1x) = (u′, x′).

This is the twisted octonion R–algebra written EC for short. We can proceed to
the proof of Theorem 4.2.

Proof. (1) According to cohomological properties [Gi3, prop. 2.4.3], there is a
natural bijection

RT(C)(R)\
(
SC(R)× SC(R)

)
∼
−→ ker

(
H1

fppf

(
R,Aut(C)

) i∗
−→ H1

fppf

(
R,RT(C)

))

induced by the characteristic map which to a point (a, b) ∈ SC(R)× SC(R) as-
sociates the class of the G–torsor Ea,b = Π−1(a, b). The main point is that the
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orthogonal representation Aut(C) → O(qC) factors through RT(C). It follows
that we have the inclusion

ker(i∗) ⊂ ker
(
H1

fppf

(
R,Aut(C)

)
→ H1

fppf

(
R,O(qC)

))
.

To refine the statement for the Zariski topology, we consider anAut(C)–torsorE/R
such that its class belongs to the second kernel and want to show that it is trivial
locally for the Zariski topology. Let C′ = EC be the twisted octonion R–algebra.
The map H1

fppf

(
R,Aut(C)

)
→ H1

fppf

(
R,O(qC)

)
sends [C′] to the isometry class of

the quadratic form qC′ (which is a twisted form of qC). Since [C′] belongs to the
second kernel, it follows that qC′ is isometric to qC . According to Bix’s theorem
[B, lemma 1.1], we have that C′ ⊗R RP ≃ C ⊗R RP for each prime ideal P of R.
In other words, we have E(RP) 6= ∅. But E is of finite presentation over R, so that

E(RP) = lim
−→
f 6∈P

E(Rf ).

For each prime ideal P there thus exists an element fP 6∈ P such that E(RfP) 6= ∅.
The fP’s generate R where P runs over the maximal ideals of R. In particular there
exists a partition of unity 1R = f1 + · · ·+ fr such that E(Rfi) 6= ∅ for i = 1, ..., n.
Thus E is a G–torsor which is Zariski locally trivial. We have shown (1).

(2) We apply (1) to the coordinate ring R[S2
C ] and to the universal point

η ∈ S2
C

(
R[S2

C ]
)
. Its image by the characteristic map is nothing but the class

of the G–torsor Π : RT(C) → S2
C . Then (1) yields that Π admits sections locally

with respect to the Zariski topology. �

A natural question to ask at this stage is whether this construction is trivial or
not. We provide here a variant of [Gi2].

Example 4.3. Assume that R = R is the field of real numbers and that C is
the division algebra of Cayley–Graves octonions. In this case, G = Aut(C) is the
real semisimple anisotropic algebraic group of type G2 and SC is the standard real

sphere with equation
∑8

i=1 x2
i = 1. We claim that the G–torsor Π : RT(C) → S2

C

is non-trivial. If it is trivial, there is a G–isomorphism RT(C)
∼
−→ S2

C ×R G and
in particular the morphism G → RT(C) ≃ Spin8 admits an algebraic retrac-
tion. When taking the real points, we have that the inclusion of topological groups
G(R) → Spin8(R) admits a continuous retraction. Therefore for each j ≥ 1, the
homotopy group πj(G(R), 1) is a direct summand of πj(Spin8(R)). According to
the tables [Mi, p. 970], we have π6(G(R), 1) = Z/3Z and π6(Spin8(R), 1) = 0
whence a contradiction. Thus the G–torsor Π : RT(C) → S2

C is non-trivial. Note
also that the same fibration extended to the field C of complex numbers is still
non-trivial. Proposition 6.10 provides an algebraic proof of this fact.

4.2. Isotopes as twisted algebras. We shall now see how the isotopes of Section
2 appear naturally as the twists above. We are given a, b ∈ SC(R) and consider
the G–torsor Ea,b = Π−1(a, b). It gives rise to the sheaf of twisted octonion R–
algebras Ea,b(C). This is the sheaf associated to the presheaf Ea,b(C) defined, for
each R–ring S, by

Ea,b(C)(S) = (Π−1
S (aS , bS)× CS)/ ∼,

where
(t, x) ∼ (t′, x′) ⇐⇒ ∃g ∈ G(S) : (tg, x) = (t′, g(x′)).

Remark 4.4. Note that if ΠS(t) = ΠS(t
′), then t−1t′ ∈ iS(G(S)).

The linear structure on Ea,b(C)(S) is induced by (cf. [DG, III.4.3.3])

(t, x) + (t′, x′) = (t, x+ t−1
1 t′1(x

′))
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and, for s ∈ S,
s(t, x) = (t, sx),

and the multiplication by

(t, x) · (t′, x′) = (t, xt−1
1 t′1(x

′)).

The unity is the class of (t, 1), which is independent of the choice of t ∈ Π−1
S (aS , bS)

by Remark 4.4. Using this and the fact that q(c)1 = cc for any element c of an
octonion algebra, one finds that the quadratic form of Ea,b(C)(S) coincides with
that of CS .

The following observation will be useful.

Proposition 4.5. Let a, b ∈ SC(R) and (t1, t2, t3) ∈ RT(C)(S) for an R–ring S.

Then t1 is an isomorphism CS → Ca,b
S if and only if t2(1) = ηbS and t3(1) = ηaS

for some η ∈ µ2(S).

Abusing notation, we write a and b for aS and bS , respectively.

Proof. If t2(1) = b and t2(1) = a, then

t1(x) = t1(1x) = t2(1) t3(x) = b t3(x),

whereby Lbκt3κ = t1, and thus κt3κ = Lbt1. Likewise κt2κ = Rat1. This implies,
by the definition of a related triple, that for all x, y ∈ CS ,

t1(xy) = κt2κ(x)κt3κ(y) = Rat1(x)Lbt1(y) = t1(x) ∗a,b t1(y).

Since Cηa,ηb = Ca,b for any η ∈ µ2(S), this concludes the if-part.

Conversely, if t1 : CS → Ca,b
S is an isomorphism, then (t1, κRat1κ, κLbt1κ) is

a related triple. Since t1(1) = (ab)−1 we get κRat1κ(1) = b and κLbt1κ(1) = a.
Lemma 3.7 then implies that t2(1) = ηb and t3(1) = ηa for some η ∈ µ2(S). �

We can now establish the link between twisted forms and isotopes, and formulate
the main theorem of this section.

Theorem 4.6. Let a, b ∈ SC(R). Consider, for each R–ring S, the map

Θa,b
S : Π−1

S (aS , bS)× CS → Ca,b
S , (t, x) 7→ t1(x).

Then these maps induce a natural isomorphism of fppf-sheaves of algebras

Θ̂a,b : Ea,b ∧G W(C)
∼
−→ W(Ca,b).

Naturality means that for any morphism φ : S → T of R–rings, the diagram

Ea,b(C)(S)
Θ̂a,b

S //

φ̂

��

Ca,b
S

φ̂
��

Ea,b(C)(T )
Θ̂a,b

T //Ca,b
T

commutes. Note that the maps are well-defined by Remark 2.2.

Proof. By the universality of the sheaf associated to a presheaf, it suffices to prove

that for each S such that Π−1
S (aS , bS) 6= ∅, the map Θ̂a,b

S is a natural isomorphism
of algebras. Consider such an S.

Firstly, the map Θ̂a,b
S is well defined, since if (t, x) ∼ (t′, x′) ∈ Π−1

S (aS , bS)×CS ,
then t′ = tg and x′ = g−1(x) for some g ∈ G(S), whereby

t′1(x
′) = t1gg

−1(x) = t1(x).

Secondly, Θ̂a,b
S is an algebra homomorphism. Indeed, it is linear, since

Θa,b
S (s(t, x)) = Θa,b

S (t, sx) = t1(sx) = st1(x) = sΘa,b
S ((t, x))
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for all s ∈ S, and

Θa,b
S ((t, x) + (t′, x′)) = Θa,b

S (t, x+ t−1
1 t′1(x

′)) = t1(x+ t−1
1 t′1(x

′)) = t1(x) + t′1(x
′),

which by definition is Θa,b
S ((t, x))+Θa,b

S ((t′, x′)). With respect to the multiplication,

Θa,b
S ((t, x)(t′, x′)) = Θa,b

S (t, xt−1
1 t′1(x

′)) = t1(xt
−1
1 t′1(y)),

and since t ∈ Π−1
S (a, b), by Proposition 4.5 this equals

t1(x) ∗a,b t1t
−1
1 t′1(x

′) = t1(x) ∗a,b t
′
1(y) = Θa,b

S (t, x) ∗a,b Θ
a,b
S (t′, x′).

Thirdly, Θ̂a,b
S is injective, since if Θa,b

S ((t, x)) = t1(x) = 0, then x = 0 since
t1 is invertible, whereby the class of (t, x) is the zero element of Ea,b(C)(S); it is

surjective since given x ∈ Ca,b
S , any t ∈ Π−1

S (a, b) 6= ∅ satisfies Θa,b
S (t, t−1

1 (x)) = x.

Thus Θ̂a,b
S is an isomorphism. It is natural since the commutativity of the square

above is the statement that, for each (t1, t2, t3) ∈ RT(C)(S), we have the equality

t1T φ̂ = φ̂t1, which follows from the definition of t1T . �

In view of Remark 2.6 and the discussion preceding it, this implies that any
twisted form of the octonion algebra C, where the twist is effected by the torsor
above, is an isotope. By that remark and the proposition preceding it, one may,
without loss of generality (up to isomorphism), assume that b = 1 or, equivalently,
b = a−1. This and other variants are discussed in Section 6, where we will also
show that the twists above account for all octonion algebras isometric to C.

5. Related constructions

5.1. Twisted automorphism groups. We will briefly discuss the automorphism
groups of the twisted algebras. We set Ga,b = Aut(Ca,b) for a, b ∈ SC(R). It
is the twisted group scheme of G by the torsor Ea,b. According to Demarche’s
compatibility [Gi3, §2.4.1], we have a natural identification

Ga,b ∼
−→

{
t ∈ RT(C) | t.(a, b) = (a, b)

}
.

In other words, Ga,b is nothing but the stabilizer of (a, b) for the action of RT(C)
on S2

C . From another point of view, it consists of the fixed points of a twisted
A3-action on RT(C), which is given explicitly in the following proposition.

Proposition 5.1. Let a, b ∈ SC(R).

(1) The map

T a,b : RT(Ca,b) → RT(C)

defined, for each R–ring S and each (t1, t2, t3) ∈ RT(Ca,b)(S), by

(t1, t2, t3) 7→ (t1, BbRat2RaBb, BaLbt3LbBa),

is an isomorphism of R–group schemes.
(2) The transfer under T a,b of the automorphism (t1, t2, t3) 7→ (t2, t3, t1) of

RT(Ca,b)(S) is the automorphism

σ̂a,b : RT(C) → RT(C)

of order three defined on RT(C)(S) for each R–ring S by

(t1, t2, t3) 7→ (RaBb, LaRb, BaLb)(t2, t3, t1)(RaBb, LaRb, BaLb)
−1.

(3) The group Ga,b is isomorphic to the fixed locus of σ̂a,b.
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In other words, σ̂a,b = Int(sa,b)σ̂ with sa,b = (RaBb, LaRb, BaLb) ∈ RT(C)(R),
and σ̂ being the standard action of A3, induced by the element σ = (123). Note
further that the map T a,b is, by construction, compatible with the covering maps
from RT(Ca,b) and RT(C) to SO(qCa,b) = SO(qC) given by the projection on the
first component of a related triple.

Proof. The proof of (1) is a straight-forward verification; as is the proof that (2)
follows from (1). For (3) we know that Ga,b embeds in RT(Ca,b) as the fixed locus
of the automorphism in (2), the image of which in RT(C) is the fixed locus of the
transfer σ̂a,b. �

5.2. Trialitarian action on the torsor. Since A3 acts trivially on G = Aut(C),
the trialitarian action of A3 on RT(C) induces an action of A3 on the G–torsor
Π : RT(C) → S2

C .

Lemma 5.2. The action of the cycle σ = (123) on S2
C(R) maps (x, y) to (y x, x).

Proof. We write (x′, y′) = σ(x, y). We may assume that R is local. Then there
exists t = (t1, t2, t3) ∈ RT(C)(R) such that t3(1) = x and t2(1) = y. Since
σ(t) = (t2, t3, t1), we have x′ = t1(1) and y′ = t3(1) = x. We finish by using the

relation x′ = t1(1) = t2(1) t3(1) = y x. �

This gives rise to the following formulae for isotopes.

Corollary 5.3. Let a, b ∈ SC(R). Then the R–algebras Ca,b, Cb−1a−1,a and

Cb,b−1a−1

are isomorphic.

It is reassuring that these relations can be derived from the known relations of

Section 2.2. Indeed, McCrimmon’s relation establishes an isomorphism Cb−1a−1,a ≃

Cab−1,1 which is isomorphic to Ca,b by Proposition 2.4.(4).

Remark 5.4. The above correspondence between the orbits of the action ofRT(C)
on SC × SC and the isomorphism classes of the isotopes implies some of the other
isomorphism relations between these. Consider, for instance, the relation Ca,a ≃ C.
By Example 3.4, t = (Ba, Ra, La) belongs to RT(C)(R). Then Π(t) = (a, a),
whence Ca,a ≃ C. We will exploit this point of view further in Section 7.

5.3. Compositions of quadratic forms. We remind the reader of the notion of
a composition of quadratic forms, which is essentially a generalization of that of
a composition algebra. Let (M1, q1), (M2, q2), (M3, q3) be non-singular quadratic
R–forms of common rank. A composition of quadratic forms is a bilinear R–map
f : M2 ×M3 → M1 such that q1(f(m2,m3)) = q2(m2) q3(m3) for each m2 ∈ M2,
m3 ∈ M3. More precisely, it is the datum M = (M1, q1,M2, q2,M3, q3, f) for which
the notion of isomorphism is clear.

Our favourite example is the composition MC attached to the octonion algebra
C, i.e. M1 = M2 = M3 = C and f is the octonionic multiplication. In this case we
have an isomorphism RT′(C)(S)

∼
−→ Aut(MC)(S) by mapping a triple (t1, t2, t3)

to (t1, κt2κ, κt3κ) where κ stands for the octonionic involution on C. It follows that
the R–functor Aut(MC) is representable by the R–group scheme RT′(C) which is
nothing but RT(C) according to Corollary 3.14.

It follows that the set H1
fppf(R,RT(C)) classifies the compositions of rank eight

which are locally isomorphic for the flat topology (or even étale topology) to MC .
The centre ker(µ3

2 → µ2) of RT(C) gives an action of the commutative group
H1

fppf(R, ker(µ3
2 → µ2)) on H1

fppf(R,RT(C)). Now H1
fppf(R,µ2) ≃ Disc(R) (see

the appendix), and since the exact sequence 1 → µ → µ
3
2 → µ2 → 1 is split we

have

(5.1) H1
fppf(R, ker(µ3

2 → µ2)) = ker
(
Disc(R)3 → Disc(R)

)
.
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We will use this to explain how that action can be understood at the level of
R–forms of MC . Given non-singular quadratic forms (L1, θ1), (L2, θ2), (L3, θ3) of

rank one and an isometry ǫ : (L2 ⊗R L3, θ2 ⊗ θ3)
∼
−→ (L1, θ1), we can modify an

R–composition

M = (M1, q1,M2, q2,M3, q3, f)

as (
L1 ⊗R M1, θ1 ⊗ q1,L2 ⊗R M2, θ2 ⊗ q2,L3 ⊗R M3, θ3 ⊗ q3, ǫ⊗ f

)
.

By (5.1), this gives the action of H1
fppf

(
R, ker(µ3

2 → µ2)
)
on H1

fppf(R,RT(C)).

Remark 5.5. Let C′ be an R–form of C such that the compositions MC and MC′

are isomorphic. Then there exists a triple (t1, t2, t3) of isometries between (C, q)
and (C′, q′) such that

t1(x ∗C y) = t2(x) ∗ C′t3(y)

for all x, y ∈ C. In view of the introductory part of Section 2, this implies that the
kernel of H1

fppf(R,G) → H1
fppf(R,RT(C)) consists of isotopes of C. This confirms

a consequence of the more precise construction given in Theorem 4.6.

6. Variants

One can modify the torsor defined above in several ways in order to describe
octonion algebras under various similarity relations. The aim of this section is to
study these different variants.

6.1. Codiagonal variant. We consider the Aut(C)–torsor Π : RT(C) → S2
C

and the codiagonal map ∇ : SC → S2
C , a 7→ ∇(a) = (a, a−1). We denote by

RT(C)∇ → SC the pull-back of the Aut(C)–torsor Π with respect to ∇. We
observe that RT(C)∇ = RT(C) ×S2

C
SC is a closed R–subscheme of RT(C). For

each R–ring S, we have

RT(C)∇(S) =
{
(t1, t2, t3) ∈ RT(C)(S) | t3(1)t2(1) = 1

}

=
{
(t1, t2, t3) ∈ RT(C)(S) | t1(1) = 1

}
.

In terms of the covering f1 : RT(C) → SO(qC), RT(C)∇ is the inverse image of
the R–subgroup scheme

{
t1 ∈ SO(qC), | t1(1) = 1

}
. We put C1 = 1⊥q ⊂ C. By

Lemma 2.9, C1 is a locally free R–submodule of rank 7 of C and the restriction qC1

of qC to C1 is non-singular. We need to be careful when dealing with the orthogonal
R–group scheme O(qC1); it fits in an exact sequence [CF, 4.3.0.24]

1 → SO(qC1) → O(qC1)
det
−−→ µ2 → 1

where the special orthogonal R–group scheme SO(qC1) is semisimple of type B3.

Lemma 6.1. (1) The restriction map
{
t1 ∈ O(qC) | t1(1) = 1

}
→ O(qC1),

f 7→ f|C1
induces an isomorphism of group schemes

SO(qC)1 :=
{
t1 ∈ SO(qC) | t1(1) = 1

} ∼
−→ SO(qC1).

(2) There is a unique R–homomorphism h : Spin(qC1) → RT(C) such that the
following exact diagram commutes

1 //µ2
//

≃

��

Spin(qC1) //

h

��

SO(qC1) //

��

1

1 //µ2
//RT(C)

f1 //SO(qC) //1.

Furthermore h induces an R–isomorphism Spin(qC1)
∼
−→ RT(C)∇.
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Proof. (1) In the case of fields, the statement is Proposition 2.2.2 of [SV] but some
precaution has to be taken in characteristic 2 since Springer–Veldkamp work with
the classical theory of algebraic groups which identifies SO(qC1) and O(qC1). We
treat that at first.

Case of a field k of characteristic 2. Without loss of generality, we may assume
that k is algebraically closed. The proof of the quoted result shows that the map
v :

{
t1 ∈ O(qC) | t1(1) = 1

}
→ O(qC1) induces an isomorphism of abstract

groups SO(qC)1(k)
∼
−→ SO(qC1)(k). We denote by J = (SO(qC)1)red the largest

smooth subgroup of SO(qC)1. We then have J(k) = SO(qC)1(k), and the map
J → O(qC1) factors trough a homomorphism v′ : J → SO(qC1) such that the
induced map J(k) → SO(qC1)(k) is bijective. It follows that v

′ is an isogeny so that
J and SO(qC)1 have the same dimension as SO(qC1), i.e. 21. The same reference
shows that the map Lie(v′) : Lie(SO(qC)1) → Lie(SO(qC1)) is an isomorphism, so
that Lie(SO(qC)1) has dimension 21, whence SO(qC)1 is smooth [DG, II.5.2.1]. It
follows that J = SO(qC)1 and that v′ : SO(qC)1 → SO(qC1) is an isogeny such
that Lie(v′) is an isomorphism. Thus v′ is étale and the bijectivity of v(k) implies
that v′ is an isomorphism as desired.

General case. By faithfully flat descent, this boils down as usual to the split case
over Z. Using the result over fields, the Z-group scheme SO(qC)1 has smooth
connected fibres of common dimension 21. Lemma B.1 shows that SO(qC)1 is
smooth, hence flat. It follows that the schematic image of SO(qC1) → O(qC1) is
the schematic closure of v

(
SO(qC)1×ZQ

)
= SO(qC1)×ZQ, hence is SO(qC1). The

map v factors trough SO(qC1) and we consider then v′ : SO(qC)1 → SO(qC1). We
conclude with the fibre-wise isomorphism criterion [EGAIV, 4.17.9.5] that v

′ is an
isomorphism.

(2) We pull back the extension 1 → µ2 → RT(C)
f1
−→ SO(qC) → 1 (see Theorem

3.9) by the composite map Spin(qC1) → SO(qC1) → SO(qC) and get a central
extension of R–group schemes 1 → µ2 → H → Spin(qC1) → 1. We observe
that H is a closed subgroup scheme of RT(C). Since Spin(qC1) is simply con-
nected, this sequence is (uniquely) split [Co, 6.5.2.(iii)], i.e. there exists a unique
R–homomorphism h0 : Spin(qC1) → H splitting the above sequence. By construc-
tion the following diagram

Spin(qC1) //

h

��

SO(qC1) //

��

1

RT(C)
f1 //SO(qC) //1

commutes. As explained before, the homomorphism h satisfying that commutativ-
ity is already unique. It remains to be shown that the induced map h♯ : µ2 → µ2 is
the identity. Over a field of odd characteristic, this follows of [Ga, Example 17.1].
To handle the general case, one can assume again that R = Z and that C is the
split octonion algebra. Then h♯ is the identity or the trivial map. It cannot be
trivial since it is not over F3. We conclude that h♯ is the identity as desired. It
follows that the diagram

Spin(qC1) //

h

��

SO(qC1)

��
RT(C)

f1 //SO(qC)

is Cartesian so that Spin(qC1) is R–isomorphic to RT(C)∇. �
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Since Aut(C) is an R–subgroup scheme of RT(C)∇, we obtain an embedding
Aut(C) → Spin(qC1). Furthermore we have a Cartesian diagram

Spin(qC1)
h //

Π1

��

RT(C)

Π

��
SC

∇ //SC ×R SC

where the vertical maps areAut(C)–torsors. Since theAut(C)-torsor Π : RT(C) →
SC ×R SC is Zariski locally trivial according to Theorem 4.2, it follows that the
Aut(C)-torsor Π1 : Spin(qC1) → SC is also Zariski locally trivial.

Remark 6.2. The map Π1 is defined by the identification Spin(qC1)
∼
−→ RT(C)∇.

As far as we know, there is no easier way to define it.

The next result completes Theorem 4.6.

Theorem 6.3. There is a natural bijection

Spin(qC1)(R)\SC(R)
∼
−→ ker

(
H1

Zar

(
R,Aut(C)

)
→ H1

Zar

(
R,Spin(qC1)

))
.

It maps a point a ∈ SC(R) to the isomorphism class of the isotope Ca,a−1

≃ C1,a.

Proof. We proceed is a similar, but simpler, way in comparison to the proof of
Theorem 4.2. There is a natural bijection [Gi3, prop. 2.4.3],

Spin(qC1)(R)\SC(R)
∼
−→ ker

(
H1

fppf

(
R,Aut(C)

)
→ H1

fppf

(
R,Spin(qC1)

))
.

It maps a point a ∈ SC(R) to the class of the G–torsor Π−1
1 (a) = Π−1(a, a−1) which

represents the isomorphism class of the isotope Ca,a−1

by Theorem 4.6. Since
the torsor Π1 is locally trivial for the Zariski topology, we can replace the flat
cohomology by the Zariski topology on the right hand side. �

6.2. Orthogonal and adjoint variants. We have seen that the centre of RT(C)
is isomorphic to µ2 × µ2 by the map (η1, η2) 7→ (η1η2, η1, η2) (before Lemma 3.7).
We consider now one copy µ2 inside RT(C), namely the image of η 7→ (1, η, η). We
will refer to this as the diagonal µ2, as it induces a diagonal embedding of µ2 in
S2
C via Π.
We mod out the mapping Π : RT(C) → SC ×R SC by the action of the diagonal

µ2. This gives rise to the orthogonal variant of Π, namely

Π+ : RT(C)+ = RT(C)/µ2 →
(
SC ×R SC

)
/µ2.

The R–map f1 induces an R–isomorphism RT(C)+
∼
−→ SO(qC). We thus have a

Cartesian diagram

(6.1) RT(C)
f1 //

Π

��

SO(qC)

Π+

��
S2
C

//
(
SC ×R SC

)
/µ2.

where the vertical maps are G–torsors. Let SC = SC/µ2 (see the appendix for
further discussion on quotients of spheres). The above provides us with two projec-
tions p1, p2 :

(
SC ×R SC

)
/µ2 → SC and, correspondingly, two actions of SO(qC)

on SC , which we denote by g •i x for i = 1, 2. An important step is the following.

Lemma 6.4. (1) For i = 1, 2, the orbit map SO(qC) → SC , g 7→ g•i [1] admits
a splitting.

(2) Both actions of SO(qC)(R) on SC(R) are transitive.
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Proof. We will only do the case i = 1, the case i = 2 being similar.

(1) We consider the R–map SC → SO(qC) which maps an element a ∈ SC(R)
to the orthogonal mapping Ba. Since this map is µ2–invariant, it gives rise to an
R–map h : SC → SO(qC) . We claim that x 7→ h(x)−1 is a section of the orbit
map. Let x ∈ SC(R) and let S/R be a flat cover such that xS lifts to an element
a ∈ SC(S). We consider h(x) : C → C. Then h(x)S = Ba : CS → CS which lifts
(with respect to f1) to the element t = (Ba, Ra, La) ∈ RT(C)(S). We compute in
SC(S)

h(x) •1 xS = p1(t.xS) = [La(a)] = [1]

whence h(x)−1.[1] = x. Thus x 7→ h(x)−1 is a section of the orbit map.

(2) This is immediate from (1).
�

One can also go further and consider the quotient of RT(C) by the whole centre.
We observe that the Aut(C)–torsor Π : RT(C) → S2

C is µ2 × µ2–equivariant for
the antipodal action of µ2 × µ2 on S2

C . Taking the quotient with respect to this
action, we get an R–morphism

Π : RT(C) → S2
C

where RT(C) = RT(C)/(µ2×µ2) is the adjoint R–group scheme of RT(C), which
is isomorphic to PSO(qC). We consider now the R–homomorphism

i : Aut(C)
i
−→ RT(C) → RT(C).

Lemma 6.5. (1) The R–homomorphism i is a closed immersion and the fppf
quotient RT(C)/i(Aut(C)) is representable by an affine R–scheme.

(2) The R–morphism Π : RT(C) → S2
C is an Aut(C)–torsor and the map

RT(C)/i(Aut(C)) → S2
C is an R–isomorphism.

Proof. The R–map S2
C → S2

C is faithfully flat. The main point is that taking the
quotient by µ2×µ2 commutes with base change so that the left hand square of the
following diagram

(6.2) RT(C)
P //

Π

��

RT(C)

Π

��

∼

f1
//PSO(qC)

Π′

xxqqq
qq
qq
qq
qq

S2
C

//S2
C .

is Cartesian. The R–group scheme Aut(C) acts on the map P . Since the prop-
erty for that action to define an Aut(C)–torsor is insensitive to a flat cover, Π
is an Aut(C)-torsor if and only if Π is. Since Π is an Aut(C)–torsor, so is Π,
and this implies that i is an R–monomorphism and that the fppf-quotient sheaf
RT(C)/i(Aut(C)) is representable by the affine smooth R–scheme S2

C . Then
Aut(C) occurs as the fibre of Π at [(1, 1)] ∈ S2

C(R) so i is a closed R–immersion. �

6.3. Codiagonal adjoint variant. Finally, one may combine the above and con-
sider the quotient of RT(C)∇ ≃ Spin(qC1) by its centre. The centre of RT(C)∇

is µ2, embedded as η 7→ (1, η, η) for each R–ring S and η ∈ µ2(S), and Lemma
6.1 implies that RT(C)∇/µ2 ≃ SO(qC1). Reasoning as in the proof of as in the
preceding cases, we take the quotient of the torsor Π1 : Spin(qC1) → SC by µ2,
thus obtaining the Cartesian diagram

Spin(qC1) //

Π1

��

SO(qC1)

Π1

��
SC

//SC .
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The vertical maps are Aut(C)–torsors; indeed this has already been seen for Π1,
and for Π1 it follows from the corresponding statement for Π in the above lemma.
In fact we have the commutative diagram

Spin(qC1) //

Π1

��

SO(qC1)

Π1

��

//SO(qC)

Π+

��
SC

//SC

∇ //
(
SC ×R SC

)
/µ2

where∇ is induced by ∇ : SC → SC×RSC and is well-defined since∇(ηx) = η∇(x)
for all R–rings S, η ∈ µ2(S) and x ∈ SC(S).

6.4. Equivalence of all variants. The following theorem shows that all variants
considered above are equivalent.

Theorem 6.6. For i = 1, . . . , 8, let

Ni = Ker
(
H1

fppf(R,G) → H1
fppf(R,Hi)

)
,

where

H1 = Spin(qC1), H2 = Spin(qC), H3 = SO(qC), H4 = O(qC),
H5 = SO(qC1), H6 = PSO(qC), H7 = GO+(qC), H8 = GO(qC),

Then all the sets Ni coincide and are subsets of H1
Zar(R,G).

Proof. We have the following inclusions of sets

N1
//

  ❆
❆❆

❆❆
❆❆

❆ N2
//N3

//

  ❆
❆❆

❆❆
❆❆

❆

��

N4
//N8

//H1
fppf(R,G)

N5

>>⑥⑥⑥⑥⑥⑥⑥⑥
N6 N7

>>⑥⑥⑥⑥⑥⑥⑥⑥

and will show the reverse inclusions in three steps.
The sets N1, . . . , N5. We have already seen along the proof of Theorem 4.2 that

N4 consists of Zariski classes. According to Theorem 4.2 (resp. Th. 6.3), N2 (resp.

N1) consists of isomorphism classes of isotopes Ca,b with a, b ∈ SC(R) (resp. Ca,a−1

with a ∈ SC(R)). Then Proposition 2.4 shows that N1 = N2. On the other hand,
the octonionic involution σC provides a splitting of the Dickson homomorphism
O(qC) → Z/2Z. This implies that the map H1

fppf(R,SO(qC)) → H1
fppf(R,O(qC))

has trivial kernel, whence N3 = N4. Next we show that the N3 ⊆ N2. The
characteristic map ϕ of the G–torsor Π+ induces the bijection

SO(qC)(R)\
(
(SC ×R SC)/µ2

)
(R)

∼
−→ N3.

Let [C′] ∈ N3 and let x ∈
(
(SC ×R SC)/µ2

)
(R) be such that ϕ(x) = [C′]. We

denote by x1 its first projection on SC(R). Lemma 6.4.(2) shows that the group
SO(qC)(R) acts transitively on SC(R). Up to replacing x by a suitable SO(qC)(R)–
conjugate, we may thus assume that x1 = [1] ∈ SC(R). The commutative diagram
of µ2–torsors

SC ×R SC
p1 //

��

SC

��(
SC ×R SC

)
/µ2

p
1 //SC .

shows that x lifts to an element (a, b) ∈ S2
C(R). The diagram (6.1) shows that

Π−1(a, b) = Π−1
+ (x) whence Ca,b ≃ C′. Thus [C′] ∈ N2 as desired. Finally, the

statement for N5 follows from the inclusions N1 ⊆ N5 ⊆ N3.

The set N6. To show that N6 ⊆ N3, we consider the bijection

PSO(qC)(R)\SC(R)2
∼
−→ N6
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induced by the characteristic map ϕ′ of the torsor Π′ from (6.2). Let [C′] ∈ N6 and
let (y, z) ∈ S2

C be such that ϕ′(y, z) = [C′]. We need show that the PSO(qC)(R)–
orbit of (y, z) contains an element in the image of SC(R)2 under the quotient map.
From Lemma 6.4, this orbit contains (x, 1) for some x ∈ SC(R). We now consider
the R–map SC → SO(Cq) defined by a 7→ La for any R–ring S and a ∈ SC(S).
This map commutes with the µ2–action since for any a ∈ SC(S) and any η ∈ µ2(S),

ηa 7→ Lηa = Lηa = ηLa,

and thus it induces an R–map g : SC → PSO(qC). Following the strategy of
Lemma 6.4, given x ∈ SC(R), we pick a flat cover S/R such that xS = pS(a) for
some a ∈ SC(S), where p denotes the quotient map SC → SC . Then with the
notation of the diagram (6.2),

g(x)S = f1 ◦ P (La, Ba, Ra).

Computing the action of g(x) on (x, 1) in SC(S), we have

(g(x).(x, 1))S = (pS(Ra(a), pS(Ba(1))) = (pS(1), pS(a
2)) = (1, x2

S).

Thus g(x).(x, 1) = (1, x2). Finally, x2 is in the image of pR : SC(R) → SC(R).
To see this, consider the map a 7→ a2 on SC . Since it is the trivial map on µ2, it
induces a map f : SC → SC . Thus f(x) ∈ SC(R). But then x2 = p ◦ f(x) since

pS ◦ fS(xS) = pS(a
2) = pS(a)

2 = x2.

Thus under the action of PSO(qC), the element (y, z) is conjugate to the image
of some (a, b) ∈ SC(R)2, whence C′ is isomorphic to Ca,b and thus [C′] ∈ N2 as
desired.

The sets N7 and N8. We are given [C′] ∈ N8. The exact sequence

1 → O(qC) → GO(qC) → Gm → 1

gives rise to an exact sequence of pointed sets

R∗ → H1
fppf(R,O(q)) → H1

fppf(R,GO(q)).

Since [qC′ ] ∈ H1
fppf(R,O(q)) maps to 1 ∈ H1

fppf(R,GO(q)), there exists λ ∈ R∗ and

an isomorphism f : (C′, qC′)
∼
−→ (C, λqC). Since qC′ represents 1, qC represents λ,

i.e. there exists x ∈ C∗ such that λ = q(x). Up to replacing f by L−1
x ◦ f , we may

assume that λ = 1 since qC is a multiplicative R–form. It follows that the quadratic
spaces (C′, qC′) and (C, qC) are isomorphic. Thus [C′] ∈ N4 and is in particular a
Zariski class. It follows that N8 = N4, and since N4 ⊆ N7 ⊆ N8 we get N7 = N4

as well. �

Our main findings can thus be summarized as follows.

Corollary 6.7. Let C and C′ be octonion algebras over R. The following state-
ments are equivalent.

(1) The quadratic forms qC and qC′ are isometric.
(2) The quadratic forms qC and qC′ are similar.
(3) There exist a, b ∈ SC(R) such that C′ is isomorphic to Ca,b.

(4) There exists a ∈ SC(R) such that C′ is isomorphic to Ca,a−1

= Ca,a.

Proof. The set N4 classifies the forms of C whose norm is isometric to qC , while
the set N8 classifies those whose norm is similar to qC . The first two items are thus
equivalent by Theorem 6.6. Theorem 4.2 gives the equivalence of (2) and (3), while
the last two statements are equivalent by Proposition 2.4. �
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Remark 6.8. This statement generalizes the result of [KPS] quoted in Proposition
2.12 above. It also recovers Remark 2.6: given a, b ∈ C∗, there exists c ∈ SC(R)

such that Ca,b is isomorphic to C1,c ≃ Cc,c−1

. Indeed, we have seen in Remark 2.3
that the norm of the isotope Ca,b is isometric to qC , and the previous Corollary
applies.

Corollary 6.9. Let C′ be a R-form of C such that there exists a non-singular
quadratic R-module (L, θ) of rank one such that the quadratic R-form (C′, qC′) is
isometric to the quadratic R-form (L, θ)⊗ (C, qC). Then C′ is an isotope of C. In
particular (C′, qC′) is isometric to (C, qC).

Proof. We consider the exact sequence of R-group schemes

1 → µ2
i
−→ SO(qC) → PSO(qC) → 1.

It gives rise to the exact sequence of pointed sets

H1
fppf(R,µ2)

i∗−→ H1
fppf(R,SO(qC)) → H1

fppf(R,PSO(qC)).

On the other hand, the exact sequence 1 → SO(qC)
j∗
−→ O(qC) → Z/2Z → 1 (which

is split by κ) induces a map H1
fppf(R,SO(qC)

)
→ H1

fppf(R,O(qC)
)
. As explained

in the appendix, there is a group isomorphism Disc(R) ≃ H1
fppf(R,µ2) between

the group of isomorphism class of non-singular quadratic forms of rank one and
H1

fppf(R,µ2). The composite map

Disc(R) ≃ H1
fppf(R,µ2)

i∗−→ H1
fppf(R,SO(qC))

j∗
−→ H1

fppf(R,O(qC))

maps the class of a quadratic R–form (L, θ) of rank one to the class of the quadratic
form (L, θ) ⊗ (C, qC). The hypothesis that (C′, qC′) is similar to (C, qC) implies
that [C′] belongs to the kernel of the map

H1
fppf(R,G) → H1

fppf(R,PSO(qC))

Theorem 6.6 states that [C′] belongs to all relevant kernels and therefore is an
isotope. �

A complement is the following.

Proposition 6.10. With the notations of Theorem 6.6, each flat quotient Hi/G
is representable by an affine R-scheme of finite presentation (i = 1, ..., 8). Further-
more the quotient map Hi → Hi/G is a G–torsor locally trivial for the Zariski
topology. If R 6 0, the G–torsor Hi → Hi/G is non trivial (i = 1, ..., 8), that is does
not admit a section.

Note that we have already seen the first part of the statement in several cases.

Proof. The representability item boils down to the case of Z and of the Zorn algebra.
Representability then follows from Anantharaman’s theorem [An, Th. 4C page 53];
the fact that the quotient is affine of finite presentation and also the fact that the
quotient map is a G-torsor are due to Colliot-Thélène and Sansuc [CTS, Cor. 6.12]
for the connected Hi’s. This generalizes easily to the non-connected cases (i.e. H4

and H8) by embedding Hi in some GLni
. The fact that those G–torsors are trivial

locally for the Zariski topology follows of Theorem 6.6 applied to the coordinate
rings R[Hi/G].

Assuming that R is a non-zero ring, we want to show that the G-torsor
Hi → Hi/G is non-trivial. We can then assume that R = k is an algebraically
closed field and would like to find a k-ring S such that H1

fppf(S,G) → H1
fppf(S,Hi)

is non-trivial. Theorem 6.6 enables us to choose one of the Hi’s and we con-
sider then the case of H5 = SO(qC1). Using the beginning of Section 6.3, we
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know that SO(qC1)/G
∼
−→ Sq. We take S = k[Sq], i.e. the coordinate ring of Sq,

and it is enough to show, using the universal point η ∈ Sq(S), that the G-torsor
SO(qC1) → Sq is non-trivial.

According to Lemma 2.11, Sq is the complement in P(C∨) of the projective
quadric Q of equation qC = 0. We now use the theory of cycles and Chow groups.
We have a localization exact sequence [F, §1.8]

Pic(Q)
i∗−→ CH2(P(C∨)) → CH2(Sq) → 0.

Let h be a hyperplane section of P(C∨). We have CH2(P(C∨)) = Zh2 and we
know that the hyperplane section h ∩ Q generates Pic(Q). But i∗i

∗(h) = h.[Q]
where [Q] ∈ Pic(P(C∨)) (ibid, prop. 2.6.(b)). Finally we have [Q] = 2h (ibid,
Example 1.9.4) which allows us to conclude that CH2(Sq) is isomorphic to Z/2Z.

On the other hand, Marlin showed that CH2(SO(qC1)) = 0 [Ma] since SO(qC1) is
an adjoint semisimple group of type B3. The functoriality of Chow groups yields
that the map SO(qC1) → Sq cannot admit a splitting. �

Remark 6.11. The advantage of this proposition compared to Example 4.3 is
that it is algebraic and works, therefore, in any characteristic. Also it shows that
some 2-torsion phenomenon is involved while Example 4.3 was based on 3-torsion.
In their paper [AHW], Asok–Hoyois–Wendt investigate the 2-torsion and 3-torsion
phenomena in the split case by means of cohomological invariants.

7. Particular cases

We have seen above that given an octonion algebra C over R, any octonion al-
gebra with quadratic form equivalent to that of C is isomorphic to C1,a ≃ Ca,a

for some a ∈ SC(R). Two natural questions arise. On the one hand, one may ask
for criteria on a, independent of the base ring, in order that C1,a ≃ C. This sup-
plements the relations among isotopes of Section 2 and Remark 5.4. On the other
hand one may wish to understand the situation over rings of particular interest.
The aim of this section is to discuss these questions.

7.1. Trivial isotopes. A question that arises in this context is whether one can
characterize those a for which C1,a ≃ C. In this section we give sufficient condi-
tions for this to hold. They are consequences of the second item of the following
proposition, where, for any c ∈ C∗, we define the map τ+c : C → C by x 7→ cxc2

and τ−c : C → C by x 7→ c−2xc−1. The first item, while not necessary for the
sequel, is included for completeness.

Proposition 7.1. Let a ∈ SC(R).

(1) If there exist c1, . . . , cr ∈ C∗ such that Lcr · · ·Lc1(1) = Lcr · · ·Lc1(1) = a,
then

Bcr · · ·Bc1 : C → Ca,a

is an isomorphism of algebras.
(2) If there exist c1, . . . , cr ∈ C∗ such that a = τ+cr · · · τ

+
c1(1), then

LcrR
−1
cr · · ·Lc1R

−1
c1 : C → Ca,a

is an isomorphism of algebras.

Remark 7.2. In [E], Elduque proves that over a field K, the image of the map
f1 : RT(C)(K) → SO(qC)(K) is precisely

{
r∏

i=1

Bdi
|r ∈ N, di ∈ C∗,

r∏

i=1

q(di) = 1

}
.
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When this holds, the first item above gives, together with Proposition 4.5, a precise
condition for the existence of an isomorphism from C to Ca,a.

Proof. (1) (See also [Pe2].) The hypothesis implies that Rcr · · ·Rc1(1) = a and that
q(c1) · · · q(cr) = 1. Thus

(Bcr · · ·Bc1 , Rcr · · ·Rc1 , Lcr · · ·Lc1) ∈ RT(C),

and the claim follows from Proposition 4.5.

(2) Using the Moufang laws, one verifies that for each c ∈ C∗ we have

(7.1) LcR
−1
c (x y) = τ+c (x)τ−c (y) = τ−c (x) τ+c (y).

If c1, . . . , cr ∈ C∗ are such that τ+cr · · · τ
+
c1(1) ∈ SC(R), then q(c1)

3 · · · q(cr)3 = 1,
whence (7.1) implies that

(LcrR
−1
cr · · ·Lc1R

−1
c1 , τ−cr · · · τ

−
c1 , τ

+
cr · · · τ

+
c1) ∈ RT(C)(R).

We then conclude with Proposition 4.5. �

This has the following consequences.

Corollary 7.3. Let a ∈ SC(R). If either

(1) there exists c ∈ C∗ with a = c3, or
(2) there exists u ∈ C∗ such that bq(u, 1) = bq(u, a) = 0, or
(3) bq(a, 1) = 0,

then Ca,a ≃ C.

Proof. The first item follows from item (2) of the above proposition upon setting
r = 1 and c1 = c. For the second, we set instead r = 2, c1 = u−1 and c2 = au, and
note that ua = au. Then c22 = (ua)(au) = u2 implies that

τ+c2τ
+
c1(1) = (au)(u−3(au)2) = (au)(u−3u2) = (au)u−1 = a.

The third item follows from the first since if bq(a, 1) = 0, then a2 = −q(a)1 = −1
and a = (−a)3. �

As a consequence of the second item, we easily obtain the well-known fact that
over fields, octonion algebras with equivalent quadratic forms are isomorphic.

Corollary 7.4. Let k be a field and let C and C′ be two octonion algebras over k
with isometric norms. Then C ≃ C′.

Proof. It suffices to prove that Ca,a−1

≃ C for any a ∈ SC(k). By the above
corollary, it moreover suffices to show that there exists an invertible u ∈ a⊥ ∩ 1⊥.
But Lemma 2.9 implies that a⊥ ∩ 1⊥ is a subspace of dimension at least 6. By
Witt’s theorem, the regularity of qC implies the existence of u ∈ a⊥ ∩ 1⊥ with
qC(x) 6= 0, and the claim follows. �

Remark 7.5. It is possible to extend this argument to cover the case of octonion
algebras over local rings. This requires some technical work, including a general-
ization of Corollary 7.3. We therefore refrain from carrying it out, referring instead
to the proof found in [B].

7.2. Isotopes of the Zorn algebra. We shall now slightly generalize a result by
Asok–Hoyois–Wendt [AHW, Prop. 4.3.4]. We assume in this subsection that C
is the split octonion algebra. It admits a subalgebra R × R and we know that its
centralizer in G is the standard R–subgroup SL3 ⊂ G [LPR, Theorem 5.9].

Proposition 7.6. Assume that C is the split octonion algebra. We have

ker
(
H1

Zar(R,G) → H1
Zar(R,Spin(qC))

)
⊆ Im

(
H1

Zar(R,SL3) → H1
Zar(R,G)

)
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Proof. We reason in terms of octonion algebras. Let [C′] be an element of the
leftmost kernel, i.e. the class of an isotope C′ of C. There exists an isometry
f : (C, qC)

∼
−→ (C′, qC′) mapping 1C → 1C′ . We put A′ = f(R ×R). Then A′ is a

composition R–subalgebra of C′. We consider now the flat sheaf defined by

F (S) =
{
g : CS

∼
−→ C′

S | g induces fS : (R ×R)S
∼
−→ A′

S

}

for each R-ring S. It is clearly representable by an affine R–scheme Y and comes
equipped with a right action of SL3 so that the R–map Y ×R SL3 → Y ×R Y,
(y, h) 7→ (h, y.h) is an isomorphism. Inspection of the proof of Bix’s theorem
[B, lemma 1.1] shows that Y(R) is non empty when R is local. Altogether it
follows that Y is a SL3-torsor locally trivial for the Zariski topology. The G–torsor
Isom(C,C′) then arises as the contracted product of the SL3-torsor Y with respect
to the embedding SL3 →֒ G. �

The map H1
fppf(R,SL3) → H1

fppf(R,G) is well understood in terms of octonion

algebras. The set H1
fppf(R,SL3) classifies the pairs (P, θ) where P is a locally

free R-module of rank 3 and θ : R
∼
−→ Λ3(P ) a trivialization of its determinant.

Petersson [Pe1, §3] explicitly constructed the R–algebra Zorn(P, θ) associated to
(P, θ) and its norm form is the hyperbolic form attached to the R–module R⊕ P .
In conclusion, we have shown that an isotope of C is an R–algebra Zorn(P, θ) such
that the hyperbolic form attached to R⊕ P is isomorphic to that of R4.

Remark 7.7. (a) The original statement [AHW, Prop. 4.3.4] deals with the case
of a smooth ring over an infinite field and uses A1-homotopy theory. Our proof is
then in a sense much simpler.

(b) The map H1
fppf(R,SL3) → H1

fppf(R,GL3) has trivial kernel. If P is free, it

follows that (P, θ) encodes the trivial class of H1
fppf(R,SL3) so that Zorn(P, θ) is

the split octonion R–algebra. In particular, if all projective modules of rank 3 are
free, Proposition 7.6 implies that all isotopes of the Zorn algebra are trivial.

Using Swan’s extension of Quillen–Suslin’s theorem [S, Cor. 1.4], we get the
following fact. (In the polynomial case, this was already proved in [KPS, Prop.
7.4].)

Corollary 7.8. If k is a field and R = k[t±1
1 , ..., t±1

d , td+1, . . . , tn], then the isotopes
of the split octonion algebra are split.

7.3. Polynomial and Laurent polynomial rings. We will now consider octo-
nion algebras over polynomial and Laurent polynomial rings. We start with a
preliminary fact about unit spheres.

Lemma 7.9. Assume that R is an integral domain with fraction field K. Let q be
a non-singular quadratic R–form such that qK is anisotropic. Then

Sq(R) = Sq(R[t]) = Sq(R[t±1]).

Proof. The assumption implies that the semisimpleK–group SO(qK) is anisotropic.
Thus SO(q)

(
K[[t−1]]

)
= SO(q)

(
K((t−1))

)
by Bruhat–Tits–Rousseau’s theorem

(see [Gi1, Th. 1.2]). Since SO(q)
(
K((t−1))

)
acts transitively on Sq

(
K((t−1))

)
, we

obtain Sq

(
K[[t−1]]

)
= Sq

(
K((t−1))

)
.

We are given a point x ∈ Sq(R[t]); its image in Sq

(
K((t−1))

)
then belongs to

Sq

(
K[[ 1t ]]

)
, so that the image xK of x in Sq(K[t]) extends to a morphism P1

K →
Sq×RK. It follows that xK belongs to Sq(K). ButK∩R[t] = R, whence x ∈ Sq(R).
Similarly, working with K((t)), we find Sq(R) = Sϕ(R[t±1]). �
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Lemma 7.10. Assume that R is an integral domain with fraction field K. Let C
be an octonion R–algebra such that CK is not split. Let C′ be a R[t]-isotope of
C ⊗R R[t]. Then C′ ≃ B ⊗R R[t] where B is an R-isotope of C. The same holds
with R[t±1].

Proof. Our assumption is that CK is not split, equivalently the quadratic form
qC ⊗R K is anisotropic. Since isotopes of C ⊗R R[t] are parametrized by SC(R[t]),
the statement follows from Lemma 7.9. �

Since anisotropy is preserved by purely transcendental extensions, we get by in-
duction the following fact which recovers and slightly extends a result by
Knus–Parimala–Sridharan [KPS, Cor. 7.2].

Corollary 7.11. Let k be a field and assume that R = k[t±1
1 , ..., t±1

d , td+1, . . . , tn],
Let C be a non-split octonion k–algebra. Then all R–isotopes of C⊗k R are trivial.

In the case of Laurent polynomial rings over fields, we can generalize this state-
ment as follows.

Proposition 7.12. Assume that R = k[t±1
1 , . . . , t±1

n ] is a Laurent polynomial ring
over a field k of characteristic 0. Let C be an octonion R–algebra such that qC is
isometric to a Pfister quadratic form. Then all R–isotopes of C are trivial.

The proof requires a preliminary statement of the same flavour as Lemma 7.9.

Lemma 7.13. Let A be an integral domain with fraction field K. Assume that 2 is
invertible in A. Let (M1, q1) and (M2, q2) be regular quadratic A–forms and consider
the A[t±1]–quadratic form q = q1 ⊥ tq2 defined on M1 ⊗A A[t±1] ⊕M2 ⊗A A[t±1].
We assume that q1 and q2 are K–anisotropic. Then

Sq1(K) = Sq

(
K[t±1]

)
and Sq1(A) = Sq

(
A[t±1]

)
.

Proof. We claim that we have

(I) Sq

(
K((t))

)
⊆ M1 ⊗A K[[t]]⊕M2 ⊗A K[[t]]

and

(II) Sq

(
K((t−1))

)
⊆ M1 ⊗A K[[t−1]]⊕M2 ⊗A K[[t−1]].

We start with (I). Let m = m1 +m2 ∈ M ⊗A K((t)) such that q(m) = 1. For
i = 1, 2, we write mi = tnimi with mi ∈ Mi ⊗A K[[t]]∗. (Recall that K[[t]]∗ =
K[[t]] \ tK[[t]].)

If m1 = 0, then 1 = q(tn2m2) = t2n2+1q2(m2). Since q2 is K-anisotropic, q2(m2)
is a unit and we get a contradiction. Thus m1 is non-zero. If m2 = 0, then
1 = q(tn1m1) = t2n1q1(m1). Since q1 is K-anisotropic, q1(m1) is a unit and we get
n1 = 0, whence m1 ∈ M1 ⊗A K[[t]]∗. If m1 and m2 are both non-zero, then

1 = q(tn1m1 + tn2m2) = t2n1q1(m1) + t2n2+1q2(m2)

where q1(m1) and q2(m2) are both units (for the evaluation at t = 0). For evaluation
reasons the only possibility is that n1 = 0 and n2 ≥ 0. In all cases, the inclusion
(I) holds.

To show (II), the case m1 = 0 and m2 = 0 are similar to the corresponding
cases in (I). Assume that m1, m2 are both non-zero and write mi = t−nimi with
mi ∈ Mi ⊗A K[[t−1]]∗ for i = 1, 2. We have

1 = q(t−n1m1 + t−n2m2) = t−2n1q1(m1) + t−2n2+1q2(m2)

where q1(m1) and q2(m2) are both units (for the evaluation at ∞). Once again for
evaluation reasons, we have n1 = 0 and 2n2 − 1 ≥ 0 so that n2 ≥ 0. The inclusion
(II) holds.
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Consider now an element x = m1 +m2 ∈ Sq

(
K[t±1]

)
where mi ∈ Mi ⊗A K[t±1]

for i = 1, 2. The inclusions (I) and (II) yield that mi ∈ Mi ⊗A K for i = 1, 2.
Furthermore the equation 1 = q1(m1) + tq2(m2) implies that q1(m1) = 1 and
q2(m2) = 0. The anisotropy of q2,K ensures that m2 = 0. Thus m = m1 comes
from Sq1(K) as desired.

The first statement is then established and the second statement readily follows.
�

Proof of Proposition 7.12. Our assumption is that qC is a Pfister form with entries
〈〈u, v, w〉〉 where u, v, w ∈ R∗ = k∗tZ1 . . . t

Z

n. Up to using the multiplicativity prop-
erties of qC and the action of GLn(Z) on R, we may assume that qC is isometric to
a quadratic form of one of the following shapes:

(i) u, v, w ∈ k∗.

(ii) u, v ∈ k∗ and w = wntn with wn ∈ k∗.

(iii) u ∈ k∗, v = vn−1tn−1, w = wntn with vn−1, vn ∈ k∗.

(iv) u = un−2tn−2, v = vn−1tn−1, w = wntn with un−2, vn−1, vn ∈ k∗.

Since (i) includes the hyperbolic case, we may assume in cases (ii), (iii) and (iv)
that qC is anisotropic over the field k(t1, . . . , tn), and even over k((t1)) . . . ((tn)) by
[GP, Cor. 7.4.3].

Case (i): Let p be a 3-Pfister form such that p⊗k R ≃ qC . Let Cp be an octonion
k–algebra whose norm is p. Such an algebra is unique up to isomorphism. Then C
is a an isotope of the octonion R–algebra Cp ⊗k R. If p is split (resp. anisotropic),
Corollary 7.8 (resp. Cor. 7.11) shows that C is isomorphic to Cp ⊗k R.

Case (ii), (iii) and (iv) : We apply Lemma 7.13 with A = k[t±1
1 , . . . , t±1

n−1], t = tn
and q1 = 〈〈u, v〉〉, q2 = wn 〈〈u, v〉〉. It follows that

S〈〈u,v〉〉(k[t
±1
1 , . . . , t±1

n−1]) = SqC (R).

Let a ∈ S〈〈u,v〉〉(k[t
±1
1 , . . . , t±1

n−1]). Then the isotope Ca,a is trivial by Corollary
7.3.(2). We conclude that all isotopes of C are trivial. �

Remark 7.14. (a) The characteristic zero hypothesis is probably superfluous, it
should work in odd characteristic as well.

(b) Over k[t±1], quadratic forms are classified and in particular diagonalizable [Pa,
Lemma 1.2]. Our statement permits then to classify octonion k[t±1]–algebras and
to recover Pumplün’s classification [Pu].

(c) Assume that the field k is algebraically closed of characteristic zero. In this case,
the so-called “loop octonion algebras” (that is whose underlying torsor is a loop
torsor) over R = k[t±1

1 , . . . , t±1
n ] are classified [GP, Cor. 11.2] and their norms are

Pfister forms. The statement shows that those octonion algebras have no non-trivial
isotopes.

Appendix A. Review on quadratic forms

A.1. Definition. In this work a quadratic module is a pair (M, q) consisting of a
finitely generated and projective R–module M and a quadratic form q : M → R.
For a quadratic module (M, q) we will use the following notation and terminology:
bq : M × M → R is the polar form of q, defined by bq(m1,m2) = q(m1 + m2) −
q(m1)− q(m2) and often abbreviated by b = bq. It gives rise to the R–linear map

(A.1) b∨q : M → M∨ = HomR(M,R), b∨q (m) (n) = bq(m,n).
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The radicals of bq and q are

rad(bq) =
{
m ∈ M : bq(m,M) = 0

}
= Ker(b∨q ),

rad(q) =
{
m ∈ M : q(m) = 0 = bq(m,M)

}
⊆ rad(bq).

For S ∈ R-alg the quadratic form qS : MS → S is the unique quadratic form
satisfying qS(m⊗ 1S) = q(m)⊗ 1S .

We call a quadratic form q regular if b∨q is an isomorphism of R–modules, and
non-singular if rad(qK) = {0} for all fields K ∈ R-alg. We list some useful facts.

• Let a ∈ R. The “1–dimensional” form 〈a〉 : R → R, defined by r 7→ ar2, is
non-singular if and only if a ∈ R∗; it is regular if and only if 2a ∈ R∗.

• A regular quadratic form is non-singular, and if 2 · 1R ∈ R∗ then these two
properties coincide.

• If q is regular resp. non-singular, then so is qS for all S ∈ R-alg.

• The hyperbolic form on R2n, defined by qhyp(r−n, . . . , rn) =
∑n

i=1 rir−i, is
regular and non-singular.

• If (M, q) is a quadratic module where M has constant even rank, then q is
regular if and only if q is non-singular.

Following Knus [K, III.3], we denote by Disc(R) the (commutative) group of
isometry classes of non-singular quadratic forms of rank one over R (also called
discriminant modules) where the product arises from the tensor product. Since µ2

is the orthogonal group of the form x → x2, the yoga of descent shows that the
group Disc(R) is isomorphic to H1

fppf(R,µ2) (ibid, III.3.2).

A.2. Quotients of unit spheres by the antipodal relation. We consider the
unit sphere Sq of q. This is an affine R–scheme such that for any R–ring S, Sq(S) ={
m ∈ MS | q(m) = 1

}
. We are also interested in the affine R–scheme Ŝq defined

by Ŝq(S) =
{
m ∈ MS | q(m) ∈ S∗

}
. We have a closed immersion Sq ⊂ Ŝq.

Lemma A.1. (1) The sphere Sq is faithfully flat over R and Ŝq is smooth over
R.

(2) If M is of constant even rank 2r ≥ 2, then Sq is smooth over R of relative
dimension 2r − 1.

Proof. (1) The map Sq → Spec(R) admits a splitting and hence is faithfully flat.

The R–scheme Ŝq clearly satisfies the lifting criterion of smoothness; it is then

formally smooth, hence smooth since Ŝq is of finite presentation.

(2) Using (1), the fibre-wise smoothness criterion [EGAIV, 4.17.8.2] reduces the
proof to the case of an algebraically closed field k. In this case Sq is isomorphic to the
affine hypersurface

∑r
i=1 xiyi = 1, which is smooth by the Jacobian criterion. �

The R–group scheme µ2 (resp. Gm) acts on Sq (resp. Ŝq) by homothety. We

come to the quotient scheme Sq = Sq/µ2 = Ŝq/Gm, that is the quotient of the unit
sphere by the antipodal relation [SGA3, VIII.5.1]. We remind the reader that the
quotient map fq : Sq → Sq is finite, faithfully flat and that Sq is an affine R–scheme.

Since the morphism f̂q : Ŝq → Sq is smooth, we see that Sq is smooth over R. We

are interested in the characteristic map ϕ : Sq(R) → H1
fppf(R,µ2) ≃ Disc(R).

For each x ∈ Sq(R), f̂−1
q (x) defines an invertible R–module Lx which is an R–

submodule of M .

Lemma A.2. (1) Let x ∈ Sq(R). Let S/R be a flat cover such that x lifts to some
element m ∈ Sq(S). Then Lx ⊗R S = Sm.

(2) The restriction of q to Lx is non-singular and ϕ(x) = [(Lx, q)] ∈ Disc(R).
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Proof. (1) Obvious.

(2) We have to compare the µ2–torsor Ex = f−1(x) with the µ2–torsor E defined
by E(S) = IsomS

(
(R; 1)S, (Lx, q)

)
for each R–ring S. Let S be a flat cover of R

such that Ex(S) 6= ∅. There exists m ∈ Sq(S) such that fq(m) = xS . By (1),

we have Lx ⊗R S = Sm and an isomorphism um : (R, 1)S
∼
−→ (Lx, q), 1 7→ m.

This isomorphism is µ2–equivariant; by faithfully flat descent it gives rise to an
isomorphism Ex

∼
−→ E of µ2–torsors over R. �

Appendix B. A Smoothness Condition

Lemma B.1. Let R be a Dedekind ring. Let X be a R–group scheme of finite
presentation, equidimensional with smooth connected fibres. Then X is smooth.

Proof. We denote by K field of fractions of R. Let X̃ be the schematic closure of
XK in X [EGAIV, 2.2.8.1]. This is a closed R–group scheme of X which is flat. Let
d be the dimension of the fibres of X/R. Let s ∈ Spec(R). According to the upper

semi-continuity of dimensions of fibers [SGA3, VIB .4.1], the κ(s)–scheme X̃s has

dimension ≥ d. On the other hand, X̃s is a closed subscheme of Xs, whereby X̃s

is of dimension d. But Xs is smooth connected so that X̃s = Xs. It follows that
X = X̃, as X̃ is flat. The fibre-wise smoothness criterion [EGAIV, 4.17.8.2] enables
us to conclude that X is smooth over R. �
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Mathematische Annalen 244 (1979), 105-134.

[Co] B. Conrad, Reductive group schemes. In Autour des schémas en groupes, vol. I, Panoramas
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