Skip to Main content Skip to Navigation
Journal articles

The Whitham equation with surface tension

Abstract : The viability of the Whitham equation as a nonlocal model for capillary-gravity waves at the surface of an inviscid incompressible fluid is under study. A nonlocal Hamiltonian system of model equations is derived using the Hamiltonian structure of the free-surface water-wave problem and the Dirichlet-Neumann operator. The system features gravitational and capillary effects, and when restricted to one-way propagation, the system reduces to the capillary Whitham equation. It is shown numerically that in various scaling regimes theWhitham equation gives a more accurate approximation of the free-surface problem for the Euler system than other models like the KdV and Kawahara equation. In the case of relatively strong capillarity considered here, the KdV and Kawahara equations outperform the Whitham equation with surface tension only for very long waves with negative polarity.
Complete list of metadata

Cited literature [31 references]  Display  Hide  Download
Contributor : Denys DUTYKH Connect in order to contact the contributor
Submitted on : Tuesday, April 11, 2017 - 10:17:15 AM
Last modification on : Wednesday, November 3, 2021 - 6:17:32 AM
Long-term archiving on: : Wednesday, July 12, 2017 - 12:11:54 PM


Files produced by the author(s)


Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License




Evgueni Dinvay, Daulet Moldabayev, Denys Dutykh, Henrik Kalisch. The Whitham equation with surface tension. Nonlinear Dynamics, Springer Verlag, 2017, 88 (2), pp.1125-1138. ⟨10.1007/s11071-016-3299-7⟩. ⟨hal-01504047⟩



Record views


Files downloads