A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds

Abstract : In this paper, we introduce a mathematical framework for obtaining spatially smooth semantic labelings of 3D point clouds from a pointwise classification. We argue that structured regularization offers a more versatile alternative to the standard graphical model approach. Indeed, our framework allows us to choose between a wide range of fidelity functions and regularizers, influencing the properties of the solution. In particular, we investigate the conditions under which the smoothed labeling remains probabilistic in nature, allowing us to measure the uncertainty associated with each label. Finally, we present efficient algorithms to solve the corresponding optimization problems. To demonstrate the performance of our approach, we present classification results derived for standard benchmark datasets. We demonstrate that the structured regularization framework offers higher accuracy at a lighter computational cost in comparison to the classic graphical model approach.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01505245
Contributeur : Loic Landrieu <>
Soumis le : mardi 11 avril 2017 - 10:38:16
Dernière modification le : jeudi 13 avril 2017 - 01:08:21

Fichier

PHOTO-S-17-00137.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01505245, version 1

Collections

Citation

Loic Landrieu, Hugo Raguet, Bruno Vallet, Clément Mallet, Martin Weinmann. A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds. 2017. <hal-01505245>

Partager

Métriques

Consultations de
la notice

34

Téléchargements du document

31