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ABSTRACT 9 
While vertical motion induced by long-term geological loads is often used to estimate the 10 
flexural rigidity of the lithosphere, we intend to evaluate the shear rigidity of the lithosphere 11 
using horizontal motion.  Our approach considers that the rigidity of the lithosphere may be 12 
defined as its resistance to horizontal tectonic lateral forces. In this case, a spatial distribution 13 
of an effective shear rigidity can be estimated from the analysis of the interseismic velocity 14 
fields. We consider the Western United States zone where weakly strained areas (e.g., the 15 
Sierra Nevada) are connected with areas of large strain rate (e.g. San Andreas Fault system). 16 
By inverting interseismic strain distribution measured by geodetic methods, we infer the 17 
effective shear rigidity of the lithosphere. The forward problem is defined using the equations 18 
of linear elasticity. The inversion relies on the minimization of the sum of a quadratic measure 19 
of the differences between measured and modelled velocity fields. The functional also 20 
includes regularization terms for the parameters of the model. The gradient of the functional 21 
with respect to the minimization parameters is computed using an adjoint formulation. This 22 
permits the treatment of large dimensional minimization problems. Finally, a measure of the 23 
uncertainty of our inversion is illustrated through the covariance matrix of the parameters at 24 
the optimum. The optimization chart is validated on two synthetic velocity distributions. 25 
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Then, the effective shear rigidity variations of the Western United States are estimated using 26 
the CMM3 interseismic velocities. The inversion displays low effective rigidities along the 27 
San Andreas Fault system, the Mojave Desert and in the Eastern California Shear Zone, while 28 
rigid areas are found in the Sierra Nevada and in the South Basin and Range. Finally, we 29 
discuss the differences between our strain rate and rigidity maps with previously published 30 
results for the Western United States. 31 
 32 
Keywords: GPS; interseimic velocity; effective rigidity; global optimization; San Andreas 33 
Fault system; uncertainties. 34 
 35 

1. INTRODUCTION 36 
Geological strain occurring over millions of years results from the continuous accumulation 37 
of anelastic processes in the crust and in the lithosphere in response to plate motion. Active 38 
deformation areas are identified by seismicity and geodetic deformation. In active 39 
deformation area, the comparison of plates motion from geology and geodesy, at these two 40 
different time scales, provides a fair agreement in term of horizontal velocities (Sella et al., 41 
2002). Geologic and geodetic comparisons can also be made across active faults using 42 
standard models for interseismic strain (McCaffrey, 2005; Meade and Hager, 2005; Savage 43 
and Burford, 1973). It appears that most of the documented faults display a close agreement 44 
between geodetic and geologic strain rates (Vernant, 2015). 45 

From a mechanical viewpoint, the close agreement between short and long-term strain rates 46 
(i.e. time scales from 10 yrs to 1 Myrs) probably reflects the stability of the stress balance in 47 
the lithosphere under the action of slowly evolving remote forces associated to subduction, 48 
basal drag and, more generally, the plate system gravitational potential energy. Under the 49 
action of these forces, strain distribution is mostly controlled by the lithospheric strength. By 50 
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strength we mean the maximum force sustainable by the lithosphere. Like lithospheric stress, 51 
lithospheric strength cannot be determined precisely with depth, unless with crude rheological 52 
yield strength envelope models (Tesauro et al., 2011). Indeed, a precise strength estimate with 53 
depth would require a detailed knowledge of the temperature profile with depth, lithology and 54 
water contents, as well as friction law in the brittle domain and temperature dependent viscous 55 
laws in the ductile crust and mantle. Therefore, the lithospheric strength can only be 56 
approached through its integral measure along depth, with numerical models of the 57 
lithosphere. These solve stress equilibrium using elasto-visco-plastic laws with prescribed 58 
boundary conditions (Bird and Kong, 1994; Chéry et al., 2001). However, a simplified 59 
version of lithospheric strength is embedded in the concept of effective elastic thickness 60 
(EET) applied to plate flexure. Indeed, it has been shown that plates submitted to topographic 61 
and other internal loads display vertical motions controlled by plate rigidity (Watts, 2001). 62 
Combined analysis of topographic and gravimetric signals allows for computing effective 63 
elastic thickness and its variation at continental scale (Lowry and Smith, 1994; Pérez-64 
Gussinyé et al., 2009). A fair agreement is generally found between heat flow and EET where 65 
small values of EET correspond to high heat flow zones.  66 
Both lithospheric strength and effective elastic thickness are commonly associated with the 67 
long-term behaviour of the lithosphere. However, these concepts can be adapted in order to 68 
interpret interseismic geodetic measurements (Chéry, 2008). For a typical time of 10 years of 69 
geodetic observation and in the absence of large earthquakes, a linear evolution of GPS 70 
motion is often observed. Therefore, a collection of GPS velocities may be used in order to 71 
compute strain rate maps at plate scale (Kreemer et al., 2014). Even if this latter analysis is 72 
purely kinematic, the resulting geodetic strain rate must satisfy stress equilibrium over the 73 
time of observation. In such a problem, the unknown is the incremental lithospheric strength. 74 
One example is the spatial variation of the stress change integrated over the depth over the 75 
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time of GPS observation. The problem can be simplified assuming that lateral strength 76 
variation is modulated by geodetic plate thickness (Chéry, 2008). The integrated value of the 77 
shear-stress at depth is what we call the effective shear rigidity. It is conceptually similar to 78 
the flexural rigidity: the effective shear rigidity expresses the resistance of the lithosphere to 79 
lateral forces (unit is N), while the effective flexural rigidity is related to the resistance of the 80 
lithosphere to vertical bending (unit is N.m).  81 
In Chéry et al. (2011), we proposed a global optimization approach to estimate effective plate 82 
rigidity maps by the inversion of a GPS velocity field. The inversion provides a rigidity field 83 
realizing a RMS between the observed and modelled velocity fields close to 2 mm/yr for a 84 
dataset in southern California. However, we faced difficulties to properly fit high velocity 85 
gradients in the vicinity of the San Andreas Fault system. This is because the method did not 86 
allow the consideration of large inversion problem and therefore the local spatial density of 87 
our model parameters was too low. Moreover, a priori velocity boundary conditions were 88 
necessary and no uncertainties estimated.  89 
In this paper, we present an enhanced version of the method to address the previous issues: 90 

 the number of optimization variables can now be arbitrary thanks to the use of an 91 
adjoint formulation of the forward problem. This permits high spatial resolution for 92 
the rigidity. 93 

 boundary conditions are not anymore prescribed but now treated as optimization 94 
variables as well.  95 

 uncertainties are calculated for optimal rigidity value. 96 
The paper is organized as follows: (1) we describe the new features of the method and we 97 
state the differences with respect to Chéry et al. (2011), (2) we demonstrate the efficiency of 98 
our new approach on a synthetic dataset that mimics a strike slip fault locked at depth, (3) we 99 
propose a refined rigidity map of southern California and we study the sensitivity of the 100 
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solution of the inversion problem with respect to the location of domain boundaries. Finally, 101 
(4) we compare and discuss our results with those already published, both in terms of strain 102 
rate maps and effective elastic thickness. 103 
 104 

2. GOVERNING EQUATIONS AND FORWARD MODELLING  105 
Geophysical laws provide the mathematical framework to compute the outcome of some 106 
physical processes: this is called the forward problem. In other words, the model and its inputs 107 
are known and specific data (e.g. seismic, geodetic, or magnetic) are sought thanks to the 108 
equations linking the physical parameters to the solution at the observation location. Most of 109 
the time, we only have access to the consequences of a physical process (e.g. the geodetic 110 
measurements). These consequences need to be inverted to determine the physical properties 111 
of the Earth interior (Tomography: e.g. Montelli et al., 2004; Tanaka et al., 2009. Volcanoes 112 
and geothermal zones: e.g.; Anderson and Segall, 2013; Dzurisin, 2003; Mossop and Segall, 113 
1999. Application to reservoirs: e.g. Hesse and Stadler, 2014). In some cases, there are 114 
analytical s 115 
the observations. For most geophysical problems, the limited amount of data used to 116 
reconstruct a model with infinite degrees of freedom leads to the non-uniqueness of the 117 
solution. Consequently, the inverse problem only provides one of the many models that 118 
explain the data and has uncertainty because the real data are subject to uncertainties and 119 
errors.  120 
The effective elastic thickness of the lithosphere can vary laterally due to both elastic 121 
properties and the rheological failure properties that limit elastic strength. Flow strength 122 
depends on other factors than the temperature. Also, part of the variation imaged by the 123 
geodetic technique is probably due to the limits of frictional strength on faults (Bird and 124 
Kong, 1994). The thermal plate regime probably exerts a large influence due to the sensitivity 125 
of the effective plate rigidity with respect to its temperature profile (Watts, 2001). Here, we 126 
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model these rigidity variations as lateral variations of the elastic properties of a plate with 127 
constant thickness. Thus, our forward model is made of a domain ( ) symbolizing a 2-D 128 
plate, which can deform according to linear and isotropic elasticity (Fig. 1). Along the 129 
boundary of the domain , we apply Dirichlet conditions (i.e., in-plane velocities ) and 130 
assume free normal traction at the surface of the plate (plane stress assumption). This 131 
hypothesis means that strain perpendicular to the plane can occur. The forward model is 132 
therefore composed of three equations, the stress equilibrium (Eq. 1), a constitutive equation 133 
linking the strain rate to the stress rate for a 2-D plate (Eq. 2) and boundary conditions (Eq. 134 
3): 135 

  on  (1) 

  on  (2) 

  on  (3) 
where  and are the strain- and stress-rate tensors,  is the Kronecker delta function,  and 136 

 137 
is assumed to be constant and equal to 0.25. The Young modulus  remains the only free 138 
mechanical parameter in this equation. Since the model is driven by a velocity condition, only 139 

. This means that 140 
any distribution of the form  provides the same velocity field 141 

 regardless the value of the constant C. For this reason, we define the non-dimensional 142 

effective rigidity distribution  as  where  is the minimum value of  143 

over the domain. So, all distributions of  presented in this paper range from 1 to some 144 
maximum values. 145 
For a given spatial domain, we generate a uniform 2-D Delaunay mesh composed by 146 
triangles. In order to estimate the velocity field  at geodetic measurement locations we use 147 
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the academic 2-dimensional finite element code CAMEF. The code does not incorporate the 148 
value of the plate thickness. Therefore, we cannot discriminate plate thickness and elastic 149 
properties of the lithosphere from the rigidity values. Hence, fixing an absolute value to the 150 
rigidity remains an open problem. Finally, the velocity field  produced by the forward model 151 
depends on two input parameter sets: the velocity boundary conditions  and the 152 
distribution of  (Fig. 1). Eventually, we try to fit  with the observations . 153 
 154 

3. INVERSION METHOD 155 
Running the direct problem requires the prescription of the velocity on the boundary nodes 156 
and the rigidity for each mesh element. Contrary to the approach proposed in Chéry et al. 157 
(2011), the boundary conditions are not imposed anymore in the inverse problem and are 158 
treated as optimization parameters. We associate one rigidity parameter to each mesh element 159 
leading to a very large optimization problem. Our global optimization algorithm requires the 160 
gradient of the functional. We consider an adjoint formulation of the forward model to access 161 
this gradient with respect to all the model parameters simultaneously.  162 

3.1 Cost function 163 
We want to invert observed data  and determine the model parameters  164 
minimizing the distance (here -norm) between the observed data  and the predicted field 165 

 inside the domain : 166 
  (4) 

where  is the cost function to minimize, and subscript  means that the -norm is 167 
weighted by the inverse of the covariance matrix of the geodetic measurements.  168 
Geophysical inverse problems are usually ill-posed and need to include a subjective degree of 169 
regularisation to achieve relevant geophysical solutions (e.g. Zaroli et al., 2013). We therefore 170 
introduce to the cost function two Tikhonov regularization terms to control local fluctuations 171 
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of the parameter vector (Tarantola, 2004; Tikhonov, 1943). We separate the regularization of 172 
the parameters along the boundaries  and those associated to the rigidity  inside the 173 
domain: 174 

  (5) 
where  and  are regularization operators. The former acts over the domain and 175 
controls the regularity of the rigidity distribution, while the latter monitors the regularity of 176 
the boundary conditions. Both are particular forms of non-linear Laplace-Beltrami operators 177 
with a local control of the level of regularization (Mohammadi and Pironneau, 2009). The 178 
weights  have to be chosen by the user. Series of different optimizations have been run to 179 
highlight the effect of  on the inversion. By doing so, our goal is to adjust  to the data 180 

, while preserving some degree of regularity on both the rigidity inside the domain and the 181 
velocities along the boundaries. However, for each simulation, we only have the values of the 182 
velocities (and not rigidity) to compare with. Hence, adjusting the regularity of the rigidity is 183 
largely subjective and we found that using no regularization ( ) for rigidity leads to 184 
acceptable spatial rigidity gradients. Hence, in this study, we only consider the regularization 185 
term of the boundary conditions.  186 
In order to choose , we explore the trade-off between the residual data misfit 187 

 and the regularization term . This is featured in a trade-off or Pareto 188 
curve, which gathers all feasible solutions that cannot be improved in any of the objectives 189 
without degrading the other objectives (e.g. Vassilvitskii and Yannakakis, 2005). The 190 
selection of an optimally regularized solution depends upon the requirements of a particular 191 
study. We will illustrate the impact of the regularization over the boundary conditions for the 192 
rigidity inversion in Southern California. 193 
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3.2 Global optimization  194 
We apply a global optimization algorithm (Ivorra et al., 2013) to iteratively invert interseismic 195 
geodetic data. Global optimization is necessary as we have no information on the convexity of 196 
the cost function and several local minima can be present. The global optimization strategy is 197 
meant to improve the initial condition for classical gradient-based methods looking for an 198 
initialization in the attraction basin of the global optimum (Mohammadi and Pironneau 2009).  199 
In addition to the Tikhonov regularization mentioned above, the gradient of the functional is  200 
smoothed (Mohammadi and Pironneau, 2004, 2009) in order to control the regularity of the 201 
parameters. The optimization algorithm ends when the functional or the variations of the 202 
gradient are smaller than some user-defined thresholds. A synthetic flow chart of the inverse 203 
problem is given in Fig. 2. 204 
Functional derivatives computation is done using an adjoint formulation of the forward model 205 
(e.g. Plessix, 2006). In most of the inverse problems in geophysics, the cost function cannot 206 
be analytically linearized. If a finite difference approach is adopted, the number of forward 207 
computations for assessing the gradient of the functional is proportional to the number of 208 
parameters. Let us briefly recall the adjoint technique. The gradient of the functional with 209 
respect to the model parameters can be expressed as follows: 210 

  (6) 

where  is the functional,  the parameters and  the velocity calculated at each node of the 211 
mesh. From the equilibrium equation , we incorporate the rigidity matrix  and the 212 
stress vector  in (Eq. 6): 213 

  (7) 
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Defining the adjoint variable  as the solution of the system  (because  is 214 
self-adjoint in our case), we obtain: 215 

  (8) 

Consequently, the amount of computation needed to obtain the gradient of the functional 216 
mostly corresponds to the solution of one forward model, by opposition to a finite difference 217 
scheme which needs a number of forward model solutions equal to the number of parameters. 218 

3.3 Model Parameters initialization 219 
Real GPS datasets present large spatial variations of density measurements. GPS stations are 220 
usually set to observe the velocity gradient around fault zones. Therefore, we usually expect 221 
null strain in geographical areas where measurements are sparse. This information can be 222 
used to define the initial guess for the lithosphere rigidity in the optimization procedure. This 223 
is similar to what is done in topological optimization (e.g. Allaire et al., 2004) where the 224 
initial structural rigidity is set to the maximum admissible value. Optimization then aims at 225 
making the structure softer and softer. A common problem in mechanical structure design is 226 
to optimize the topology of an elastic structure given certain boundary conditions. Optimality 227 
implies to minimize the weight, but at the same time, the structure needs to be as strong and 228 
rigid as possible. The rigidity of each element is hence reduced at each iteration of 229 
optimization when requested.  230 
Synthetic and real cases presented in this paper involve rigidity reaching very large values in 231 
areas that exhibit little internal deformation. Thus, the rigidity amplitude ranges from a given 232 
minimum to infinity in no-deformation zones. This semi-open variation domain is not suitable 233 
for numerical search. Consequently, we choose a parametrization design using the 234 
compliance, , of the material instead of the rigidity. The compliance is defined over the 235 



 11

interval , the lower bound corresponding to a quasi-rigid body. We have considered 236 
different values of . It appears that a value of  which corresponds to two order of 237 
magnitude admissible variation for the rigidity is sufficient to fully capture the range of most 238 
strain- Appendix B). This use of 239 
compliance insures greater stability of the inversion process. For ease of understanding and 240 
interpretation, we express our results in terms of rigidity  after the inversion is completed. 241 

3.4 Model parameters uncertainty 242 
GPS observations are plagued with uncertainty due to various factors: instrumental noise, 243 
field measurement procedure, the skill of the operator and local environmental motions. These 244 
uncertainties affect in a complex way the GPS time series and generate a coloured noise on 245 
positions (Mao et al., 1999). But, these also induce uncertainties on the model parameters 246 
determined through our optimization process. For that reason, it is essential to quantify the 247 
impact of data uncertainty propagating through the inversion. Hence, the resulting rigidity 248 
distribution is complemented with a sensitivity map.  249 
To determine the model parameters uncertainties, we link the covariance matrices of the 250 
parameters and data. Let us consider the observation  (geodetic velocities) as a sum of a 251 

-  with zero variance (i.e.  and an uncertain quantity 252 
: . For this sum, the covariance matrix is given by:  253 

  (9) 
Because  is deterministic,  and  are independent (i.e. . Therefore, the 254 
covariance matrix reduces to: 255 
  (10) 

We consider a linear relationship between  and : 256 
  (11) 

which leads to: 257 
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 (12) 
where  is the Jacobian matrix made of the derivatives of the velocities at geodetic 258 
measurement locations with respect to the model parameters. Similarly to (Eq. 9), we define 259 
the covariance matrix of the predicted parameters  as: 260 

 (13) 
where  (the actual values of the parameters) is assumed deterministic. Again,  and  are 261 
assumed independent, and therefore: 262 

 (14) 
Finally, equation (Eq. 12) becomes: 263 

 (15) 
(16) 

So, this equation formulates the uncertainty propagation from geodetic measurements to the 264 
model parameters via the Jacobian matrix . The construction of this matrix can be performed 265 
in two different ways. The simplest approach consists in expressing it analytically as a 266 
function of the gradients that have been evaluated during the resolution of the adjoint 267 

problem. Indeed,  can be explicitly deduced from the equation . This 268 

approach is straightforward and theoretically correct, but it is numerically unstable since it 269 
involves the inversion of singular matrices. Consequently, it is more robust to build  from 270 
finite difference computations. This consists in perturbating one parameter around its 271 
optimum (typically by 10%), and then computing the perturbation of the predicted velocity at 272 
all geodetic measurement locations. This approach is numerically robust because it involves 273 
no matrix inversion. With the second member of Eq. 16 in hand, we can now provide an 274 
estimation of the variance (diagonal of the covariance matrix) of the optimization variables.  275 
In this study the parameter is the compliance  with its standard deviation 276 

. We define dissymmetric upper and lower bounds around the optimum for 277 
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the rigidity parameter . To represent the uncertainty on the 278 

rigidity ( ) we use the fact that  is the inverse of the compliance and therefore: 279 
 (17) 

4. Determination of effective rigidity for a synthetic case  280 
Before running our optimization scheme on real cases, we evaluate its efficiency to recover a 281 
given rigidity distribution  (target rigidity) associated with a specific 2-D velocity field .  282 
Surface strain across a locked fault zone can be interpreted either using the concept of a 283 
slipping fault zone beneath a locking depth (Savage and Burford, 1973) or by assuming a 284 
shear-rigidity variation perpendicular to the fault (Chéry, 2008). Differences and similarities 285 
between these models are discussed in this latter paper.  According to the variable rigidity 286 
hypothesis, we define a target given by: 287 
  (18) 

Where  is a non-dimensional rigidity,  is the distance to the fault and  is a characteristic 288 
dimension. Solving force balance within such a plate leads to the following fault-parallel 289 
velocity field: 290 
  (19) 
Therefore, such a velocity distribution is the solution of the spatially variable function of Eq. 291 
18 but can also be associated to a screw dislocation at depth (e.g., Savage and Burford, 1973). 292 
In the case of active fault systems,  is generally associated to a physical locking depth which 293 
can be estimated using geodesy and seismology. In the case of the San Andreas Fault system, 294 
values of d range from 6 to 22 km depending on the location along the fault and the method of 295 
determination (e.g. Smith-Konter et al., 2011). 296 
We conduct two tests to verify the ability of the method to retrieve the rigidity distribution 297 
given by Eq. 18 for different GPS data sets. We also test different values of  (from 2 km to 298 
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17 km) in order to generate velocity fields commonly observed on the San Andreas Fault. The 299 
specific case of fully-creeping faults ( ~0 km) is discussed in Appendix A, with application 300 
to the SAF segment located North of Parkfield. We focus here on the consequences of 301 
processing two different spatial distributions of GPS data: (1) evenly spatially distributed and 302 
(2) concentrated near highly strained zones. This corresponds to on site situations (Fig. 3). 303 
Both distributions are made of about 120 GPS velocities vectors.  304 
Several experiments have been conducted to define an optimal mesh size. On the one hand, 305 
the computational time is related to the mesh size. The finer is the grid, the longer will be the 306 
optimization (about 60 times longer for a mesh 3.6 times finer). On the other hand, the grid 307 
needs to be fine enough to capture the variations of the velocity field, notably close to high 308 
velocity gradient areas such as the creep zones of the Parkfield segment. Eventually, a 309 
spatially adaptive mesh should be implemented. We choose to work with a mean constant 310 
spacing of 20 km. This configuration is generally a good compromise between the number of 311 
available geodetic measurements, the number of parameters that need to be adjusted and the 312 
size of the object we want to study. 313 
For the first case, GPS measurements (black arrows on Fig. 3) are uniformly distributed over 314 
the domain, with a constant spacing of 20 km. For the second distribution, we mimic  315 
GPS network by producing a velocity field whose spatial density decreases with the distance 316 
to the fault. In both cases, the domain is a 200-km square with a 20-km mesh size (394 317 
elements). The dextral strike-slip fault (green line on Fig. 3) has a slip rate  of 30 mm/yr and 318 
is locked at 10 km depth. The admissible values for the non-dimensional relative rigidity 319 
range from 1 to 100 (see Appendices A and B for a discussion of such a choice).  320 
We apply our optimization algorithm to invert the two velocity fields (Fig. 4 and 5). In the 321 
case of the uniform dataset (Fig. 4 a-f), we first compare the synthetic velocities (red dots on 322 
Fig. 4e) to the modelled ones (grey dots on Fig. 4e) along a profile (white dashed line on Fig. 323 
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4a) perpendicular to the fault (black dashed line on Fig. 4a-c). The dataset from the inversion 324 
almost perfectly matches the characteristic shape of a 2-D arctangent velocity field given by 325 
Eq. 19 (Fig. 4e). The misfit between predicted  and theoretical  (Fig. 4d) permits to 326 
estimate the tendency in over or under estimating  in our inversions. Besides, the difference 327 
between synthetic and modelled velocities, hereafter called residual velocities, is lower than 328 
0.25 mm/yr over the whole domain (Fig. 4c).  329 
Contrary to real cases where the true effective rigidity distribution is unknown, synthetic 330 
cases allow for testing the efficiency of our inversion method to retrieve the quadratic rigidity 331 
field given by Eq. 18. Fig 4a shows the rigidity distribution over the whole domain of 332 
analysis, while Fig. 4b shows the uncertainty distribution map and Fig. 4f focuses along one 333 
transect across the fault. We can notice that, as expected, the code predicts a low rigidity zone 334 
(90% of the elements ranging between 1 and 3) along a 40 km-wide area centred on the fault. 335 
Also,  increases rapidly with the distance to the fault to reach high values (>30) 60 km from 336 
the fault. Associated with these rigidity values, we find uncertainties that are very small where 337 
rigidity is small but quite high when the opposite occurs (Fig. 4b). This mainly comes from 338 
the predominance of the (squared) rigidity term in Eq. 17. This expresses the fact that, in areas 339 
that do not deform significantly, very large values of rigidity are admissible (up to infinity) 340 
without modifying significantly the local velocity field. Since our search interval for rigidity 341 
is bounded, our optimal solutions tend to underestimate the real rigidity in non-deforming 342 
areas. This can be seen far from the fault in all the synthetic cases presented in this study (Fig. 343 
4, 5, A.1 and A.2). Finally, we find that, within the uncertainties estimated by our method 344 
(paragraph 3.4), our predicted rigidity distribution fits its theoretical value. This is clearly true 345 
along the transect crossing the fault on Fig. 4f. 346 
For a data set whose density decreases with distance to the fault (Fig. 5a-f), we observe the 347 
same ability for the optimization algorithm to retrieve an arctangent-shaped velocity field 348 
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(Fig. 5f) and this despite sparse data away from the fault. In this synthetic case, some 349 
elements of the grid contain more than one velocity, making the capture of very local velocity 350 
gradients difficult if not impossible using one single rigidity parameter over each mesh 351 
element. Therefore, residual velocities (Fig. 5c) are generally higher for case 2 than for case 1, 352 
with 10% of residual vectors greater than 1 mm/yr (the 1  uncertainty associated with the 353 
data being 2 mm/yr) mainly located in the vicinity of the fault where each element of the grid 354 
contains several GPS measurements. As a result, local gradients are more difficult to estimate 355 
than for case 1 and this could explain the distribution of residual we observe in Fig. 5c. 356 
Despite these moderate residuals, the mean residual velocity over the whole dataset is as low 357 
as 0.85 mm/yr which is lower than the 1  uncertainty of the data. This situation is typical of 358 
real dataset with a high density of GPS installed in highly deformed areas.  359 
Finally, as for the uniform case, we find that our inversion leads to a distribution of rigidity 360 
that fits well its theoretical model within the predicted uncertainties (Fig. 5f). Indeed, 361 
considering the 40-km band width around the fault, (Fig. 5a) shows that 66% of the elements 362 
show low rigidities (between 1 and 3) while 29% present moderate ones (between 3 and 10). 363 
As described above, in very few deforming areas, the optimal solution underestimates the real 364 
rigidity but the uncertainty associated with these high values of rigidity tends to be quite high. 365 
Moreover, the uncertainty values also depend on the local density of geodetic measurements. 366 
Consequently, even when the optimization leads to fairly correct values of low-to-moderate 367 
rigidity close to the fault, their uncertainties may be large (Fig. 5b) as one can see along the 368 
transect between 20 and 100 km especially if the data distribution is random (Fig. 5f). Again, 369 
we present the misfit between  and  370 
Overall, the satisfactory results of this experience lead us to keep this dimensioning of the 371 
grid (triangles with about 20 km edges) for the real case application below. 372 
 373 
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5. EFFECTIVE RIGIDITY OF WESTERN USA  374 

5.1 Tectonic context and GPS data 375 
The tectonic of the Western United States mostly occurs in response to the relative motion 376 
between the Pacific plate and the North American plate. Two main zones accommodating the 377 
deformation are the San Andreas Fault system zone and the Basin and Range. In northern 378 
California, the relative motion between the Pacific plate and the Sierra Nevada reaches a 379 
differential rate of 30 mm/yr and results in large earthquakes. East of the Sierra Nevada, a 380 
significant part of the deformation (~10 mm/yr) occurs within the Basin and Range over a 381 
broad fault system. To the south, most of the strain is accommodated by the San Andreas 382 
Fault system while the southern Basin and Range is relatively inactive (Kreemer and 383 
Hammond, 2007). Although significant vertical deformation can occur during seismic events 384 
(Landers 1992, Northridge 1994 or Hector Mine 1999 earthquakes, red stars on Fig.6), 385 
vertical motion observed in the area are nearly 10 times smaller than the horizontal velocities 386 
during interseismic periods (Smith-Konter et al., 2014). Consequently, we chose to analyse 387 
only horizontal motion. 388 
We focus our study on the southern part of the San Andreas Fault system (SAFS) where high-389 
quality spatially dense GPS measurements are available. We use the CMM3 (Southern 390 
California Earthquake Center Crustal Motion Map Version 3.0, SCEC CMM3) velocity field 391 
as it was published by Kreemer and Hammond (2007). It is supposed to represent the 392 
interseismic motion that affects our region of interest. This means that all transient motions 393 
induced by the seismic events of Landers, Northridge and Hector Mine have been modelled 394 
and removed. These data are associated with relatively homogeneous uncertainties of 1.2 395 
mm/yr in average.  396 
A Lambert conformal conic projection is used to project the GPS velocity field on a Cartesian 397 
frame. To evaluate the effect of the choice of the domain, we analyse two overlapping areas 398 
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shown in Fig. 6. We aim at checking that effective rigidity values remain invariant regardless 399 
of the chosen borders. The first area of interest, hereafter named Zone 1, is limited by a red 400 
dashed line on Fig. 6 and is identical to the one used by Chéry et al., (2011). Then, a 401 
translation moves Zone 1 by 100 km towards the Northeast to obtain the second region called 402 
Zone 2 (blue dashed lines on Fig. 6). Both areas include the central San Andreas Fault system 403 
(SAFS) segment, the Eastern California Shear Zone (ECSZ), the south Sierra Nevada (SN) to 404 
the North, the Mojave Desert (MD) in the centre, the Salton Sea (SS) and the south Basin and 405 
Range (SBR) to the East. The western part of Zone 1 contains a part of the Pacific Plate along 406 
the Californian coast whereas Zone 2 is directly bounded by the San Andreas fault to the 407 
West. 408 

 409 
5.2 Model parametrization and regularization coefficients 410 

According to the synthetic experiments presented above, we choose a uniform grid spacing of 411 
20 km. This configuration leads to meshes of 2284 elements. 412 
At first, we attempt to evaluate the Tikhonov parameter . To do so, we analyse the trade-off 413 
between the normalized regularization member of the functional along the domain 414 

boundaries, , and the residual data misfit  at all geodetic 415 

measurements within the domain (Fig. 7a). Each point of the curve represents an optimization 416 
for a given value of the regularization parameter . A decrease of  corresponds to an 417 
increase of the regularization of the velocity field along the domain boundary, meaning that 418 
high gradient changes of  are smoothed. This would confer some degree of smoothness to 419 
the solution. On the contrary, a reduction of regularization enables a better fit to high velocity 420 
gradient changes along the domain boundary. These particularly occur at the transition 421 
between highly deforming fault zones and rigid far fields. Nevertheless, this may induce 422 
undesirable velocity gradient variations where the velocity field is smooth. Hence, in order to 423 
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find the appropriate balance between the regularity of the boundary conditions and velocity 424 
residual, we compare observed and modelled velocity distributions along the boundary (Fig. 425 
7b-c-d). When the damping parameter is small (Fig. 7b), we allow the regularization term of 426 
the functional to be high. This in turn permits to better fit the observed velocities close to the 427 
boundaries and consequently within the domain. Nevertheless, the boundary solution may 428 
show in some places a degree of sharpness that is not supported by any data. Increasing the 429 
damping parameter used in Fig. 7c increases the regularity of the boundary conditions while 430 
still fitting properly the data along the border. We observe that this is done without 431 
significantly altering the fit between modelled and observed velocities. Finally, increasing the 432 
damping parameter, which means that extremely smooth boundary conditions become 433 
admissible, leads to incompatibility between modelled and observed velocities along the 434 
border (Fig. 7d). From this analysis, we set the regularization parameter  to  for which 435 
the balance between the regularization of the boundary conditions and the fit to observed 436 
velocities within the domain appears to be optimal. 437 

5.3 Results of the inversion 438 
Considering the model geometry and parametrization previously described, we perform the 439 
inversion of the GPS velocities for the two selected zones (Zone 1 and Zone 2) of the Western 440 
United States.  441 

5.3.1 Estimated relative rigidity and corresponding uncertainty distributions 442 
The inversion of the interseismic velocities leads to the distribution of effective rigidity 443 
illustrated by Fig. 8a-b. In the case of Zone 1 (Fig. 8a), the lowest values of  (1-1.5) are 444 
centered on the Mojave Desert, whereas slightly higher rigidities (1.5-4) are observed along 445 
the San Andreas Fault system and in the extreme South of the Eastern California Shear Zone. 446 
However, lower values of rigidity (associated with higher deformation rates) are expected 447 
along the San Andreas Fault system rather than in the Mojave Desert. We expect that this 448 
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artefact is likely due to an over-correction of the post-seismic motion of the seismic events of 449 
1992 (Landers), 1994 (Northridge) and 1999 (Hector Mine) within the CMM3 velocity field 450 
(Liu et al., 2015) . When the GPS data are processed to only keep the interseismic velocity, 451 
the post-seismic answer of the earthquakes is estimated at its best. This artefact in our results 452 
could help identify the residual post-seismic motion left in the data. As for the high rigidities 453 
(>12), they are associated to the South Basin and Range and the South Sierra Nevada where 454 
no significant deformation needs to be accommodated. As an extension of Zone 1, the 455 
inversion in Zone 2 (Fig. 8b) produces similar rigidity distribution along the SAF and the 456 
extreme South of the ECSZ (1.5-4), with, again a surprisingly low rigidity (<1.5) in the 457 
Mojave Desert. However, one main difference can be underlined as a zone with rigidity 458 
ranging from 6 to 12 is found in the eastern part of the South Basin and Range. 459 
As described in paragraph 3.4, we determine the uncertainties associated with our rigidity 460 
estimation which essentially result both from the local measurement density and the 461 
uncertainties associated with the data themselves. For each mesh element, we estimate the 462 
lower and upper admissible value for rigidity (Fig. 9a-b). First, along all the active fault 463 
systems, identified rigidity values are quite low as the amplitude between the upper and lower 464 
bounds are lower than 3. The reliability of our solution in deforming zones comes from the 465 
local high density of measurements and from large amplitude of the deformation. Conversely, 466 
when entering rigid zones, where only few measurements are available, the uncertainties 467 
increase very much reaching values that typically range from 2.5 to above 16 by several 468 
orders of magnitude. This is notably the case East of the ECSZ. Although the distribution of 469 
rigidity shown in Fig. 8a suggests an optimal value of 6-12, uncertainties in this area (Fig. 9) 470 
indicate that a much larger rigidity value (higher than 16 by several orders of magnitude) is 471 
also valid. This can be noted in the inversion over the shifted domain (Fig. 8b).   472 
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5.3.2 Associated residual velocities 473 
Alongside with the distribution of the rigidity, we evaluate the difference between GPS and 474 
the modelled velocities to produce the residual map (Fig. 10a-b). The fit between observed 475 
and modelled data is estimated using the normalized root mean square ( ) (McCaffrey, 476 
2005), 477 

 (20) 

where  and  stand for the eastern and northern directions respectively,  is the residual 478 
velocity,  the data standard error and N the number of data. In addition to the , the 479 
weighted root mean square ( ) gives a measure of the a posteriori weighted scatter in 480 
the fits (McCaffrey, 2005), 481 

 (21) 

For Zone 1 (Fig. 10a), we get a  of 1.26, with a  of 1.10 mm/yr that can be 482 
compared with the uncertainty of 1.20 mm/yr associated with the data. The highest residuals 483 
(>4.5 mm/yr) occur on the southern segments of the SAF, while intermediate residuals (2.5-484 
4.5 mm/yr) are unevenly distributed between high and low data density zones.  485 
A similar analysis for Zone 2 gives a  of 1.25 (Fig. 10b) with a  of 0.93 mm/yr. 486 
The difference observed in the values of both zones can be explained by the data distribution. 487 
Indeed, the second zone excludes some of the velocities that are poorly estimated by the 488 
optimization (notably on the Pacific plate) and includes few vectors that are better recovered.  489 
 490 

6. DISCUSSION 491 
Based on the hypothesis that interseismic strain mostly reflects rheological contrasts across 492 
the lithosphere, the solved inverse problem entirely depends on the quality of the CMM3 493 
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velocity field. Therefore, we first discuss the sensitivity of the model result with respect to the 494 
data. Then, we discuss our results (strain rate and rigidity distributions) in the light of the ones 495 
provided by previous studies on western US and California. We finally discuss the future use 496 
of our method for tectonic and geodynamic purposes. 497 

6.1 Robustness of the inversion 498 
In this study, we use the entire dataset of the Southern California Crustal Motion Map Version 499 
3.0, involving 615 vectors for Zone 1 and 530 vectors for Zone 2. In order to evaluate the 500 
impact of data selection on rigidity distribution, we perform complementary inversions using 501 
identical parametrization, but removing GPS vectors whose residual norms  are greater than 502 
a given threshold value. These residuals can be due to three different factors:  503 

1) GPS uncertainty. Data uncertainties range from 0.16 mm/yr to 3.71 mm/yr for the 504 
horizontal components with a  value of 1.20 mm/yr. The maximum data 505 
uncertainties are observed in the South of Mojave Desert, along the Los Angeles Bay 506 
and for a few isolated points in the Sierra Nevada and ECSZ.  507 

2) Local motions. Besides interseismic plate motions, some sites may be affected by 508 
gravitational collapse, geothermal activity (e.g. Vasco et al., 2002) or the exploitation 509 
of aquifer systems (e.g. Galloway et al., 1998; Hoffmann et al., 2001). Many different 510 
processes can locally obscure the GPS interseismic velocity component, such as 511 
unravelled postseismic motions. 512 

3) Modelling. The optimization algorithm and the forward model can also be at the 513 
origin of the residual velocities. Indeed, a poor estimation of the velocity along the 514 
boundaries could be the reason why high residual velocities are observed at the 515 
junction between the fault and the boundaries of the domain for both synthetic and real 516 
data cases. Furthermore, our forward model includes several assumptions such as an 517 
absence of body forces. Also, the data are assumed free of post-seismic effects which 518 
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can be inexact if all post-seismic effects due to the Landers, Northridge and Hector 519 
Mine earthquakes, for instance, have not been fully removed.  520 

We choose to withdraw from 0.3% (  6 mm/yr) up to 50% (  1.3 mm/yr) of the data in 521 
order to analyse the stability of the solution of our inversion. The corresponding , 522 

 and the correlation of the rigidity distribution with respect to the one obtained by the 523 
previously described inversion are gathered in Error! Reference source not found.. We 524 
choose experiment 1 as the reference solution to estimate the rigidity correlation. Removing 525 
up to 10% of the GPS measurements exhibiting significant residuals in our initial inversion 526 
(experiences 3 to 6 in Table 1) neither enhance the  or the , nor significantly 527 
modify the rigidity distribution. But considering only 50% of the data (experience 7 in Table 528 
1) improves the  to 0.67 and the  to 0.54 mm/yr and leads to a rigidity 529 
correlation of 0.831 with the main features preserved.  530 
This approach echoes the strategy Meade and Hager (2005) developed to reduce the number 531 
of stations and therefore to minimize the uncertainty magnitude. While based on different 532 
quality criteria, they remove about 50% of the initial dataset (CMM3) to compute their 533 
inversions. Our results illustrate that selecting the data with the lowest residuals does not 534 
significantly influence the modelled rigidity (see correlation in Table 1). However, in areas 535 
where data density is poor, a reduction of 50% can lead to a completely different 536 
interpretation. Therefore, keeping the whole dataset seems preferable. 537 

6.2 Strain rate: comparison with other approaches 538 
Most of strain rate computations derived from GPS velocity measurements stand on a 539 
continuous approximation of a model velocity field. A simple way to compute the strain rate 540 
is to design a triangulation of the GPS points collection and then assume that the velocity field 541 
inside each triangle evolves linearly. However, this method generates a non-smooth strain 542 
map due to a linear interpolation of measured GPS velocities. This method can be adapted to 543 
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areas covered by sparse GPS networks (Masson et al., 2005) but generates erroneous strain 544 
rates when applied to dense networks such as the ones installed in California. In this case, a 545 
smooth approximation of the velocity field needs to be performed in order to avoid spurious 546 
strain rate modeling. Consequently, a suitable method must also account for high strain 547 
gradient occurring around fault zones. A large variety of mathematical approaches can be 548 
used to deduce a strain rate map, often leading to relatively large differences (Feigl et al., 549 
1993; Mc Caffrey et al., 2005; Shen et al., 1996; Tape et al., 2009).  550 
Our optimal solution of rigidity distribution can be used for the determination of strain rates 551 
over the whole study area. But, we have shown above that our models systematically 552 
underestimate rigidity in very few deforming areas, typically far from the active fault systems. 553 
This bias is partly counterbalanced by the information provided by the upper bound of the 554 
admissible rigidity values. These latter are very close to the optimal solution in deforming 555 
zones, while they suggest that a purely rigid behavior may be considered when the 556 
deformation is very small, even though a slight deformation remains admissible just 557 
considering geodetic measurements558 
way to conform to geological considerations and block-model assumptions that state that, in 559 
most cases, far from the faults, the blocks are rigid. So, we used the upper bound rigidity 560 
distribution (Fig. 9b) for creating our strain rate map (Fig. 11a).    561 
We compare in Fig. 11 our strain rate map (through the 2nd invariant of the strain tensor) with 562 
the one obtained by a method originally proposed by Haines and Holt (1993) and later revised 563 
in the framework of the strain map global project (Kreemer et al., 2014). Although both 564 
methods depend on distinct assumptions, they produce similar intensities (> 64 nanostrain/yr) 565 
located near faulted areas along the SAF and the ECSZ. This overall similarity is probably 566 
due to the fact that both approaches are able to produce a low residual between the discrete 567 
and the continuous velocity fields. Using our strongest admissible rigidity solution leads to 568 
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low strain estimates in weakly deforming areas that are similar to the ones obtained by the 569 
global strain map project. This can be noticed in the Great Valley between the SAF and the 570 
Sierra Nevada and along the Pacific coast.  571 
A significant difference between the two strain rate maps can be found only on two limited 572 
areas: offshore the Pacific coast and east of the ECSZ. Because these two areas display low 573 
residuals (Fig. 10), we guess that our model is likely not able to locally estimate the strain rate 574 
precisely. This could be due on the one hand, to an improper estimate of the boundary 575 
conditions notably within the Pacific plate, and on the other hand, to a very low local data 576 
density. Indeed, whereas Kreemer et al. (2014) only interpolate the strain rate dataset to best 577 
fit the data, our solution aims at doing the same, but under the constraint of the stress 578 
equilibrium equation (Eq. 1). As demonstrated by the synthetic benchmarks presented in 579 
paragraph 3.4, evenly distributed data lead to a better estimation of the rigidity. Therefore, a 580 
future use of our methodology could be to invert interpolated GPS velocities (such as the ones 581 
provided by the Global Strain Rate Project) instead of the original GPS data to compute 582 
effective rigidity distribution at a continental scale. 583 
Lastly, we compare the spatial distribution of our dilatational strain rate solution with the one 584 
obtained by Kreemer et al. (2014) (Fig. 12). We use the first invariant of the strain rate tensor 585 
(mean of its trace) as a first-order approximation of the dilatational strain rate. 586 
Neither the strain compatibility approach used by Kreemer et al. (2014) nor our study, take 587 
vertical velocity measurements into account. Nevertheless, the plane stress formalism of our 588 
modelling leads to the prediction of vertical strain rates, which is not the case in Kreemer et 589 
al. (2014) analysis. Yet, recent analyses (e.g., Becker et al., 2015) suggest that the rate-change 590 
of vertical loading of the lithosphere may play a dominant role in defining the distributions of 591 
seismicity and therefore strain.  592 
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Despite the difference in their estimation, both spatial distributions of the dilatation strain rate 593 
from Kreemer et al. (2014) and us are very similar. They notably highlight the compressive 594 
context of the SAF system along the central bend. The only noticeable difference can be 595 
found along the fault system located north of Los Angeles where vertical motion is known to 596 
occur along active thrust faults (e.g. Northridge or Compton faults). 597 

6.3 Rigidity of the lithosphere and effective elastic thickness 598 
In the following, we study the relation between in-plane rigidity associated with geodetic 599 
strain (this work) and the flexural rigidity deduced from gravity and topographic data analysis 600 
(Audet and Bürgmann, 2011; Lowry and Pérez-Gussinyé, 2011; Tesauro et al., 2011). In the 601 
case of a thin curved elastic plate, the relation between the bending moment  and the 602 
flexural rigidity is given by: 603 

 (22) 

where  is the vertical displacement of the plate and R(x) its local curvature radius 604 
(e.g.Turcotte and Schubert, 2002). Using Eq. 2, a horizontal force per unit area applied to a 605 
vertical section of the lithosphere can be defined as: 606 

 (23) 
where  is the stiffness of the lithosphere to horizontal strain.  is equal to where  is 607 
the shear modulus (Pa) and  the plate thickness (m). Therefore, in-plane rigidity is 608 
expressed in N while the flexural rigidity is given in Nm, precluding a direct comparison 609 
between these two fields. In order to compare our relative rigidity map with the flexural 610 
rigidity deduced from gravity and topographic data analysis (Audet and Bürgmann, 2011; 611 
Lowry and Pérez-Gussinyé, 2011; Tesauro et al., 2011), we use the elastic thickness 612 
associated to these two formalisms. 613 
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The study of Lowry and Pérez-Gussinyé (2011) provides a map of the flexural elastic 614 
thickness ( ) for the entire western US. We assume that a linear relationship exists between 615 
the in-plane plate rigidity and its corresponding thickness (Chery, 2008 and present work). 616 
Therefore, our map of  is directly proportional to the distribution of  shown in Fig. 8a. 617 
Although such a linear relationship is valid only if elastic parameters do not vary with depth, 618 
it provides a simple way to estimate the effective elastic thickness for our modelling. For the 619 
purpose of comparison with Lowry and Pérez-Gussinyé (2011), we display their value of  620 
over Zone 1 (Fig. 13). Flexural and geodetic elastic thicknesses displayed in Fig. 13 show a 621 
very limited degree of agreement. For example, the flexural thickness map predicts a thick 622 
plate for most of the SAF, while a low geodetic elastic thickness is deduced using the 623 
interseismic velocity field. The only area suggesting some resemblance corresponds to the 624 
Basin and Range around the ECSZ and the SAF around the Salton Trough for which both 625 
methods display low elastic thickness. In order to find some justifications about the large 626 
discrepancies between  and  at least two lines of arguments could be investigated.  627 
First, despite the formal similarity between flexural plate and shear plate theories (Chéry et 628 
al., 2011), they may reflect two distinct lithospheric behaviours. For example, as stated by 629 
Thatcher and Pollitz (2008), plate flexure is the result of a long term loading over millions of 630 
years, implying that the strain rate in most of the lithosphere is close to zero.  is a measure 631 
of stress that is supported dynamically over very long timescales by a lithosphere that is in a 632 
state of frictional failure and viscoelastic flow, meaning the strain rate is virtually zero. 633 
However, given the shorter timescale of geodetic observation and the clear evidence for 634 
seismic release of significant elastic strain potential accumulated on century timescales,  635 
likely does predominantly reflects the elastic behavior of a thicker domain associated to 636 
interseismic deformation. Another difference may come from the lithospheric loading. 637 
Vertical loads modify distinct components of the strain tensor. Indeed, those induce flexure 638 
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and plate motions and therefore horizontal shear. Hence, distinct behaviours may emerge 639 
from these kinds of load. 640 
 In the brittle part of the crust, background seismicity is likely to reflect the loading of 641 
interseismic motion, therefore introducing an anelastic component into the analysed shear 642 
motion. Beneath the crust and especially under a shear zone like the San Andreas Fault 643 
system, the upper mantle presents a laterally variable and strong anisotropy (Hartog and 644 
Schwartz, 2001). If such anisotropic behaviours occur at both crustal and mantle levels, 645 
flexural and horizontal loading may activate two different rheological systems that could 646 
result into significant differences in terms of effective elastic thickness. 647 
A second way to investigate is to assume that flexural and geodetic thicknesses represent the 648 
same mechanical concept. However, they could be differently revealed by the data because of 649 
the formal differences between the two inverse problems. In the case of flexural thickness, the 650 
determination of  is based on the correlation between topographic and gravimetric signal. 651 
Among other factors, erosion can smooth or sharpen the topographic signal. Even if its 652 
influence can be accounted for in modelling approaches (e.g. Forsyth, 1985), the impact of 653 
erosion on the determination of  seems difficult to quantify due to large uncertainty 654 
associated to past erosion.   In addition, a geodynamical setting mostly involving shear motion 655 
may not be adapted at all for a flexural plate analysis because such a motion is not likely to 656 
produce neither topographic nor gravimetric signals. Last but not least, inverse theory of plate 657 
flexure requires that flexural thickness cannot be determined for resolutions smaller than the 658 
characteristic flexural wavelength (Watts, 2001). This also may explain why a sharp rigidity 659 
variation across the SAF cannot be resolved by this method. Even if our methodology has 660 
never been used prior to Chéry et al. (2001), the direct relation between shear strain and shear 661 
rigidity is likely to produce high resolution estimate of geodetic thickness for zones where the 662 
geodetic strain is well defined. Conversely, we acknowledge that our uncertainty analysis 663 
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predicts inaccurate rigidity determination in zones of low strain-rate like the Sierra Nevada. 664 
Also, lithospheric loads like body forces and basal stress coming from mantle motion can 665 
impact the strain-rate field and therefore altering the determination of the shear rigidity. The 666 
identification of the importance of such effects must be tackled by future studies. 667 
In order to better understand the discrepancy between flexural and shear analysis, a tractable 668 
way would be to design a complete mechanical model of western US as it was done for 669 
example by Pollitz et al. (2010). Such a model could be used to predict synthetic topographic, 670 
gravimetric and deformation datasets obeying to momentum and constitutive equations. Then 671 

672 
lithospheric deformation and compared to the rheological input of the forward model.  673 
 674 

7. CONCLUSION 675 
A global inversion strategy has been proposed for the identification of effective rigidity maps 676 
using GPS velocity fields under minimum a priori assumptions. Taking advantage of the self-677 
adjoint nature of the governing equations, large dimensional problems coming from necessary 678 
high resolution distribution of the rigidity have been considered. Compared to the previous 679 
study carried out by Chéry et al. (2011), the results are now backed by uncertainty analysis 680 
which suggests that the effective rigidity can only be accurately determined in moderate or 681 
highly strained areas. 682 
This is a high-resolution methodology which can be seen as a mechanical model to link shear 683 
rigidity to interseismic strain with no prior knowledge of fault locations. The main limitation 684 
of this approach relies to the plane stress hypothesis used in the forward model. Therefore, no 685 
strain variation occurs with depth for a given horizontal location over the plate. This 686 
behaviour is probably over simplified around active faults acting like screw dislocations as 687 
proposed by Savage and Burford (1973). To complete what is presented here, the following 688 
directions can be considered: 689 
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1) The 2D effective rigidity model can be replaced by a 3D model of Western United 690 
States including the effective elastic thickness as the main geophysical parameter. 691 
Because this approach would include the full 3D strain rate tensor, it would provide a 692 
more realistic approximation of the plate behaviour of the lithosphere especially 693 
around faults. 694 

2) The 2D approach can be used over wide areas, for instance at the continental plate 695 
scale, after a splitting in patches. This would permit to determine large scale rigidity 696 
maps in the framework of the global strain map project of (Kreemer et al., 2014).  697 

3) The strong spatial correlation between low rigidity areas and active fault zones also 698 
suggests that our methodology could be applied for deciphering active faults in 699 
tectonically poorly known areas. 700 
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Appendix A) Application to shallow creeping faults 849 
In this appendix, we briefly discuss the way our approach deals with very high strain rates and 850 
what this implies in term of prior search interval for the relative shear-rigidity values. 851 
Three terms contribute to the spatial regularization (smoothing) of the modelled distribution 852 
of relative rigidity and, consequently, the modelled velocity field. The first one simply comes 853 
from mesh size and, therefore, from the spatial resolution of our model. Then, a Tikhonov 854 
regularization term can be activated in the cost function (Eq. 5). Finally, a spatial smoothing 855 
process is performed on the gradient of the functional (Fig. 2).  856 
All these components of our approach are likely to limit the range of strain rates that can be 857 
properly modelled. In particular, active faults exhibiting very shallow creep are supposed to 858 
lead to local under-estimation of rigidity gradients. 859 
In practice, the mesh size is a few kilometres (20 km in the case of this study over South 860 
California), the Tikhonov regularization term is not active, and the smoothing process over 861 
the gradient of the functional can have a very limited spatial extent. Despite the limitations of 862 
the effects of these regularization components, we see that the whole range of the expected 863 
strain rates (about 4 orders of magnitude) can hardly be captured by our approach. 864 
Nevertheless, we demonstrate, hereafter, that (1) if the spatial sampling is high, then using a 865 
4-order of magnitude search interval allows for a good fit to sharp velocity changes. (2) Using 866 
a 2-order of magnitude search interval is sufficient in most cases, small but significant local 867 
residues being present only in the case of extremely shallow creeping behaviour. 868 
First, we run our inversion on synthetic cases that are similar to those presented in section 3, 869 
but for which the locking depth is much shallower: 2 km (Fig. A.1) and 0 km (Fig. A.2). For 870 
these experiments, the mesh size is set to 3km.  871 
In the case of a 2-km locking depth, we find that exploring a 2-order of magnitude interval for 872 
rigidity is sufficient to perfectly model the velocity field (Fig. A.1). The only significant 873 
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difference between the modelled and the theoretical values of the relative rigidity appears on 874 
non-significantly deforming zones at distances higher than about 20 km from the fault. 875 
Indeed, in these areas, we know that changing the relative rigidity by several orders of 876 
magnitude has very small influence on the velocity prediction. So, again, we show that our 877 
approach underestimates rigidity far from the active faults. Exploring a 4-order of magnitude 878 
rigidity interval does not improve the fit to ground velocities. It only pushes a little bit away 879 
the limit where the real rigidity is underestimated.  880 
If we consider, now, the extreme case of a fault experiencing creep up to the ground surface, 881 
then the strain rate across the fault is infinite. A similar analysis to the preceding case shows 882 
that significant residues remain close to the fault (Fig. A.2). Yet, their amplitudes are very 883 
small (no more than 2 mm/yr) except exactly on the fault itself. In such an extreme case, 884 
indeed, extending the search interval of rigidity from 2- to 4-order of magnitude allows for the 885 
proper modelling of the velocity field everywhere. Nevertheless, this better fit has been 886 
obtained at the cost of the regularity of the rigidity distribution which is slightly altered in 887 
non-deforming zones (upper and lower central areas). 888 

889 
segment is known to be experiencing very shallow creep (e.g. Rosen et al., 1998). We use a 890 
10-km mesh size and run inversions varying the range of the admissible rigidity values and 891 
the smoothing factors for the gradient of the cost function. All lead to the same solution that is 892 
presented on Fig. A.3. Using a 4-order of magnitude search interval does not provide 893 
additional information that would not have been captured by a 2-order of magnitude search 894 
interval. This may be due to the 10-km resolution of our mesh, as well as the relatively low 895 
density of GPS measurements in the CMM3 database, notably with respect to other high-896 
resolution measurements like InSAR.  897 



 39

In order to illustrate the efficiency of our modelling, we compare the modelled velocity field 898 
with the CMM3 measurements along two profiles across the SAF system, one (A-B) just 899 
south of the city of San Juan Bautista (Fig. A.3b), and the other (C-D) close to the city of 900 
Parkfield (Fig. A.3c). It can be noticed that no significant pattern of the deformation, as 901 
gathered by the CMM3 database, is missed by our modelling. Moreover, this good fit has 902 
been obtained with a limited range for the admissible rigidity values, which, in turn, 903 
guarantees some degree of regularity of the rigidity distribution, even on very few deforming 904 
areas. 905 

 906 

Appendix B) Processing the SAF zone using a 4-orders of magnitude range for 907 
admissible rigidity 908 
In the main body of this paper, we determine the relative rigidity distribution (both for 909 
synthetic and real cases) from the exploration of a 2-orders of magnitude range of rigidity 910 
values. Appendix A shows that, unless we need to deal with sharp velocity gradients that are 911 
typically found on very shallow creeping fault segments, this rigidity range is sufficient to 912 
properly fit the interseismic velocity field within their uncertainties. In this appendix, we 913 
show that using a wider range of admissible rigidity value (4 orders of magnitude instead of 914 
2) in the inversion process applied to Southern California leads to a very similar solution. 915 
As noticed in Appendix A, the inversion becomes now longer and less steady. Nevertheless, it 916 
converges to a solution which differs only in places where ground deformation is very small. 917 
Indeed, setting the lowest relative rigidity value to 1, then most of the significantly deforming 918 
areas exhibit relative rigidity values that are below 20 (Fig. B.1a). Only quasi non-deforming 919 
areas require relative rigidity values on the order of 100 or above. But we know that, in very 920 
weakly deforming zones, large changes of high rigidity values only lead to small changes in 921 
strain prediction. Fig. B.1b shows that, as expected, using a wider search domain leads to a 922 
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similar solution where ground deformation is significant, and to a larger ratio between rigidity 923 
in non-deforming zones relatively to deforming areas. However, both solutions (using a 2-fold 924 
or 4-fold range of magnitude) fit the data globally in the same way. This confirms the fact that 925 
a very large range of rigidity is admissible far from the active fault systems. This statement is 926 
illustrated again by the lower and upper bound solutions (Fig. B.1b-c). The rigidity 927 
distribution is well constrained in significantly deforming zones, lower and upper bounds 928 
being close to the optimal solution, but badly constrained elsewhere. Typically, any value of 929 
rigidity higher than 10 is an admissible solution for rigid areas.  930 
In conclusion, we see that almost all the significant ground deformation is captured using a 2-931 
orders of magnitude range for relative rigidity. Increasing this range allows either a better 932 
modelling of ground deformation induced by shallow surface creeping segments, or the 933 
assignment of higher rigidity values in non-deforming zones. But, in this latter case, the fit to 934 
the velocity field is very little improved and we know that the uncertainties associated with 935 
these rigidity values remain very high. 936 



Experiment Zone Grid 
Size 

Number of 
GPS vectors  of 

the residual 
velocities 

 
(mm/yr) 

Rigidity 
Correlation 

1 1 20 615  1.26 1.10 1 
2 2 20 530  1.25 0.93 0.831 
3 1 20 613 (99.7%) 1.25 1.08 0.995 
4 1 20 600 (97.5%) 1.21 1.04 0.986 
5 1 20 583 (94.7%) 1.16 1.00 0.987 
6 1 20 553 (90%) 1.10 0.93 0.958 
7 1 20 307 (50%) 0.67 0.54 0.831 

 
Table 1. List of the experiments, the /  values of the residual velocities and the 
correlation of the rigidity distribution relatively to experiment 1. 
 



 
 
Fig. 1. Schematic representation of the optimization problem: the domain  is meshed with 
elements of constant rigidity  and submitted to Dirichlet boundary conditions along 
the boundary . The black arrows symbolise the geodetic measurements  within the 
domain, the blue ones the Dirichlet conditions which are part of the optimization variables 
and the red ones are the solution of the model. 
 



  
 
Fig. 2. Sketch of optimization algorithm applied to plate rigidity inversion. For each iteration 
we optimize both the rigidity within the domain and the velocity along the boundaries. 
 



 
 
Fig. 3. Distribution of the synthetic velocities considering an evenly sampled domain (black 
arrows) and a randomly sampled domain whose density decreases with the distance to the 
fault (red arrows). The fault (green line) is a dextral strike slip fault locked during the 
interseismic motion. 
 



 
Fig. 4. Results of the inversion for the synthetic case with a geodetic spatial sampling (black 
dots on (a), (c) and (d)) whose density is constant whatever the distance to the fault (black line 
at coordinate 0 along the Y-axis). (a) rigidity distribution determined by the optimization; (b) 
associated uncertainty; (c) norm of residual velocities; (d) misfit between predicted  and 
theoretical ; (e) velocity measurements (black squares with uncertainty bars) and velocities 
predicted by our model (red circles) along the profile shown in white dotted line on (a); (f) 
rigidity values and their associated uncertainties along the same profile. The plotted values are 
estimated at the barycentre of the elements of the mesh in a 30-km wide bandwidth centred on 
the profile. The colour code is the same as in (a). 



 
Fig. 5. Results of the inversion for the synthetic case that mimics a real geodetic spatial 
sampling (black dots on (a) (c) and (d)) whose density decreases with the distance to the fault 
(black line at coordinate 0 along the Y-axis). (a) rigidity distribution from the optimization; 
(b) associated uncertainty; (c) norm of residual velocities; (d) misfit between predicted  and 
theoretical ; (e) velocity measurements (black squares with uncertainty bars) and velocities 
predicted by our model (red circles) along the South to North profile shown in white dotted 
line on (a); (f) rigidity values and their associated uncertainties along the same profile. The 
opaque rectangle over the northern termination of rigidity and velocity profile (e) and (f) 
highlights a zone where the density of measurements is low, leading to high rigidity 
uncertainties. 



 
 
Fig. 6. Spatial distribution of the geodetic measurements on the SAF system used for the 
inversion. The black arrows show the velocity field in the North American reference frame. 
Our main domain of analysis is shown in the red rectangle (Zone 1  615 GPS velocities) 
while the blue one (Zone 2  530 GPS velocities) represents a translation of the area of 
interest. The red stars indicate the location of Landers (L), Northridge (N) and Hector Mine 
(HM) earthquakes. 
 



 
 
Fig. 7 Pareto curve for different regularization parameters used in the optimization algorithm 
applied to the southern California. (a) Plot of the normalized velocity variations norm as a 
function of the residual data misfit as damping  varies. (b), (c) and (d) represent the 
velocities observed within a 10-km distance of the domain boundary (green) and calculated on 
the boundaries (red) for different damping parameter .   
 



 
 

Fig. 8. Distributions of the relative rigidity D represented for Zone 1 (a) and for Zone 2 (b). 
According to Eq. 23, the elastic thickness  is proportional to . The GPS data are 
represented by black dots, the faults by green lines and the Landers (L), Northridge (N) and 
Hector Mines (HM) earthquakes by white stars. SAF, SN, ECSZ, SBR, MD and SS stand for 
San Andreas Fault, Sierra Nevada, Eastern California Shear Zone, South Basin and Range, 
Mojave Desert and Salton Sea respectively.  
 



 
 
Fig. 9: (a) Lower and (b) upper bounds for the rigidity values around the optimal distribution 
displayed on Fig. 8a for Zone 1. In very few (or non-) deforming areas,  reach values 
that are several orders of magnitude higher than the optimal solution. 
 



 
 
Fig. 10. Norm of residual velocities between GPS and modelled velocities associated with the 
rigidity distribution determined for a) Zone 1 ( =1.26) and b) Zone 2 (  =1.25). 
 



 
 
Fig. 11. Distribution of the strain rate for Zone 1. Second invariant of the strain rate tensor 
from (a) the upper (strongest) admissible values of our rigidity optimization and (b) the global 
strain map of Kreemer et al. (2014). 
 



 
 
Fig. 12. Distribution of the first invariant of the strain rate tensor for Zone 1 from (a) our 
optimization and (b) the global strain map of Kreemer et al. (2014). 
 



 
 
Fig. 13. (a) Geodetic elastic thickness  associated to our study; (b) flexural elastic thickness 

 given by Lowry and Pérez-Gussinyé (2011). 
 



 
Figure A.1: Velocity and relative rigidity distributions for synthetic cases mimicking shallow 
creep on strike-slip faults. The locking depth is set to 2 km. The search interval for the relative 
rigidity has 2 orders (left) or 4 orders (right) of magnitude. (a and d) Theoretical velocities 
(green dots) and modelled velocities (black dots) at measurement locations along the profile 
(dotted black line) indicated in (c). (b and e) Theoretical (dashed curve) and modelled relative 
rigidity (colored dashes using same color palette as in (c) and (f) respectively) along the same 
profile. (c and f) Spatial distribution of relative rigidity determined by our inversion.  
 



 
Figure A.2: Same as Fig. A.1 but the locking depth is now set to 0 km.  
 



 
 
Figure A.2: (a) Relative rigidity distribution over the Parkfield segment of the SAF. Black 
squares indicate the location of the cities of San Juan Bautista (north) and Parkfield (south). 
White arrows are the velocities of the CMM3 database. Measured (red circles) and modelled 
(black circles) along-strike velocities along (b) A-B and (c) C-D profiles shown in (a). 
 



 
 
Figure B1: Rigidity distribution over Southern California as determined using a 4-order of 
magnitude range of admissible relative rigidity (from 1 to 10000). (a) Optimal solution, (b) 
Difference with respect to the optimal solution using a 2-order magnitude range (Fig. 8a) (c) 
lower bound solution and (d) upper bound solution. To be compared with Figures 8 and 9. 
 


