
HAL Id: hal-01503685
https://hal.science/hal-01503685

Submitted on 7 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Navigation and Guidance Strategy Planning for UAV
Urban Operation

Yoko Watanabe, Aurélien Veillard, Caroline Ponzoni Carvalho Chanel

To cite this version:
Yoko Watanabe, Aurélien Veillard, Caroline Ponzoni Carvalho Chanel. Navigation and Guidance
Strategy Planning for UAV Urban Operation. AIAA Science and Technology Forum and Exposition
Forum (SciTech 2016), Jan 2016, San Diego, United States. pp. 1-15. �hal-01503685�

https://hal.science/hal-01503685
https://hal.archives-ouvertes.fr


 

To cite this version : Watanabe, Yoko and Veillard, Aurélien and 
Ponzoni Carvalho Chanel, Caroline Navigation and Guidance 
Strategy Planning for UAV Urban Operation. (2016)  
In: Proceedings of AIAA Science and Technology Forum and 
Exposition Forum (SciTech 2016), 4 January 2016 - 8 January 2016 
(San Diego, United States). 
 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 15091 

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Navigation and Guidance Strategy Planning

for UAV Urban Operation

Yoko Watanabe∗, Aurélien Veillard†
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This paper proposes a concept of navigation and guidance strategy planner for urban
operation of a VTOL-type UAV. One of major challenges of UAV autonomous navigation in
an urban environment is to deal with the risk of GPS signal occlusion. In order to address
this issue, various approaches have been proposed for GPS-independent UAV navigation
and guidance such as visual odometry and visual servoing control. In this context, this
work supposes that different navigation and guidance modes using different set of sensors
are available onboard an UAV. An idea of the proposed planner is to anticipate the nav-
igation and guidance performance degradation (or amelioration) due to unavailability (or
availability) of certain mode in the path planning task. The planning problem is formu-
lated as a 5D (3D position + selection of navigation and guidance modes) graph search
problem, where the localization and path execution uncertainties are propagated according
to a model of corresponding modes for each node transition. Node transition is denied if
the path execution uncertainty ellipsoid intercects with any obstacle. A minimizing cost
function is defined by a volume of the path execution uncertainty corridor, as it implies
minimizing path distance and execution accuracy at the same time. A deterministic graph
search algorithm is applied to find a flight path with specified navigation and guidance
mode transitions which minimizes the defined cost function. Simulations are performed
by using path planning configurations given in an existing UAV obstacle field navigation
benchmark, and the results are presented to prove the proposed navigation and guidance
strategy planning concept.

I. Introduction

In recent years, there are increasing demands of unmanned aerial vehicles (UAVs) per-
forming a mission, either civil or military, in a remote complex environment; inspection of
infrastructure such as railway or pipeline, scientific observation and mapping (archeology,
agriculture, etc.), disaster relief and recovery, and reconnaissance & surveillance in an ad-
versarial environment. In order to reduce workload and eligibility requirements for UAV
operators in such mission operations, an UAV onboard flight system is required to have a
maximum level of autonomy to ensure its safety in a complex environment.

One of the challenges associated with UAV autonomous operation in an urban (or even
rurban) environment is to make its navigation and guidance system robust to GPS signal
loss/degradation due to occlusion. Onboard flight system on most outdoor UAVs highly
relies on the precision of GPS localization. The INS-only navigation solution diverges very
quickly due to accumulation of inertial measurement bias, and consequently, UAV loses its
automatic flight capability in the absence of GPS signal. In order to address this issue, one
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can find intensive research work on development of alternative navigation and guidance
systems which do not rely on GPS information. For example, a variety of visual odometry
and SLAM (Simultaneous Localization and Mapping) techniques have been proposed to
estimate UAV state by either using purely vision or by fusing vision with INS (Inertial
Navigation System) and/or other available sensors (1−3 and many others). Visual servoing
approaches can be applied to UAV guidance and control relative to its environment without
using UAV absolute state. For example, UAV terrain following, corridor navigation or
landing can be achieved by using vision information directly in a flight controller4−.6 Such
systems give an important key to realize an UAV autonomous navigation in absence of GPS
signals. However, their localization or guidance and control performance is often degraded
compared to that of a nominal flight system using GPS information.

In this context, the work presented in this paper originates in the idea of anticipating
GPS signal occlusion risk and related flight performance degradation in UAV path planning
task. Methods to predict GPS availability and accuracy at a given location can be found
in literature. For example, methods proposed in7 and8 use multipath effect risk and a sky-
view angle, respectively, which are calculated from a 3D model of the surrounding area. A
GPS availability map obtained through such methods can be very useful in path planning
to choose a safe flight path which ensures no collision risk under the UAV localization
uncertainty possibly degraded due to GPS unavailability.

Path planning under localization uncertainty is not new in the robotics community.
Especially, a large amount of work has been done for navigating a ground mobile robot
which possesses two different navigation modes; dead-reckoning and landmark-based local-
ization9−.12 These works apply a deterministic or a sampling-based search algorithm to
find a minimum-distance collision risk-free path while evolving a vehicle self-localization
error ellipsoid. A choice among the two navigation modes are imposed in function of land-
mark visibility, and is not included as a planning object. One of the authors of this paper
presented a safe path planner under localization uncertainty for UAV urban operation.13

Unlike the work listed above, the proposed planner in13 not only plans a flight path but also
a navigation strategy (i.e., a choice of localization mode to be used on each path segment)
by taking into account GPS unavailable zones and the UAV self-localization performance
degradation in such zones.

This paper is an extension of this previous work by adding different guidance modes
available onboad an UAV. In the previous work, the UAV localization uncertainty is con-
sidered to coincide with the UAV path execution accuracy. It is reasonable when assuming
an absolute guidance law, such as waypoint tracking, which regulates the UAV localization.
However in reality, it is unlikely to fly an UAV in a proximity of obstacles without any
relative sensing and navigation function. Therefore, in addition to the UAV localization
modes, this paper supposes different guidance modes with their availabilities and consid-
ers a closed-loop path execution uncertainty rather than the localization uncertainty. As
a simple example, two guidance modes are given in this paper for a VTOL-type UAV;
waypoint tracking (absolute guidance) and vision-based wall-following (relative guidance).
The flight path execution uncertainty is modeled differently for each mode. An interesting
point here is that the path execution uncertainty does not depend on the UAV absolute
localization error when applying the wall following guidance. In other words, this relative
guidance mode enables to ensure UAV flight safety regarding to collision risk even with a
large degradation in the UAV self-localization accuracy due to GPS signal loss. Similarly
to GPS or other sensors, availability of this wall-following guidance mode is limited and it
depends on the surrounding environment (i.e. existance and proximity of a wall).

This paper first states a problem of this navigation and guidance strategy planning
(Section II), then provides a propagation model of UAV self-localization and path execution
uncertainties for each navigation and guidance mode (Section III, IV). Section V describes
how the uncertainty propagation is incorporated in path planning task. Section ?? presents
simulation results of the proposed guidance and navigation strategy planner. Section ??
includes concluding remarks and future perspectives.



II. Problem Statement

An objective of our path planner is to find the shortest collision risk-free path from
a start point Xstart to a goal Xgoal in a 3D cluttered environment. The UAV onboard
system is supposed to have several different navigation (i.e., localization) modes as well as
guidance modes, which give different evolution of the localization and path execution error
covariance. Therefore, the planner is also required to select the best combination of the
navigation and guidance modes on each segment of the planned path. The planner assumes
the following a-priori knowledge :

• Environment Map : a 3D occupancy map, each of whose voxel contains a binary value
(free/occupied). It can be built from 3D point cloud obtained by vision or lidar scan
data.

• Obstacle classification : a label of obstacles (for example, tree or building) for each
occupied voxel in the 3D occupancy map. This information will be used to identify an
availability of a certain guidance mode (e.g. wall following).

• Sensor Availability Maps : 3D voxel maps of the same size as the environment map,
each of whose voxel contains a binary value (available/not). It can be constructed
by considering characteristics of each sensor and its environment (e.g. GPS signal
occlusion, visibility of landmark, wall sensing range).

• Localization Uncertainty Models : EKF (Extended Kalman Filter) process is applied
for UAV self-localization. It includes a prediction step with INS measurements and an
update step with a selected sensor measurement (specified for each navigation mode).
This EKF-based model is used to propagate the localization error covariance along the
planned path from its given initial value Pstart.

• Path Execution Uncertainty Models : a closed-loop translational dynamics model
with a selected guidance mode is used to propagate the path execution error covariance
along the planned path. Each guidance mode uses different information (UAV self-
localization result, sensor measurement, etc.), and hence transfers errors in the used
information into the path execution error.

• Minimum Safety Distance : minimum separation distances from obstacles in each of
the UAV body axis. It should be a sum of the UAV size and safety margin.

The collision risk is identified if separation distance between the path execution error
ellipsoid and occupied voxels is less than the minimum safety distance.

III. UAV Navigation Modes

This section details the UAV self-localization systems which are used to propagate the
localization error covariance from one node to another in the path planner. This paper
considers the following four different means of localization.

1) INS-only : Integration of INS measurements only. It is always available, but diverges
very quickly.

2) GPS/INS : Integration of INS measurements with GPS position and velocity measure-
ment update. It gives precise localization, but not available in GPS signal occluded
area.

3) Optical flow/INS : Integration of INS measurements with optical flow field measure-
ment update. It can limit a divergence of the INS-only localization, but not available
over non-flat surface.

4) Landmark/INS : Integration of INS measurements with landmark pixel coordinate
measurement update. Visual landmark detection algorithm is assumed to be available,
and the landmark position is known a-priori. It is available only when a landmark is
in the field of view of the onboard camera.

An EKF estimation process is applied to each of those self-localization systems.

A. Integration of INS Acceleration

Let X, V and a be the UAV position, velocity and acceleration in the locally-fixed inertial
reference frame (North-East-Up frame). Assuming the precise attitude estimation, the
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INS acceleration measurement is modeled by

aINS = LBIa+∆a+wa

where LBI is a direction cosine matrix from the reference frame to the UAV body frame.
∆a is an additive acceleration bias and wa is a measurement noise. Let

x = [XT V T ∆aT ]T (1)

be the estimation state vector. Then its dynamics can be given by

ẋ =





Ẋ

V̇

∆̇a



 =





V

a

w∆a



 = Fx+GaINS +Gww (2)

where w = [wT
a wT

∆a ]
T is a Gaussian process noise and

F =





O I O
O O −LT

BI

O O O



 , G =





O
LT

BI

O



 , Gw =





O O
−LT

BI O
O I





Given an estimate x̂k−1, its error covariance Pk−1 at time tk−1 and the INS acceleration
input at time tk, the estimation state and its error covariance are propagated to time tk
according to

x̂
1
k = Φx̂k−1 +GaINSk

∆tk

P 1
k = ΦPk−1Φ

T +GwQG
T
w∆tk (3)

where Φ = I + F∆tk, ∆tk = tk − tk−1 is the state transition matrix, Q is a covariance matrix
of the process noise w.

B. Sensor Measurement Updates

When a measurement of one of the sensors is available, the INS-propagated estimation x̂1
k

is corrected through EKF update process. Let

z
m
k = hm(x(tk)) + ν

m
k

be a measurement obtained by m-th sensor at time tk. Then, the update process becomes

x̂
m
k = x̂

1
k +Km

k (zm
k − hm(x̂1

k))

Pm
k = (I −Km

k H
m
k )P 1

k (4)

where Km
k = P 1

kH
m
k

T (Hm
k P

1
kH

m
k

T + Rm
k )−1 is a Kalman gain, Hm

k is a Jacobian matrix of the
measurement model hm(x̂1

k) and Rm
k is a covariance matrix of the measurement noise νm

k .
The measurement models for the four different sensors listed at the beginning of the section
are summarized below;

• GPS : The absolute position and velocity measurement, h2(x) = [XT V T ]T .

• Optical flow : Suppose that a camera is fixed on a UAV at a position XB
c in the UAV

body frame looking nadir. Then the camera position and velocity become

Xc = X + LT
BIX

B
c (5)

V c = V + LT
BI(ωB ×X

B
c )

where ωB is UAV angular velocity in the body frame. When UAV pitch and roll angles
are small, the optical flow field on a flat ground surface Z = Z0 can be approximated
by the following affine model.

ṗ =

[

wc rc
−rc wc

]

p− f

[

uc + qc
vc − pc

]

= Ap+ b (6)

where p is a pixel coordinates, f is a focal length in pixel, and

ω
C = LCBω

B =





pc
qc
rc



 , v
C =

LCIV c

Z0 − Zc

=





uc

vc
wc





4 of 15



Suppose that the UAV system has an image processor which estimates the affine model
of the optical flow field (A, b).14 Then we can extract the measurement of

h3(x) = v
C(x) =

LCIV + LCB(ωB ×XB
c )

Z0 − Z − eT
3 L

T
BIX

B
c

where Z0 is a ground elevation provided by the environment model.

• Landmark : Let Xl be a position of a landmark in the reference frame, which is known
a-priori to the UAV system. If this landmark is inside the field of view of the onboard
camera, a landmark detection algorithm can measure its pixel coordinates;

h4(x) = pl(x) =
f

ZC
l

[

XC
l

Y C
l

]

, X
C
l = LCI (Xl −Xc)

where the camera position Xc given by (5).

IV. UAV Guidance Modes

This section describes the UAV guidance laws which are used to propagate the path
execution error covariance from one node to another in the path planner. This paper
considers the following two different guidance modes.

1) Waypoint tracking : Path following by using the UAV self-localization result (Section
III). This mode is available everywhere, but its path execution accuracy directly
depends on the UAV localization accuracy.

2) Wall following : Path following relative to a wall by using onboard vision-based sensor
measurement but not the UAV localization result. It uses the optical flow and range
measurements, which give relative velocity information to the detected wall, directly
in the guidance law. This mode is available in a given sensing range from voxels labeled
“wall”, when the path direction is close to parallel to the wall orientation.

A. Waypoint Tracking Guidance

Consider a transition from one voxel Xk−1 in the 3D occupancy map to one of its 26
neighboring voxels Xk. Let u be an unit vector from Xk−1 to Xk, and V0 is a desired cruise
speed. Then, a reference trajectory for this node transit can be defined by

X
∗(t) = Xk−1 + V0(t− tk−1)u (7)

V
∗(t) = V0u (8)

for tk−1 ≤ t ≤ tk with t = tk as a time at the initial node Xk−1. tk is a time at the destination
node Xk, and defined by tk = tk−1 + ‖X2 −X1‖/V0 = tk−1 +∆tk. Let

e = [ (X −X∗)T (V − V ∗)T ]T

be a reference trajectory tracking error. Then its dynamics can be written by

ė =

[

O I
O O

]

e+

[

O
I

]

(a+w) = Ae+B(a+w)

where w is a process noise whose covariance matrix is given by Q. By assuming a small
deviation in the initial condition, a simple linear guidance law can be applied to follow this
reference trajectory.

a = −Kp(X̂(t)−X
∗(t))−Kd(V̂ (t)− V

∗(t)) (9)

where X̂ and V̂ are the UAV absolute position and velocity estimation results from Section
III. Then the closed-loop trajectory tracking error becomes

ė =

[

O I
−Kp −Kd

]

e+

[

O O O
Kp Kd O

]

x̃+

[

O
I

]

w = Ãe+ B̃x̃+Bw (10)

where x̃ is the estimation error of the state defined in (1). By integrating this dynamic
equation from tk−1 to tk, the trajectory tracking error at time tk is given by

e(tk) = eÃ∆tke(tk−1) +

∫ tk

tk−1

eÃ(tk−s)B̃x̃(s)ds+

∫ tk

tk−1

eÃ(tk−s)Bw(s)ds (11)
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Figure 1: Wall Frame

Finally, the trajectory tracking error covariance, denoted by E1(tk), can be calculated as
follows.

E1(tk) = E

[

e(tk)e
T (tk)

]

= eÃ∆tkE(tk−1)e
ÃT∆tk +

∫ tk

tk−1

eÃ(tk−s)B̃P (s)B̃T eÃ
T (tk−s)ds+

∫ t

0

eÃ(t−s)BQBT eÃ
T (t−s)ds

where E(tk−1) is the initial trajectory tracking error covariance, P (t) is the UAV self-
localization error covariance resulting from the EKF process in Section III. Assuming
a small time interval, we can approximate an evolution of the trajectory tracking error
covariance from time tk−1 to tk by

E1
k = Ek−1 +

(

ÃEk−1 + Ek−1Ã
T + B̃Pk−1B̃

T +BQBT
)

∆tk (12)

The tracking error covariance at the destination node Xk is given by this E1
k.

B. Wall Following Guidance

The second guidance mode consists in a wall following by using optical flow and range
measurements, but without using the UAV absolute localization results. Suppose a vertical
wall whose orientation is ψwall in the 3D world. We consider the same node transition and
the same reference trajectory as in the previous subsection, assuming that the both nodes
are within the proximity sensing range from the wall. Taking a fixed point on the wall Xp

as an origin, a wall-fixed frame is defined by

X
W = L3(ψwall)(X −Xp)

where L3 represents Z-axis rotation matrix. The wall distance d is defined by d = −YW , a
negative of the second component of this XW . Figure 1 illustrates this wall frame. The
reference trajectory (7-8) is transformed to this wall frame as follows.

X
∗W (t) = X

W
k−1 + V0tL3(ψwall)u = X

W
k−1 + V0tu

W (13)

V
∗W (t) = V0L3(ψwall)u = V0u

W (14)

According to,4 from the optical flow measurement, one can deduce the information vC =
V C/d, the UAV velocity in the onboard camera frame scaled by the wall distance. Besides,
the wall distance d can be measured by a range sensor. Assuming a perfect knowledge
on the camera attitude (hence a rotation matrix from the camera frame to the wall frame
LWC), the following measurement can be used in the reference trajectory tracking guidance.

ŶW = YW − ỸW = −d̂
V̂

W
= V

W − Ṽ
W

= d̂LWC v̂
C
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where Ṽ
W

and ỸW are the measurement errors.

ỸW = −d̃ (15)

Ṽ
W ≃ d̂LWC ṽ

C + d̃LWC v̂
C (16)

The wall following guidance law can be designed in a similar manner as the waypoint
tracking guidance law;

a
W = −Kp(X̂

W
(t)−X

∗W (t))−Kd(V̂
W
(t)− V

∗W (t)) (17)

But as we do not have a position information parallel to the wall, there is no position error
feedback on XW and ZW axes and it results in the linear gain in a form of

Kp =





0 0 0
0 kp 0
0 0 0





The trajectory tracking error dynamics becomes

ė
W =

[

O I
−Kp −Kd

]

e
W +







0 O




0
kp
0



 Kd







[

ỸW

Ṽ
W

]

+

[

O
I

]

w
W = ÃeW + B̃

[

ỸW

Ṽ
W

]

+Bw
W (18)

From the similar procedure as in Section IV.A, the trajectory tracking error covariance in
the wall frame can be propagated from tk−1 to tk by

E2W
k = EW

k−1 +
(

ÃEW
k−1 + EW

k−1Ã
T + B̃Rk−1B̃

T +BQWBT
)

∆tk (19)

Rk is a measurement error covariance matrix of (15-16) given by

Rk ≃ Hk

[

rd 0T

0 ROF

]

HT
k , Hk =

[

−1 0T

LWC v̂
C d̂LWC

]

where rd and ROF are the range and optical flow sensor error covariances respectively. This
covariance matrix can be easily converted from the wall frame to the inertial frame by
applying a rotation matrix L3(−ψwall). We recall here that, unlike a case of the waypoint
tracking guidance, the uncertainty in the trajectory tracking error (19) does not depend
on the UAV self-localization uncertainty.

V. Path Planning

The main idea of this paper is to apply a graph search algorithm to find a safe and short
path under the path execution uncertainty E which evolves differently with a combination
from the four different UAV self-localization modes presented in Section III and the two
different guidance modes presented in Section IV.

A. Environment Model

In this work, a 3D voxel model is used to represent the environment as a graph. Let ∆X

be a resolution and X0 be a position of the most South-West-Bottom corner node of the
model. Then, a position corresponding to a (i, j, k)-voxel is

X(i,j,k) = X0 +





i− 1 0 0
0 j − 1 0
0 0 k − 1



∆X

An occupancy of the (i, j, k)-voxel is a-priori known. Furthermore, each occupied voxel has
an obstacle label which identifies if it corresponds to a building-type obstacle where the
wall following guidance mode is applicable or not. This object classification can be done
by using a method proposed in15 for example, and walls can be detected as contours of the
building-type obstacles. The 3D voxel model is given by

map(X(i,j,k)) =

{

2 if occupied and wall
1 if occupied but not wall
0 if free
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On the graph, a neighborhood of the (i, j, k)-voxel is defined by its 26 adjacent ones; (i +
δi, j+ δj, k+ δk) where δi, δj, δk ∈ {−1, 0, 1}. In addition to the occupancy map, an availability
map for each of the four navigation modes and of the two guidance modes is supposed to
be created from the 3D voxel model map(X(i,j,k)). An availability of the m-th navigation
mode at the (i, j, k)-voxel is given by

navmap(X(i,j,k),m) =

{

1 if the m-th navigation mode is available
0 if the m-th navigation mode is unavailable

Similarly, an availability of the l-th guidance mode at the (i, j, k)-voxel is given by

guimap(X(i,j,k), l) =

{

1 if the l-th guidance mode is available
0 if the l-th guidance mode is unavailable

As states in Section III and IV, the navigation and guidance mode availability condition
is given by sensor characteristics used in each mode. Table 1 summarizes the availability
condition for each mode. GPS availability condition is simplified with a sky-view angle
threshold in this work. However, it is desirable to use a more precise GPS availability
model such as those found in7 and.8

Table 1: Availability Condition of Each Navigation and Guidance Modes

Modes Availability Condition

N
av
ig
at
io
n 1 INS-only Everwhere

2 GPS Sky-view angle > threshold

3 Optical flow Elevation variance of a surface appeared on the image < threshold

4 Landmark Landmark is within the onboard camera field-of-view

G
u
id
.

1 Waypoint Everywhere

2 Wall Distance to a wall < sensing range, and

Angle between path direction and wall < threshold

B. Uncertainty Propagation Model

Consider a UAV displacement from a voxel X0 to its neighbor X1. Suppose the UAV
localization and path execution error covariance matrices at X0 are given by P0 and E0

respectively. If navmap(X1,m) = 1, the localization error covariance can be propagated to
Pm
1 through the corresponding observation model in Section III. If guimap(X1, l) = 1, the

path execution error covariance can be propagated to El
1 through the corresponding model

in Section IV, which may use the UAV localization error covariance P0.

C. Posability and Traversability Conditions

Let EX > 0 be the position tracking error covariance. In this paper, an error ellipsoid is
defined by the conventional 2σ-error ellipsoid of EX augmented by the safety distance dsafe.
Assuming the zero mean error X̂ = X0, the UAV is posable at the voxel X0 with the path
execution error covariance E0 if map(X) = 0 for ∀X within the augmented ellipsoid of EX0.
Now we consider a traversability from a voxel X0 with the path execution error covariance
E0 to a voxel X1 with the updated covariance E1. The first condition of the traversability
is that the UAV must be posable at the both initial and destinate positions. Then, one
should check if there is a collision between the evolving error ellipsoid and occupied voxels
along the edge connecting the two. For calculation simplicity, the evolution of the error
ellipsoid is approximated by a truncated elliptic cone shown in Figure 2 in this work. The
UAV is traversable from X0 with E0 to X1 with E1, if map(X) = 0 for all nodes within this
elliptic cone.

D. Uncertainty Corridor

In many existing work of path planning under uncertainty, a minimum distance (or time,
energy) path is calculated with a traversability constraint on the error ellipsoid. Some
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Figure 2: Elliptic Cone Approximation of the Error Ellipsoid Evolution between Two Voxels

Figure 3: Example of Uncertainty Corridor

propose a cost function as a weighed sum of the distance and a localization uncertainty
cost (e.g.16) to integrate the uncertainty minimization in the planning objective. However,
such a cost function requires an ad-hoc parametrization to decide how much priority to
be put on minimum uncertainty over minimum distance. This paper inherits a concept
of uncertainty corridor proposed in.13 The uncertainty corridor is defined by a space swept
by the path execution error ellipsoid E evolving along a planned path from the start to
the goal. Figure 3 shows an example of the uncertainty corridor. As done in,13 a volume
of this uncertainty corridor is chosen as a cost function in the planning task. Minimizing
the volume of the uncertainty corridor implies minimizing both the path length and the
accumulated path execution uncertainty. The uncertainty corridor can be approximated
by an ensemble of the elliptic cones (Figure 2) between two successive voxels on the path.
Therefore, the cost function is given by

J =
π

6

N
∑

n=2

‖X(in,jn,kn) −X(in−1,jn−1,kn−1)‖ ·
(

u2maxn
u3maxn−1

+

u2maxn−1
u3maxn

+ 2(u2maxn−1
u3maxn−1

+ u2maxn
u3maxn

)
)

(20)

where {X1,X2, · · · ,XN} constitutes a planned path.

E. Path Search Algorithms

In order to find a collision risk-free path, which minimizes a cost function defined in (20),
one can apply a classical graph search algorithm such as A*.17 In this work, a graph is
built in a 5D search space where a node corresponds to a combination of a 3D voxel of
the environment map X(i,j,k), a navigation mode m and a guidance mode l. One node has
maximum 208 (26 neighbouring voxels ×4 navigation modes ×2 guidance modes) connec-
tions. A connection to a node (X(i,j,k),m, l) is established if the m-th navigation and l-th
guidance modes are available at the voxel X(i,j,k), and the edge is “traversable” with the
corresponding evolution of the path execution uncertainty. A* search algorithm can be
applied with the following cost and heuristic functions.
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• cScore : a transition cost from one node to another. A volume of the approximated
uncertainty corridor (the truncated elliptic cone) is used.

• hScore : a heuristic function estimating a cost-to-go at the current node to the goal.
An infimum limit of the volume of the uncertainty corridor from the current node to
the goal, corresponding to the case of direct connection with EX = O, is used.

• gScore : a cost to reach to the current node from the start, a summation of cScores
of edges on the path.

• fScore : an estimated total cost, a sum of the gScore and hScore. This is used as a
priority queue in the algorithm.

Differences from the conventional minimum-distance A* search are; i) it optimizes the cost
(distance + uncertainty) over selections of a path along with the navigation and guidance
modes, ii) the traversability condition under the uncertainty is imposed to confirm a con-
nection between two nodes, iii) it outputs not only a sequence of nodes (Xpath) but also
a sequence of the navigation and guidance modes (Mpath, Lpath) associated with each path
segment.

F. Post Processing

A resulting path Xpath is represented as a sequence of adjacent voxels in the 3D occupancy
map. In order to execute the planned path, it needs to be converted to a more simplified
flight plan which can be given by a sequence of sparse waypoints. In order to eliminate
intermediate voxels on a given path Xpath, Theta*-like process is performed on it. Theta*
algorithm is an any-angle path planner proposed in.18 It adds to A* algorithm an extra
process of checking the connectivity from a parent of the current node to a neighbored
node before checking a direct connectivity from the current node to the neighbor. If the
neighbored node can be connected to the parent, it establishes this connection by omitting
the current node. The similar process is applied to omit the intermediate points on the
path, by checking the traversability and the availability of navigation and guidance mode
specified at each node.

VI. Simulation Results

The concept of the navigation and guidance strategy planner proposed in this paper has
been validated through simulations with obstacle configurations defined in the UAV obsta-
cle field navigation benchmark.19 This benchmark is open to public, and obstacle models
and baseline trajectory data are available online. It contains six different simple obstacle
configurations, and a terrain model of San Diego downtown for real urban environment.
This paper uses four of the simple obstacle configurations.

A. Simulation Settings

This subsection describes simulation and path planning settings used in our simumlation
validation.

• Path Planning Configurations: Four different configurations shown in Figure 4 are
used. Every obstacles have 20m of height above a ground surface. Start and goal
points are separated by 100m, both at the altitude 10m above ground.

Xstart =





0
0
10



 (m), Xgoal =





0
100
10



 (m)

The minimum safety distance is set as 8m in horizontal axes and 6m in vertical. The
nominal UAV speed is given by 3.5m/s. For simplification, the estimation of the ac-
cleration bias ∆a is omitted. The initial UAV self-localization error covariance is given
by

Pstart =

[

(2)2I (m2) O
O (0.4)2I ((m/sec)2)

]

The inital path execution error covariance Estart coincides with Pstart.
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BM3) Wall BM4) Cube BM5) Wall Baffle BM6) Cube Baffle

Figure 4: Obstacle Configurations19

• Environment map: Each obstacle configuration is represented as a 3D-voxel occupancy
map with 2m of resolution in horizontal and 3m in vertical. The map covers from
[−100 −50 0 ]T (m) to [ 100 150 40 ]T (m). It means that the map contains 101×101×
14 voxels. All obstacles are considered as “building” and their contours corresnpond
to “wall” to which the wall-following guidance mode is applicable.

• Navigation and guidance mode availability map: For each voxel on the 3D occupancy
map, availability of each navigation and guidance mode is calculated according to
the conditions in Table 1. 90◦ is used for the sky-view angle threshold for the GPS
availability. The onboard camera is supposed to have 60◦ field-of-view for each axis.
As the tested environment has parfectly flat ground surface, the elevation variance
threshold for the optical flow-based navigation mode is set to 0. For the wall-following
guidance mode, 15m wall sensing range and ±30◦ angle threshold are used.

• Parameters in the navigation modes: The following covariance matrices for the process
noise and the measurement noise are used in the EKF process.

Q =

[

(1.0)2I O
O (0.6)2I

]

, RGPS = diag ([ (0.2)2 (0.2)2 (0.5)2 (0.1)2 (0.1)2 (0.2)2 ]) ,

ROF = diag ([ (0.02)2 (0.02)2 (0.04)2 ]) , RLM = (0.03)2I

The EKF prediction and update process is iterated with a sampling time 0.1 sec, except
the GPS update process with 0.5 sec, on each path segment.

• Parameters in the guidance modes: The linear control gain is set as kp = 0.1 and
kd = 1.4

√

kp, which gives a damping ratio ξ = 0.7 and a natural frequency ωn =
√
0.1

in the closed-loop system. The measurement noise covariance of the optical flow is
the same as that in the optical flow-based navigation mode, and that of the distance
measurement is (0.1)2. The process noise is set to zero.

B. Results

The following four cases are tested in simulations.

• TEST1: Most outdoor UAVs rely on the GPS/INS self-localization and use waypoints
to navigate. If GPS signal is lost, they have no choice but to use the INS-only local-
ization mode. In the first simulation set, we assume only the INS-only and GPS/INS
navigation modes and the waypoint tracking guidance mode available onboard an UAV.

• TEST2: One of the solutions to navigate an UAV in a partially GPS-denied envi-
ronment is to prepare an alternative GPS-free navigation system. In this second
simulation set, the optical flow-based navigation system is added to the TEST1 case.

• TEST3: In the third set, instead of adding the vision-based navigation system, the
vision-based wall-following guidance system is added to the TEST1 case.

• TEST4: In the last simulation set, all the four navigation modes and the two guidance
modes are supposed to be available onbaord.
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Figure 5: TEST1: Strategy Planning Results with Nominal System

VII. Conclusion

This paper proposed an UAV navigation and guidance strategy planner which takes into
account an evolution of the path execution uncertainty, in function of availability and choice
of different UAV self-localization and guidance modes, in order to ensure the flight safety.
In our previous paper,13 we have shown that the UAV navigation strategy planner can be
effective in planning a safer flight trajectory under GPS signal occlusion risk. This paper
extended this work by considering path execution uncertainty, rather than localization
uncertainty, with different guidance modes. While some guidance mode rely on the UAV
localization result, the others do not. The concept of this navigation and guidance strategy
planning is validated through simulations.

The work of this paper applied a classical graph search algorithm to find the optimal
strategy and flight plan to reach a given goal. However, this approach has some limitations.
For instance, the path execution uncertainty is used for the traversability check and the
cost calculation. But it is not really treated as a probability distribution of the node
transition (i.e. UAV displacement). That is, with such path execution uncertainty, the
node transition should include more than one possibilities with corresponding probabilities
for an applied guidance law. Hence, the planner needs to deal with this “uncertain” node
transition associated with the path execution uncertainty. Moreover, we would like to
include an “observation” process in the strategy plannig. During a mission execution, the
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Figure 6: TEST2: Strategy Planning Results with Vision-based Navigation System

UAV onboars system is capable to detect a current availability of each of the navigation
and guidance mode (e.g. GPS signal reception, landmark or wall detection). Therefore,
the planner must adapt a strategy in function of this observation result. In order to
treate those two aspects, the authors are currently working on formulating the poblem in
POMDP (Partially Observable Markov Decision Process) framework20.21 POMDP handles
decisional problems where the result of actions applied to the system are uncertain, and
where the observations of discrete states are partial or imprecise.

Finally, our future perspective includes development of an online embeddable strategy
planner. As our problem dimension is larger than that of conventional flight path planners,
it is a big challenge for us to develop an online planner which runs onboard an UAV during
the mission execution flight in order to replan a strategy upon new environment and UAV
state perception, and upon new observation of sensor availability.
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