Solar Potential in Extreme Climate Conditions
Comparative analysis of two district case studies in Norway and Reunion Island

CONTEXT
Due to its combined rugged topography, limited land available and population growth, Reunion must inevitably address the new challenge of urban densification. Therefore, new urban forms need to be designed in a climate and context-sensitive way in order to provide a low energy, sustainable and comfortable place for people.

Currently in Reunion, most buildings are designed following French building codes with very small and even no consideration of the context, the climatic conditions or the natural resources available. This leads to uncomfortable conditions for occupants, need for air conditioning and high energy consumption.

In this context, solar urban planning is a first step towards more urban sustainability and climate-sensitivity by integrating solar active and passive solutions in the urban morphology. Indeed, this unlimited but also under used source of energy can be harvested for PV electric generation, domestic hot water, daylighting and plant growing at the urban scale.

But when looking at densification and solar urban planning together, the complexity of the 3d interplay between solar irradiation and the urban form, the multiple design constraints and parameters and the impact of new buildings on the existing ones make solar integration a real challenge for designers and urban planners. They need flexible and performative tools for studying such phenomena, exploring and optimising design scenarios.

Urban densification + Solar urban planning = ?

APPROACH
In order to fully exploit the solar energy potential of urban settlements, the proposed approach is to maximise the solar irradiation received by the urban geometry, by both new and existing buildings. This is a way of limiting the adverse solar availability reduction over the existing environment due to the integration of new buildings. To do so, the geometry-based solar optimisation method needs to be applied following the hierarchy of scales, to the urban layout first and second to the building form.

Multi-scale
1 Urban Layout
2 Building Form

Geometry-based
1 Minimise overshadowing
2 Maximise solar collection

Multi-objective
1 Minimise comfort
2 Maximise energy

The applicability of the method is tested in the two district case studies situated in extreme climate conditions. They are both under a significant densification development and comprise new building projects that were planned following similar text books with no consideration for climate conditions or solar integration. Therefore, in order to inform these urban rules, it has been decided to study one urban scenario in both climates.

DESIGN & OPTIMISATION
The design and optimisation process combines the use of parametric modelling with dynamic solar simulation and evolutionary algorithm for solar urban planning. Thanks to their flexibility, it is possible to maximise the solar potential of a district at various scales with simple transformations while limiting solar availability reduction over the existing buildings by taking the complex overshadowing effects and mutual reflections into account.

CONCLUSION
This study is a first step towards more urban climate-sensitivity. This flexible and multi-scale approach will be further developed by integrating thermal and airflow dynamic simulations in the workflow. The aim is at the end to support the design of optimised bioclimatic buildings in dense tropical urban areas using parametric modelling and climate-based tools.