The Whitham equation with surface tension

Abstract : The viability of the Whitham equation as a nonlocal model for capillary-gravity waves at the surface of an inviscid incompressible fluid is under study. A nonlocal Hamiltonian system of model equations is derived using the Hamiltonian structure of the free-surface water-wave problem and the Dirichlet-Neumann operator. The system features gravitational and capillary effects, and when restricted to one-way propagation, the system reduces to the capillary Whitham equation. It is shown numerically that in various scaling regimes theWhitham equation gives a more accurate approximation of the free-surface problem for the Euler system than other models like the KdV and Kawahara equation. In the case of relatively strong capillarity considered here, the KdV and Kawahara equations outperform the Whitham equation with surface tension only for very long waves with negative polarity.
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger
Contributeur : Denys Dutykh <>
Soumis le : mardi 11 avril 2017 - 10:17:15
Dernière modification le : jeudi 11 janvier 2018 - 06:12:26
Document(s) archivé(s) le : mercredi 12 juillet 2017 - 12:11:54


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License




Evgueni Dinvay, Daulet Moldabayev, Denys Dutykh, Henrik Kalisch. The Whitham equation with surface tension. Nonlinear Dynamics, Springer Verlag, 2017, 88 (2), pp.1125-1138. 〈〉. 〈10.1007/s11071-016-3299-7〉. 〈hal-01504047〉



Consultations de la notice


Téléchargements de fichiers