On codimension two embeddings up to link-homotopy

Abstract : We consider knotted annuli in 4–space, called 2–string-links, which are knotted surfaces in codi-mension two that are naturally related, via closure operations, to both 2–links and 2–torus links. We classify 2–string-links up to link-homotopy by means of a 4–dimensional version of Milnor invariants. The key to our proof is that any 2–string link is link-homotopic to a ribbon one; this allows to use the homotopy classification obtained in the ribbon case by P. Bellingeri and the authors. Along the way, we give a Roseman-type result for immersed surfaces in 4–space. We also discuss the case of ribbon k–string links, for k ≥ 3.
Type de document :
Pré-publication, Document de travail
IF_PREPUB. to appear in Journal of Topology. 2017
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

Contributeur : Benjamin Audoux <>
Soumis le : dimanche 29 octobre 2017 - 15:54:35
Dernière modification le : lundi 20 novembre 2017 - 12:48:23


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01504996, version 2


Benjamin Audoux, Jean-Baptiste Meilhan, Emmanuel Wagner. On codimension two embeddings up to link-homotopy. IF_PREPUB. to appear in Journal of Topology. 2017. 〈hal-01504996v2〉



Consultations de la notice


Téléchargements de fichiers