R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, Proceedings of the 20th International Conference on Very Large Data Bases, pp.487-499, 1994.

R. V. Aroca and L. M. Gonçalves, Towards green data centers: A comparison of x86 and ARM architectures power efficiency, Journal of Parallel and Distributed Computing, vol.72, issue.12, pp.1770-1780, 2012.
DOI : 10.1016/j.jpdc.2012.08.005

S. Ashby, P. Beckman, J. Chen, and P. Colella, The opportunities and challenges of exascale computing. Tech. rep., Summary report of the advanced scientific computing advisory committee (ASCAC) subcommittee -Office of Science, 2010.

S. J. Cox, J. T. Cox, and R. P. Boardman, Iridis-pi: a low-cost, compact demonstration cluster, Cluster Computing, vol.35, issue.2, pp.349-358, 2013.
DOI : 10.1007/s10586-013-0282-7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Amore, R. Baggio, and E. Valdani, A practical approach to big data in tourism: A low cost raspberry pi cluster, Information and Communication Technologies in Tourism 2015, pp.169-181, 2015.

A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, 1988.

T. Kanungo, D. Mount, and N. Netanyahu, An efficient k-means clustering algorithm: analysis and implementation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.24, issue.7, pp.881-892, 2002.
DOI : 10.1109/tpami.2002.1017616

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster analysis, 1990.
DOI : 10.1002/9780470316801

M. J. Kruger, Building a Parallella board cluster. Bachelor of science honours thesis, 2015.

G. Lawson, M. Sosonkina, and Y. Shen, Energy Evaluation for Applications with Different Thread Affinities on the Intel Xeon Phi, 2014 International Symposium on Computer Architecture and High Performance Computing Workshop, pp.54-59, 2014.
DOI : 10.1109/SBAC-PADW.2014.12

D. J. Lim, T. R. Anderson, and T. Shott, Technological forecasting of supercomputer development: The March to Exascale computing, Omega, vol.51, pp.128-135, 2015.
DOI : 10.1016/j.omega.2014.09.009

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp.281-297, 1967.

A. M. Pfalzgraf and J. A. Driscoll, A low-cost computer cluster for high-performance computing education, IEEE International Conference on Electro/Information Technology, pp.362-366, 2014.
DOI : 10.1109/EIT.2014.6871791

N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez et al., Supercomputing with commodity CPUs, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '13, pp.1-40, 2013.
DOI : 10.1145/2503210.2503281

H. Simon, Barriers to Exascale Computing, High Performance Computing for Computational Science (VECPAR), pp.1-3, 2012.
DOI : 10.1007/978-3-642-38718-0_1

A. E. Trefethen and J. Thiyagalingam, Energy-aware software: Challenges, opportunities and strategies, scalable Algorithms for Large-Scale Systems Workshop (ScalA2011), pp.444-449, 2011.
DOI : 10.1016/j.jocs.2013.01.005

F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros, The Glasgow Raspberry Pi Cloud: A Scale Model for Cloud Computing Infrastructures, 2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops, pp.108-112, 2013.
DOI : 10.1109/ICDCSW.2013.25

O. Villa, D. R. Johnson, and M. O-'connor, Scaling the Power Wall: A Path to Exascale, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, pp.830-841, 2014.
DOI : 10.1109/SC.2014.73

R. Xu, D. Wunsch, and I. , Survey of Clustering Algorithms, IEEE Transactions on Neural Networks, vol.16, issue.3, pp.645-678, 2005.
DOI : 10.1109/TNN.2005.845141