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LIMITS OF THE BOUNDARY OF
RANDOM PLANAR MAPS

Löıc Richier∗

April 6, 2017

Abstract

We discuss asymptotics for the boundary of critical Boltzmann planar maps under
the assumption that the distribution of the degree of a typical face is in the domain of
attraction of a stable distribution with parameter α ∈ (1, 2). First, in the dense phase
corresponding to α ∈ (1, 3/2), we prove that the scaling limit of the boundary is the
random stable looptree with parameter (α − 1/2)−1. Second, we show the existence
of a phase transition through local limits of the boundary: in the dense phase, the
boundary is tree-like, while in the dilute phase corresponding to α ∈ (3/2, 2), it has a
component homeomorphic to the half-plane. As an application, we identify the limits
of loops conditioned to be large in the rigid O(n) loop model on quadrangulations,
proving thereby a conjecture of Curien & Kortchemski.

1 Introduction

The purpose of this work is to investigate local limits, in the sense of Angel & Schramm,
and scaling limits, in the Gromov-Hausdorff sense, of the boundary of bipartite Boltzmann
planar maps conditioned to have a large perimeter.

Given a sequence q = (q1, q2, . . .) of nonnegative real numbers and a planar map m which
is bipartite (i.e., with faces of even degree), the associated Boltzmann weight is

wq(m) :=
∏

f∈Faces(m)

qdeg(f)/2.

The sequence q is admissible if these weights form a finite measure on the set of pointed
bipartite maps (with a distinguished oriented edge and vertex). We also say that q is critical
if moreover the expected number of edges of the map is infinite under this measure (see
Remark 2.5 for details).

One can then generate a large planar map by choosing it with a probability proportional
to its weight among the set of planar maps with n faces (or vertices). The scaling limits
of such large random planar maps have attracted a lot of attention. The first model to be
considered was the uniform measure on 2p-angulations, in which all faces have the same
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degree 2p. In this case, Le Gall [41] proved the subsequential convergence towards a random
metric space called the Brownian map, first introduced by Marckert & Mokkadem in [48] and
whose distribution has been characterized later by Le Gall [43] and Miermont [51]. This result
has been extended by Le Gall [43] to critical sequences q such that the degree of a typical
face has small exponential moments (while the first results on this model were obtained by
Marckert & Miermont [47]). The result also holds for critical sequences q such that the degree
of a typical face has a finite variance, as shown in the recent work [49] (such a sequence q is
called generic critical). Convergence towards the Brownian map has also been established
in the non-bipartite case in [50, 52]. All these results demonstrate the universality of the
Brownian map, whose geometry is now well understood [45, 42].

For a different behaviour to arise, Le Gall & Miermont suggested in [44] to assume,
besides criticality, that the degree of a typical face is in the domain of attraction of a stable
law with parameter α ∈ (1, 2). The weight sequence q is then called non-generic critical
with parameter α. Under slightly stronger assumptions, they proved the convergence (along
a subsequence) towards a one-parameter family of random metric spaces called the stable
maps with parameter α. These maps offer a geometry which is very different from that of
the Brownian map, because of large faces that remain present in the scaling limit. Their
duals are studied in the recent works [16, 6], but a lot of questions remain open.

The stable maps are believed to have a phase transition at α = 3/2. The regime α ∈
(1, 3/2) is called the dense phase because the large faces of the map are supposed to be self-
intersecting in the limit, while in the regime α ∈ (3/2, 2), called the dilute phase, they are
supposed to be self-avoiding. The aim of this work is twofold: first, we identify the branching
structure of the large faces in the dense phase via scaling limits. Then, we establish the phase
transition through local limits of large faces.

Precisely, we consider Boltzmann distributions on bipartite maps with a boundary, mean-
ing that the face on the right of the root edge (the root face) is interpreted as the boundary
∂m of the map m, and receives no weight. Any admissible weight sequence q provides a
probability measure P(k)

q on the set of bipartite maps with perimeter #∂m = 2k, for every
k ≥ 0 (see Section 2.2). At large scale, this can be seen a as an (unpointed) stable map
rooted on a large face. Our main result is the following.

Theorem 1.1. Let q be a non-generic critical sequence with parameter α ∈ (1, 3/2). For

every k ≥ 0, let Mk be a random planar map with distribution P(k)
q . Then, there exists a

slowly varying function Λ such that in distribution for the Gromov-Hausdorff topology,

Λ(k)

(2k)α−1/2
· ∂Mk

(d)−→
k→∞

Lβ,

where Lβ is the random stable looptree with parameter

β :=
1

α− 1
2

∈ (1, 2).

The random stable looptrees (Lβ : β ∈ (1, 2)) are compact metric spaces introduced by
Curien & Kortchemski in [24], that can informally be seen as the random stable trees of
Duquesne & Le Gall [28, 29], in which branching points are turned into topological circles.
Random stable looptrees also appear as the scaling limits of discrete looptrees [24], which
are loosely speaking collections of cycles glued along a tree structure. They have Hausdorff
dimension β almost surely [24, Theorem 1.1].

2



The result of Theorem 1.1 covers the dense case, but the subcritical, dilute and generic
critical regimes remain open. We believe that in the dilute and generic critical phases, the
scaling limit of ∂Mk is a circle. Furthermore, in the subcritical phase, the Continuum Random
Tree [1, 2] is expected to arise as a scaling limit. We will discuss these questions in greater
detail in Section 4, and hope to investigate them in a future work.

The local limits of Boltzmann bipartite planar maps with a boundary have been studied
by Curien in [21]. He proved that for any admissible weight sequence q, we have the weak
convergence for the local topology

P(k)
q =⇒

k→∞
P(∞)
q .

The probability measure P(∞)
q is supported on bipartite maps with an infinite boundary,

and called the (law of the) Infinite Boltzmann Half-Planar Map with weight sequence q (or

q-IBHPM for short). We now let M∞ = M∞(q) be a planar map with distribution P(∞)
q .

We are interested in the behaviour of the boundary ∂M∞ of M∞, depending on the weight
sequence q. In general, ∂M∞ is not simple and has self-intersections, called cut vertices (or
pinch points). Then, M∞ can be decomposed in irreducible components, i.e., bipartite maps
with a simple boundary attached by cut vertices of ∂M∞. When M∞ has a unique infinite
irreducible component, we call this component the core of M∞. For technical reasons, it is
more convenient to study the scooped-out map Scoop(M∞) instead of ∂M∞. This map is
obtained by duplicating the edges of ∂M∞ whose both sides belong to the root face.

It is no surprise that the boundary of M∞ is a local limit version of looptrees. Let us briefly
sketch their construction, details being postponed to Section 5.2. Given a pair of offspring
distributions (ρ◦, ρ•), a two-type alternated Galton-Watson tree is a random tree in which
vertices at even (resp. odd) height have offspring distribution ρ◦ (resp. ρ•) all independently
of each other. As in the monotype case, we can make sense of such trees conditioned to
survive, and denote the limiting infinite tree by T◦,•∞ = T◦,•∞ (ρ◦, ρ•). When (ρ◦, ρ•) is critical
(meaning that the product of the means equals one), Stephenson established in [56] that T◦,•∞
is a two-type version of Kesten’s tree ([37], see also [46]). In particular, T◦,•∞ is locally finite
and has a unique spine. On the contrary, we will prove in Proposition 5.3, under additional
assumptions, that when (ρ◦, ρ•) is subcritical, T◦,•∞ has a unique vertex with infinite degree
(at odd height). This is an expression of the condensation phenomenon first observed in the
monotype case by Jonsson & Stefánsson ([36], see also [39]). We now define an infinite planar
map L∞ = L∞(ρ◦, ρ•) out of the tree structure given by T◦,•∞ , by taking each vertex at odd
height in T◦,•∞ and connecting its neighbours by edges in cyclic order. Therefore, L∞ has
only finite faces in the critical regime, while a (unique) infinite face arises in the subcritical
regime. Note that ρ• dictates the size of the finite faces in L∞. We can now state our local
limit result.

Theorem 1.2. Let q be an admissible weight sequence, and M∞ = M∞(q) the q-IBHPM.
We assume that q is either subcritical, generic critical or non-generic critical with parameter
α ∈ (1, 2). Then, there exists probability measures ν◦ (geometric) and ν• such that

Scoop(M∞)
(d)
= L∞(ν◦, ν•).

A phase transition is observed:

• If q is subcritical or non-generic critical with parameter α ∈ (1, 3/2], (ν◦, ν•) is critical
and M∞ has only finite irreducible components.
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• If q is non-generic critical with parameter α ∈ (3/2, 2) or generic critical, (ν◦, ν•) is
subcritical and M∞ has a well defined core with an infinite simple boundary.

Moreover, ν• has finite variance if and only if q is subcritical. Otherwise, ν• is in the domain
of attraction of a stable distribution, with parameter (α − 1/2)−1 (if α ∈ (1, 3/2)), α − 1/2
(if α ∈ (3/2, 2)) or 3/2 (if q is generic critical).

In other words, in the dense phase, M∞ is tree-like, while in the dilute phase, it has an
irreducible component homeomorphic to the half-plane on which finite maps are grafted (see
Figure 1 for an illustration). In the subcritical and dense phases, the q-IBHPM can even be
recovered from the infinite looptree L∞ and a collection of independent Boltzmann bipartite
maps with a simple boundary, as shown in Proposition 5.8. Note that such collections of
random combinatorial structures attached to a tree also appear in the recent work [57]. In
the dilute and generic critical regimes, we expect the map with an infinite simple boundary
Core(M∞) to be the local limit of Boltzmann bipartite maps constrained to have a simple
boundary when the perimeter goes to infinity, as shown in the quadrangular case in [25] (see
Section 5.3 for more on this). The critical parameter α = 3/2 plays a special role that we
discuss in Section 7, under additional assumptions.

α ≤ 3/2
α > 3/2

Figure 1: Schematic representation of the boundary of the q-IBHPM for q non-generic critical
with parameter α ∈ (1, 2).

The study of Boltzmann distributions such that q is non-generic critical with parameter
α ∈ (1, 2) is also motivated by the connection with statistical physics models on random
maps. Here, we are interested in the rigid O(n) loop model on quadrangulations, studied by
Borot, Bouttier & Guitter in [11]. We now give a brief description of this model, and refer
to Section 6 for details.

A loop-decorated quadrangulation with a boundary (q, `) is a planar map q whose faces
all are quadrangles (except the root face), together with a collection of non-crossing loops
` = (`1, `2, . . .) drawn on the dual of q. The configuration is called rigid if loops cross
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quadrangles only through their opposite sides. Given n ∈ (0, 2) and g, h ≥ 0, we define a
measure on loop-decorated quadrangulations by

W(n;g,h)((q, `)) := g#Faces(q)−|`|h|`|n#`,

where |`| is the total length of the loops and #` is the number of loops. Provided this measure

is finite, it induces a probability measure P
(k)
(n;g,h) on loop-decorated quadrangulations with a

boundary of perimeter 2k, for every k ≥ 0. We are particularly interested in the case k = 1,
which corresponds to the rigid O(n) loop model on quadrangulations of the sphere, simply
by gluing the two edges of the boundary together. See Figure 2 for an illustration.

g h

Figure 2: A rigid loop configuration ` on a quadrangulation with a boundary q.

In [11], Borot, Bouttier & Guitter introduced the gasket of a loop-decorated quadrangu-
lation, obtained by pruning the interior of the outermost loops. They proved that in the rigid
O(n) loop model on quadrangulations with perimeter 2k, the gasket is a Boltzmann bipartite

planar map with distribution P(k)
q , where q = q(n; g, h) is the solution of a certain equation.

This leads to a classification of the parameters (n; g, h) in subcritical and (non-)generic criti-
cal regimes, depending on the type of the weight sequence q. It has been argued in [11] (and
fully justified in [17, Appendix]) that the model admits a complete phase diagram, shown
in Figure 3. In particular, for non-generic critical parameters, the gasket is a non-generic
Boltzmann bipartite map with parameter α satisfying

α =
3

2
± 1

π
arccos

(n
2

)
.

In this work, we are motivated by the study of the geometry of large loops in the rigid O(n)
loop model on quadrangulations. More generally, the geometry of large interfaces in statistical
physics models on random maps is of great interest. In [23], Curien and Kortchemski studied
percolation on random triangulations of the sphere. They proved that the boundary of (the
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h

g

non-generic critical

generic
critical

1
12

subcritical

non-admissible
α = 3

2 − 1
π arccos(n/2) (dense) α = 3

2
+ 1

π
arccos(n/2) (dilute)

(g∗, h∗)

Figure 3: The phase diagram of the rigid O(n) loop model on quadrangulations. For every
n ∈ (0, 2), there exists a critical line h = hc(n; g) that separates the subcritical and ill-defined
parameters. The regime changes along the critical line. There is a special point (g∗(n), h∗(n))
such that the parameters are non-generic critical with parameter α < 3/2 (dense) for g < g∗,
and generic critical for g > g∗. The special point (g∗, h∗) itself is non-generic critical with
parameter α > 3/2 (dilute).

hull of) a critical percolation cluster conditioned to be large converges after proper rescaling
towards the random stable looptree with parameter 3/2. They also conjecture that the
whole family (Lβ : β ∈ (1, 2)) appears as a scaling limit of large loops in the O(n) model on
triangulations. The following application of Theorem 1.1 proves this conjecture for the rigid
O(n) loop model on quadrangulations.

Theorem 1.3. Let n ∈ (0, 2), g ∈ [0, g∗(n)) and h := hc(n; g). For every k ≥ 0, let (Qk, Lk)

be a loop-decorated quadrangulation with distribution P
(k)
(n;g,h). Then, there exists a constant

C = C(n, g, h) such that in distribution for the Gromov-Hausdorff topology,

C

(2k)1/β
· ∂Qk

(d)−→
k→∞

Lβ,

where Lβ is the random stable looptree with parameter

β :=

(
1− 1

π
arccos

(n
2

))−1

∈ (1, 2).

Note that the value of β in Theorem 1.3 fits the prediction of [23]. We also obtain local
limit results regarding large loops of the O(n) model from Theorem 1.2 and its proof.

Theorem 1.4. Let n ∈ (0, 2) and g, h ≥ 0 such that (n; g, h) is admissible. For every k ≥ 0,

let (Qk, Lk) be a loop-decorated quadrangulation with distribution P
(k)
(n;g,h). Then, there exists

probability measures ν◦ (geometric) and ν• such that in distribution for the local topology,

Scoop(Qk)
(d)−→
k→∞

L∞(ν◦, ν•).

Moreover,
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• If (n; g, h) is subcritical, (ν◦, ν•) is critical and ν• has finite variance.

• If h = hc(n; g) and g < g∗(n) (the dense case), (ν◦, ν•) is critical and ν• is in the

domain of attraction of a stable distribution with parameter
(
1− 1

π
arccos

(
n
2

))−1
.

• If (h, g) = (h∗(n), g∗(n)) (the dilute case), (ν◦, ν•) is subcritical and ν• is in the domain
of attraction of a stable distribution with parameter 1 + 1

π
arccos

(
n
2

)
.

• If h = hc(n; g) and g > g∗(n) (the generic critical case), (ν◦, ν•) is subcritical and ν• is
in the domain of attraction of a stable distribution with parameter 3/2.

This result should be compared to the local limit of critical percolation clusters condi-
tioned to be large in triangulations of the half-plane, studied in [54].

At first glance, Theorems 1.3 and 1.4 hold only for the boundary of loop-decorated quad-
rangulations. However, by the gasket decomposition, they apply to any loop conditioned
to be large in the rigid O(n) loop model. To make it more concrete, on can choose any
deterministic procedure to pick a loop in the rigid O(n) loop model on quadrangulations
of the sphere (e.g. the loop that is the closest to the root edge) and condition this loop to
have perimeter 2k. Then, the inner contour of this loop is the boundary of a loop-decorated
quadrangulation with distribution P

(k)
(n;g,h). See Proposition 6.1 and Remark 6.2 for more

details.

Our approach is based on the decomposition of bipartite planar maps with a general
boundary into a tree of bipartite planar maps with a simple boundary, which is inspired by
[23] and described in Section 3. In order to deduce the results from this decomposition, we
need estimates on the partition function of bipartite maps with a simple boundary. This
is done in Section 2.3, by means of a simple relation between the generating functions of
bipartite maps with a general (resp. simple) boundary (see Lemma 2.10).

This method is quite robust, and only needs estimates on the partition function of the
model as an input. For this reason, we believe that our proofs can be adapted to more general
statistical physics models on random planar maps for which Borot, Bouttier & Guitter proved
results similar to those of [11]. For instance, general O(n) loop models on triangulations
with bending energy [10] or domain symmetry breaking [9]. This last case covers in particular
the Potts model and Fortuin-Kasteleyn percolation on general planar maps, that have been
studied in [5, 55, 31, 32, 33, 19]. An interesting example is the critical Bernoulli percolation
model on random triangulations, treated in [10, Section 4.2, p.23]. This corresponds to
a O(n) loop model on triangulations for n = 1 and a suitable choice of the parameters.
The asymptotics are similar to the quadrangular case, and we get the exponent β = (1 −
arccos(1/2)/π)−1 = 3/2, which is consistent with the result of [23].

2 Boltzmann distributions

Notation. Throughout this work, we use the notation

N := {1, 2, . . .} and Z+ := N ∪ {0}.
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2.1 Boltzmann distributions on bipartite maps

Maps. A planar map is a proper embedding of a finite connected graph in the two-
dimensional sphere S2, considered up to orientation-preserving homeomorphisms. The faces
of a planar map are the connected components of the complement of the embedding, and the
degree deg(f) of a face f is the number of its incident oriented edges. The sets of vertices,
edges and faces of a planar map m are denoted by V(m), E(m) and F(m). For technical
reasons, the planar maps we consider are always rooted, which means that an oriented edge
e∗ = (e−, e+), called the root edge, is distinguished. The face f∗ incident on the right of
the root edge is called the root face. A planar map with a boundary m is a map in which
we consider the root face as an external face, whose incident edges and vertices form the
boundary ∂m of the map. The non-root faces are then called internal and the degree #∂m
of the external face is the perimeter of the map.

In this paper, we consider bipartite planar maps, in which all face degrees are even. We
denote by M set of bipartite planar maps, and by Mk be the set of bipartite planar maps
with perimeter 2k, for k ≥ 0. By convention, the “vertex map” † consisting of a single vertex
is considered as the only element ofM0. We will also consider pointed bipartite maps, which
have a marked vertex v∗. A pointed bipartite map m such that dm(e+, v∗) = dm(e−, v∗) + 1
is said to be positive, and the corresponding set is denoted byM•

+ (by convention, † ∈ M•
+).

Finally, we use the notation M for the identity mapping on M.

Boltzmann distributions. We now recall the construction of Boltzmann distributions,
and first deal with positive bipartite maps. Given a weight sequence q = (qk : k ∈ N) of
nonnegative real numbers, the Boltzmann weight of a bipartite planar map m is defined by

wq(m) :=
∏

f∈F(m)

qdeg(f)/2. (1)

By convention, we set wq(†) = 1. This defines a σ-finite measure onM•
+ with total mass (or

partition function)
Zq := wq

(
M•

+

)
∈ [1,∞]. (2)

Naturally, a weight sequence q is said to be admissible if Zq <∞. This is our basic assumption
in the next part. Then, the Boltzmann distribution P•q associated to q is defined by

P•q(m) :=
wq(m)

Zq
, m ∈M•

+.

Following [47], we introduce the function

fq(x) :=
∞∑

k=1

(
2k − 1

k − 1

)
qkx

k−1, x ≥ 0, (3)

whose radius of convergence is denoted by Rq. By [47, Proposition 1], a weight sequence q is
admissible iff the equation

fq(x) = 1− 1

x
, x > 0 (4)

has a solution. In that case, the smallest such solution is Zq and Z2
qf
′
q(Zq) ≤ 1. In particular,

we have Zq ∈ (1, Rq]. The following definitions were introduced in [47, 11].
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Definition 2.1. An admissible weight sequence q is critical if Z2
qf
′
q(Zq) = 1, and subcritical

otherwise. A critical weight sequence is regular critical if Zq < Rq, generic critical if f ′′q (Rq) <
∞, and non-generic critical otherwise.

The function fq being of class C∞ on (0, Rq), a regular weight sequence is indeed generic.

The classification of weight sequences is closely related to the Bouttier-Di Francesco-
Guitter bijection [12], that associates to every map m ∈M•

+ a tree ΦBDG(m) (together with
labels on vertices at even height). The study is simplified by using additionally a bijection ΦJS

due to Janson and Stefánsson [35, Section 3]. This bijection will be of independent interest
in the next part, so we give a detailed presentation in Section 3.1. We are interested in the
application that associates to m ∈M•

+ the tree Φ(m) := ΦJS(ΦBDG(m)). By combining [47,
Proposition 7] and [35, Appendix A] (see also Proposition 3.1), we get the following.

Lemma 2.2. Let q be an admissible weight sequence. Then, under P•q, the plane tree Φ(M)
is a Galton-Watson tree with offspring distribution µ defined by

µ(0) = 1− fq(Zq) and µ(k) = Zk−1
q

(
2k − 1

k − 1

)
qk, k ∈ N.

The definition of Galton-Watson trees is postponed to Section 3.1. Recall that the off-
spring distribution µ is called critical (resp. subcritical) iff it has mean mµ = 1 (resp. mµ < 1).
Lemma 2.2 has a simple expression in terms of the generating function Gµ of µ, which reads

Gµ(s) :=
∞∑

k=0

skµ(k) = 1− fq(Zq) + sfq(sZq), s ∈ [0, 1]. (5)

The notions of criticality, regularity and genericity are now easily defined in terms of the
offspring distribution µ. First, we find

mµ = 1− 1− Z2
qf
′
q(Zq)

Zq
, (6)

and assuming mµ = 1, the variance σ2
µ of µ reads

σ2
µ = Z2

qf
′′
q (Zq) +

2

Zq
. (7)

We obtain from Definition 2.1 the following result.

Proposition 2.3. An admissible weight sequence q is critical iff µ is critical. A critical
weight sequence q is regular critical iff µ has small exponential moments, and generic critical
(resp. non-generic critical) iff µ has finite (resp. infinite) variance.

In this paper, we are particularly interested in the non-generic critical case.

Definition 2.4. A weight sequence q is non-generic critical with parameter α ∈ (1, 2) if q is
critical and the distribution µ is in the domain of attraction of a stable law with parameter
α: there exists a slowly varying function ` on R+ (eventually positive) such that

µ([k,∞)) =
`(k)

kα
.
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Recall that by definition, a measurable function ` is slowly varying (at infinity) if it
satisfies `(λx)/`(x) → 1 as x → ∞, for every λ > 0. We emphasize that Definition 2.4
is slightly more general than that introduced in [44], which implies that the slowly varying
function ` is asymptotically constant (and is also the framework in [11, 16, 6, 21]).

Remark 2.5. The classification of weight sequences can be translated in terms of P•q by
properties of ΦBDG. First, we have E•q(#E(M)) = ∞ iff q is critical. Then, the probability
measure µ•(k) := µ(k+1)/fq(Zq) is interpreted as the law of (half) the degree of a typical face
of the map under P•q. Thus, a critical sequence q is regular critical (resp. generic critical) iff
the degree of a typical face has small exponential moments (resp. finite variance). Moreover,
q is non-generic critical with parameter α ∈ (1, 2) iff the degree of a typical face is in the
domain of attraction of a stable distribution with parameter α.

We conclude by translating Proposition 2.3 in terms of the Laplace transform Lµ of µ.
First, if q is subcritical, µ has finite mean mµ < 1 and

Lµ(t) := Gµ(e−t) = 1−mµt+ o(t) as t→ 0+. (8)

When q is generic critical, µ has mean mµ = 1 and finite variance σ2
µ which yields

Lµ(t) = 1− t+
σ2
µ + 1

2
t2 + o(t2) as t→ 0+. (9)

The situation is different when q is non-generic critical with parameter α ∈ (1, 2). By
Karamata’s Abelian theorem [8, Theorem 8.1.6], we get

Lµ(t) = 1− t+ |Γ(1− α)|tα` (1/t) + o(tα` (1/t)) as t→ 0+. (10)

2.2 Boltzmann distributions on maps with a boundary

We now deal with maps that have a boundary. The root face f∗ is then considered as external
to the map, and receives no weight. This amounts to using the Boltzmann weights

wq(m) :=
∏

f∈F(m)\{f∗}
qdeg(f)/2. (11)

Let us introduce the partition functions for bipartite maps with a fixed perimeter

Fk :=
∑

m∈Mk

wq(m), k ∈ Z+, (12)

where we hide the dependence in the sequence q in the notation. These quantities are finite
if q is admissible. For q = 0, Fk is the k-th Catalan number. In particular, for any weight
sequence q, Fk > 0 for every k ≥ 0 (and F0 = 1). The associated Boltzmann measure on
bipartite maps with fixed perimeter is defined by

P(k)
q (m) :=

1{m∈Mk}wq(m)

Fk
, m ∈M, k ∈ Z+. (13)

This is the probability measure we focus on. The aim of this section is to give asymptotics
for the partition function Fk. For this purpose, we define the generating function

F (x) :=
∞∑

k=0

Fkx
k, x ≥ 0, (14)
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whose radius of convergence is denoted by rq. We borrow ideas of [11, Section 3.1] and [21,
Section 5.1], but we need to extend these results due to our more general definition of a non-
generic critical weight sequence. The idea is to let the (admissible) weight sequence q vary
by adding a weight u ∈ [0, 1]. We let q(u) := (uk−1qk : k ∈ N), and set Zq(u) := Zq(u). Using
the universal form of the generating function for pointed Boltzmann maps [15, Proposition
2, Section A.1] and Euler’s formula, we obtain (see [21, Equation (5.2)])

Fk =

(
2k

k

)∫ 1

0

(uZq(u))kdu, k ∈ Z+. (15)

In the setting of [44], the asymptotics of Fk would follow from Laplace’s method, see [11, 21].
Here, we use a different technique based on Karamata’s Tauberian theorem. First, the
function Xq(u) := uZq(u) is increasing from [0, 1] to [0, Zq]. It is also continuous as a
normally converging series of continuous functions and thus invertible on [0, 1], with inverse
denoted by Yq. Since Zq(u) is the smallest solution of (4) with q = q(u), we have by (5)

Yq(x) = x− xfq(x) = 1 + x− ZqGµ(x/Zq), x ∈ [0, Zq].

This proves that Yq is of class C∞ on (0, Zq). Coming back to the integral in (15),

∫ 1

0

(uZq(u))kdu =

∫ Zq

0

xkY ′q(x)dx = Zk+1
q

∫ ∞

0

e−t(k+1)Y ′q(Zqe
−t)dt.

We now introduce the increasing function

U(t) :=

∫ t

0

Zqe
−uY ′q(Zqe

−u)du = 1− Yq(Zqe
−t) = −Zqe

−t + ZqLµ(t), t ≥ 0.

On the one hand, the integral is expressed in terms of the Laplace transform of U :
∫ 1

0

(uZq(u))kdu = Zk
q

∫ ∞

0

e−ktU(dt),

and on the other hand from (8), (9) and (10), as t→ 0+,

U(t) =





Zq(1−mµ)t+ o(t) (q subcritical)

Zqσ
2
µt

2/2 + o(t2) (q generic critical)

Zq|Γ(1− α)|tα`(1/t) + o(tα`(1/t)) (q non-generic critical α)

.

We can thus apply Karamata’s Tauberian theorem [8, Theorem 1.7.1’]. Using also Stirling’s
formula for the binomial coefficient in (15), we get

Fk ∼
k→∞





Zq(1−mµ)(4Zq)
k

√
πk3/2

(q subcritical)

Zqσ
2
µ(4Zq)

k

√
πk5/2

(q generic critical)

Zqα
√
π(4Zq)

k`(k)

sin(π(α− 1))kα+1/2
(q non-generic critical α)

, (16)
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where we used the identity Γ(1 − α)Γ(1 + α) = απ/ sin(πα) for α ∈ (1, 2). The quantity
a := α+1/2 is of particular importance and governs the asymptotic behaviour of the partition
function. Following [21], we introduce a notation for weight sequences.

Notation. An admissible weight sequence q is said of type a = 3/2 if it is subcritical, of
type a = 5/2 if it is generic critical and of type a ∈ (3/2, 5/2) if it is non-generic critical with
parameter α = a− 1/2.

This allows us to write (16) in a unified way. Let

c3/2 :=
Zq(1−mµ)√

π
, c5/2 :=

Zqσ
2
µ√
π

and ca :=
Zq(a− 1/2)

√
π

sin(π(a− 3/2))
, a ∈ (3/2, 5/2), (17)

and set the convention that ` = 1 if a ∈ {3/2, 5/2}. Then,

Fk ∼
k→∞

ca(4Zq)
k`(k)

ka
, a ∈ [3/2, 5/2]. (18)

We now derive from these asymptotics a singular expansion for the generating function
F , whose radius of convergence is rq = (4Zq)

−1. In particular, 0 < rq ≤ 1/4 if q is admissible.
We also have 1 < F (rq) <∞, and F ′(rq) <∞ iff a ∈ (2, 5/2]. For k ≥ 0, let

ζ(k) :=
Fkr

k
q

F (rq)
∼

k→∞

ca`(k)

kaF (rq)
.

The function k 7→ k−aζ(k) is slowly varying, so that Karamata’s theorem (direct half) [8,
Proposition 1.5.10] yields

∑

j≥k
ζ(j) ∼

k→∞
(a− 1)kζ(k) ∼

k→∞

ca`(k)

ka−1F (rq)
.

We can now apply Karamata’s Abelian theorem [8, Theorem 8.1.6] to get the asymptotics of
the Laplace transform Lζ of ζ. For a ∈ [3/2, 2), we find

Lζ(t) = 1− Γ(2− a)ca
F (rq)

ta−1` (1/t) + o(ta−1` (1/t)) as t→ 0+,

while for a ∈ (2, 5/2],

Lζ(t) = 1−mζt+
|Γ(2− a)|ca

F (rq)
ta−1` (1/t) + o(ta−1` (1/t)) as t→ 0+.

The function `1 defined for y ≥ 0 by `1(y) = `(−(log(1−1/y))−1) is slowly varying at infinity
by stability properties of slowly varying functions [8, Proposition 1.3.6]. We obtain from the
formula Gζ(s) = Lζ(− log(s)) that for a ∈ [3/2, 2),

Gζ(s) = 1− Γ(2− a)ca
F (rq)

(1− s)a−1`1

(
1

1− s

)
(1 + o(1)) as s→ 1−,

and for a ∈ (2, 5/2],

Gζ(s) = 1−mζ(1− s) +
|Γ(2− a)|ca

F (rq)
(1− s)a−1`1

(
1

1− s

)
(1 + o(1)) as s→ 1−.

The singular expansion of F follow from the identity F (xrq) = F (rq)Gζ(x). Note that
mζ = rqF

′(rq)/F (rq), and let κa := ca|Γ(2− a)|. Recall also that `1 = 1 for a ∈ {3/2, 5/2}.
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Proposition 2.6. Let q be a weight sequence of type a. For a ∈ [3/2, 2),

F (x) = F (rq)− κa
(

1− x

rq

)a−1

`1

(
1

1− x
rq

)
(1 + o(1)) as x→ r−q ,

and for a ∈ (2, 5/2],

F (x) = F (rq)− rqF ′(rq)
(

1− x

rq

)
+ κa

(
1− x

rq

)a−1

`1

(
1

1− x
rq

)
(1 + o(1)) as x→ r−q .

Remark 2.7. This method fails in the special case a = 2, which is momentarily excluded.
Indeed, Karamata’s Abelian theorem [8, Theorem 8.1.6] requires a different assumption for
integer powers [8, Equation (8.1.11c)] that we cannot prove to be satisfied in general (see [8,
Proposition 1.5.8] and the comments below). This issue can be bypassed by making additional
assumptions on the weight sequence, which is done in Section 7 .

2.3 Boltzmann distributions on maps with a simple boundary

The aim of this section is to obtain asymptotics for bipartite maps that have a simple bound-
ary, which will be of particular interest in the next part. A planar map with a simple boundary
is a planar map whose boundary is a cycle with no self-intersection. Their set is denoted by
M̂. Consistently, for every k ≥ 0, M̂k is the set of bipartite maps with a simple boundary
of perimeter 2k. A generic element of M̂ is denoted by m̂, and † ∈ M̂0 by convention.

The partition function for bipartite maps with a simple boundary and fixed perimeter is

F̂k :=
∑

m∈M̂k

wq(m), k ∈ Z+. (19)

These are finite if q is admissible. The associated Boltzmann measure is defined by

P̂(k)
q (m) :=

1{m∈M̂k}wq(m)

F̂k
, m ∈M, k ∈ Z+, (20)

and the associated generating function by

F̂ (x) :=
∞∑

k=0

F̂kx
k x ≥ 0. (21)

The radius of convergence of F̂ is denoted by r̂q. Note that F̂0 = 1 for any weight sequence,

while if q = 0, F̂k = δ0(k) + δ1(k) (the vertex map and the map with a single oriented edge
are the only bipartite maps with a simple boundary and no internal face). When we consider

the Boltzmann measure P̂(k)
q , we implicitly assume that F̂k > 0.

We will prove the following analogue of Proposition 2.6 for Boltzmann maps with a simple
boundary, which is the technical core of this paper. The constants (ĉa : a ∈ {3/2} ∪ (2, 5/2])

and the slowly varying functions ̂̀1 (depending on a) will be defined at the end of the section,
see (27) and (28).
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Proposition 2.8. Let q be a weight sequence of type a. For a = 3/2, as y → rqF
2(rq)

+,

F̂ (y) = F (rq)

(
1− 1

2

(
1− y

rqF 2(rq)

)
+ ĉ3/2

(
1− y

rqF 2(rq)

)2

(1 + o(1))

)
.

For a ∈ (3/2, 2)∪(2, 5/2], F̂ has radius of convergence r̂q = P (rq). Moreover, for a ∈ (3/2, 2),

F̂ (y) = F (rq)

(
1− 1

2

(
1− y

r̂q

)
+

(
1− y

r̂q

) 1
a−1 ̂̀

1

(
1

1− y
r̂q

)
(1 + o(1))

)
as y → r̂q

+,

and for a ∈ (2, 5/2],

F̂ (y) = F (rq)

(
1− ĉa

2

(
1− y

r̂q

)
+

(
1− y

r̂q

)a−1

̂̀
1

(
1

1− y
r̂q

)
(1 + o(1))

)
as y → r̂q

+.

Remark 2.9. One may wonder if we can use the theory of singularity analysis [30, Chapter

6] to get an asymptotic expansion of the partition function F̂k. However, it is not clear that
the so-called delta-analyticity assumption is satisfied in this context. We will use instead
Karamata’s Tauberian theorem, which provides a weaker result. In the subcritical case, we
do not know if the radius of convergence of the generating function F̂ equals rqF

2(rq) or not.
In the special case of quadrangulations, corresponding to the weights qk = qδ2(k), compu-

tations can be carried out explicitly using [13]. First, q is admissible if q ≤ 1/12 and critical
if q = 1/12. The generating function F satisfies from [13, Equations (3.4), (3.11) and (3.15)]

rq =
1

4R(q)
and F (rq) = 2(1− qR2(q)), where R(q) :=

1−√1− 12q

6q
, 0 < q ≤ 1

12
.

Furthermore, the generating function F̂ has from [13, Equation (5.16)] radius of convergence
given by

r̂q =
4

27qR3(q)
.

We conclude that r̂q > rqF
2(rq) for subcritical quadrangulations. Moreover, [13, Equation

(5.16)] also provides an equivalent of the partition function for quadrangulations:

F̂k ∼
k→∞

2
√

3r̂q
−k

27
√
πk5/2

(q critical) and F̂k ∼
k→∞

√
3r̂q
−k

27
√
πk3/2

(
1

qR2(q)
− 3

)
(q subcritical).

Our approach relies on a simple relation between the generating functions F and F̂ , which
was first observed in [14] (see also [13] for quadrangulations). This relation is itself based on
the following decomposition of bipartite maps.

Following [25, Section 2.2], every m ∈ M can be decomposed into a collection of ir-
reducible components, that is bipartite maps with a simple boundary attached by the cut
vertices of ∂m. Let m̂ ∈ M̂ be the irreducible component of m containing the root edge.
Then, m̂\V(∂m̂) disconnects m into #∂m̂ connected components. We root each of them
at the oriented edge of ∂m which is the closest to the root edge of m (and such that the

root face lies on its right). This provides a unique decomposition of m into m̂ ∈ M̂ and a
collection (mi : 1 ≤ i ≤ #∂m̂) of elements of M attached to the vertices of ∂m̂. See Figure
4 for an illustration.
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m

m̂

m1
m2

m3

m4

m5

m6

Figure 4: The decomposition of a bipartite map m.

Lemma 2.10. For every x ≥ 0, we have

F (x) = F̂
(
xF 2(x)

)
.

In particular, the radius of convergence of F̂ satisfies r̂q ≥ rqF
2(rq).

Proof. Let x ≥ 0. By the above decomposition, we have

F (x) =
∑

m∈M
x#∂m/2wq(m) =

∑

m∈M
x#∂m̂/2wq(m̂)

#∂m̂∏

i=1

x#∂mi/2wq(mi)

=
∑

m̂∈M̂

x#∂m̂/2wq(m̂)

(∑

m∈M
x#∂m/2wq(m)

)#∂m

=
∑

m̂∈M̂

(
xF 2(x)

)#∂m̂/2
wq(m̂) = F̂

(
xF 2(x)

)
.

We have that F (x) < ∞ if x < rq. Additionally, the function x 7→ xF 2(x) is continuous

increasing on [0, rq), so that F̂ (y) <∞ if y < rqF
2(rq). We deduce that r̂q ≥ rqF

2(rq).

We now use this relation to derive a singular expansion of F̂ from Proposition 2.6. Let
us introduce the function

P (x) := xF 2(x), x ≥ 0.

The function P is continuous and increasing from [0, rq] onto [0, rqF
2(rq)], with inverse P−1.

The results of Proposition 2.6 readily transfer to P . For a ∈ [3/2, 2),

P (x) = P (rq)− κ′a
(

1− x

rq

)a−1

`1

(
1

1− x
rq

)
(1 + o(1)) as x→ r−q , (22)

and for a ∈ (2, 5/2],

P (x) = P (rq)− Cq

(
1− x

rq

)
+ κ′a

(
1− x

rq

)a−1

`1

(
1

1− x
rq

)
(1 + o(1)) as x→ r−q , (23)
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where Cq := rqF (rq)(F (rq) + 2rqF
′(rq)) > 0 and κ′a := 2rqF (rq)κa. We now invert this

expansion to get that of P−1, and treat the cases a ∈ [3/2, 2) and a ∈ (2, 5/2] separately.
Recall that a measurable function f is regularly varying (at infinity) with index γ ∈ R if it
satisfies f(λx)/f(x)→ λγ as x→∞, for every λ > 0.

Lemma 2.11. Let f be a continuous decreasing regularly varying function with index −γ < 0.
Then, f is invertible and the function y 7→ f−1(1/y) is regularly varying with index 1/γ.

Proof. Observe that x 7→ 1/f(x) is regularly varying with index γ > 0. From [8, Theorem
1.5.12], there exists g regularly varying with index 1/γ such that

1

f(g(x))
∼ x as x→∞.

One version of g is the inverse y 7→ f−1(1/y) of x 7→ 1/f(x), defined for y large enough since
f vanishes at infinity. Thus, y 7→ f−1(1/y) is regularly varying with index 1/γ.

Let a ∈ [3/2, 2). From (22), we know that

R(x) := P (rq)− P (rq(1− 1/x)) ∼ κ′ax
1−a`1(x) as x→∞,

thus R is regularly varying with index −(a − 1) < 0. Moreover, R is continuous decreasing
on [1,∞) with inverse R−1 defined by

R−1(y) =

(
1− 1

rq
P−1(P (rq)− y)

)−1

, y ∈ (0, P (rq)].

By Lemma 2.11, y 7→ R−1(1/y) is regularly varying with index 1/(a−1), so that [8, Theorem
1.4.1] ensures the existence of a positive slowly varying function ¯̀

1 such that

R−1(1/y) = y
1

a−1 ¯̀
1(y), y ∈ [1/P (rq),∞).

As a consequence,

P−1(y) = rq − rq (P (rq)− y)
1

a−1

(
¯̀
1

(
1

P (rq)− y

))−1

, y ∈ [0, P (rq)). (24)

When a = 3/2, `1 = 1 so that computation can be made more explicit. Indeed, we find

R(x) ∼
κ′3/2√
x

as x→∞.

Then, the function Q(x) := R((κ′3/2/x)2) is continuous increasing from (0, κ′3/2] onto (0, P (rq)]

with inverse Q−1. Additionally, Q is right-differentiable at 0 with Q′(0+) = 1, so that Q−1 is
right-differentiable at 0 and (Q−1)′(0+) = 1. Thus, Q−1(y) ∼ y as y → 0+ and we get

R−1(y) =

(
κ′3/2

Q−1(y)

)2

∼
(
κ′3/2
y

)2

as y → 0+.

As a conclusion,

P−1(y) = rq −
rq

(κ′3/2)2
(P (rq)− y)2 (1 + o(1)) as y → P (rq)

−. (25)
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We are now interested in the case where a ∈ (2, 5/2]. From (23), we have

R(x) := C−1
q [P (rq)− P (rq(1− x))] = x− κ′a

Cq
xa−1`1 (1/x) (1 + o(1)) as x→ 0+.

The function R is continuous increasing on [0, 1], with inverse R−1 defined by

R−1(y) = 1− 1

rq
P−1(P (rq)− Cqy), y ∈ [0, C−1

q P (rq)].

It also satisfies R′(0+) = 1, (R−1)′(0+) = 1 and thus R−1(y) ∼ y as y → 0+. In particular,
y 7→ R−1(1/y) is regularly varying with index −1 and by [8, Proposition 1.5.7], the function
¯̀
1(y) := `1(1/R−1(1/y)) is slowly varying. We get

R−1(y)− y ∼ κ′a
Cq

(
R−1(y)

)a−1
`1

(
1/R−1(y)

)
∼ κ′a
Cq
ya−1 ¯̀

1 (1/y) as y → 0+,

and as a conclusion

P−1(y) = rq−
rq
Cq

(P (rq)− y)− κ′a
Ca

q

(P (rq)− y)a−1 ¯̀
1

(
Cq

P (rq)− y

)
(1+o(1)) as y → P (rq)

−.

(26)
We can now introduce the constants involved in the statement of Proposition 2.8,

ĉ3/2 :=
P (rq)

2

2(κ′3/2)2
− 1

8
and ĉa = 1− P (rq)

Cq
∈ (0, 1) for a ∈ (2, 5/2]. (27)

and the functions ̂̀1 defined by

̂̀
1(y) :=

P (rq)
1

a−1

2¯̀
1

(
y

P (rq)

) , a ∈ (3/2, 2) and ̂̀
1(y) :=

κ′aP (rq)
a−1

2Ca
q

¯̀
1

(
Cqy

P (rq)

)
, a ∈ (2, 5/2].

(28)
These functions are positive slowly varying, from [8, Proposition 1.3.6]. Note that for a = 5/2,

we have `1 = 1 so that ̂̀1 is constant.

Proof of Proposition 2.8. By Lemma 2.10, we have that F̂ (rqF
2(rq)) = F (rq), as well as

F̂ (y) =

√
y

P−1(y)
, 0 < y ≤ P (rq).

We obtain asymptotic expansions for F̂ around P (rq) using (24), (25), and (26). These

expansions are singular for a 6= 3/2, and thus F̂ is not of class C∞ at P (rq). Together with

Lemma 2.10, this proves that the radius of convergence of F̂ is r̂q = P (rq) in these cases.

3 Structure of the boundary of Boltzmann maps

3.1 Random trees and the Janson-Stefánsson bijection

We focus on the branching structure of the boundary of Boltzmann bipartite maps. We start
with generalities on plane trees.
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Trees. A (finite) plane tree t [40, 53] is a finite subset of the sequences of positive integers

U :=
⋃

n∈Z+

Nn

satisfying the following properties. First, ∅ ∈ t and is called the root vertex. Then, for
every u = (u1, . . . , uk) ∈ t, û := (u1, . . . , uk−1) ∈ t (and is called the parent of u in t).
Finally, for every u = (u1, . . . , uk) ∈ t, there exists ku = ku(t) ∈ Z+ (the number of children
of u in t) such that uj := (u1, . . . , uk, j) ∈ t iff 1 ≤ j ≤ ku. The height |u| of a vertex
u = (u1, . . . , uk) ∈ t is |u| = k. The vertices at even height are called white, and those at odd
height are called black. We let t◦ and t• be the corresponding subsets of vertices of t. The
total number of vertices of a tree t is denoted by |t|. The set of finite plane trees is denoted
by Tf . We use the notation T for the identity mapping on Tf .

Given a probability measure ρ on Z+, a Galton-Watson tree with offspring distribution ρ
is a random tree in which every vertex has a number of children distributed according to ρ,
all independently of each other. The tree is called critical (resp. subcritical) if the mean mρ

of ρ is equal to 1 (resp. less than 1). In these cases, its distribution GWρ is characterized by

GWρ(t) =
∏

u∈t
ρ(ku), ∀ t ∈ Tf . (29)

We will also deal with (alternated) two-type Galton-Watson trees with offspring distribu-
tion (ρ◦, ρ•), in which every vertex at even (resp. odd) generation has a number of children
distributed according to ρ◦ (resp. ρ•), all independently of each other. Such a tree is criti-
cal (resp. subcritical) if mρ◦mρ• = 1 (resp. mρ◦mρ• < 1). Then, its distribution GWρ◦,ρ• is
characterized by

GWρ◦,ρ•(t) =
∏

u∈t◦
ρ◦(ku)

∏

u∈t•
ρ•(ku), ∀ t ∈ Tf . (30)

The Janson-Stefánsson bijection. We now describe the Janson-Stefánsson bijection ΦJS

introduced in [35, Section 3]. First, ΦJS({∅}) = {∅}. For t 6= {∅}, ΦJS(t) has the same
vertices as t but different edges defined as follows. For every u ∈ t◦, set the convention
that u0 = û (if u 6= ∅) and u(ku + 1) = u. Then, for every j ∈ {0, 1, . . . , ku}, add the edge
(uj, u(j + 1)) to ΦJS(t). If u is a leaf, this amounts to adding an edge between u and its
parent. We obtain a tree ΦJS(t) embedded in the plane. The vertex 1 of t is the root vertex
of ΦJS(t), and its first children in ΦJS(t) is chosen according to the lexicographical order of
t. For further notice, we give a brief description of the inverse application Φ−1

JS . For t 6= {∅},
Φ−1

JS (t) has the same vertices as t, and its edges can be defined as follows. For every leaf
u ∈ t, let (u1, u2, . . .) be the sequence of vertices after u in the contour order of t, and let
`(u) be the largest index such that u1, . . . , u`(u) all are ancestors of u in t. Then, add an edge
between u and uk in Φ−1

JS (t) for every k ∈ {1, . . . , `(u)}. We obtain a tree Φ−1
JS (t) embedded

in the plane, and choose the last leaf u′ of t in contour order as the root vertex, and u′`(u) as
its first child.

The application ΦJS is a bijection from Tf onto itself. It has the property that every
vertex of t◦ is mapped to a leaf of ΦJS(t), and every vertex of t• with degree k is mapped to
a vertex of ΦJS(t) with degree k + 1. See Figure 5 for an illustration.

This bijection greatly simplifies the study of alternated two-type Galton-Watson trees,
because of the following result of [35] (see also [23, Proposition 3.6]).
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ΦJS

Φ−1
JS

Figure 5: The Janson-Stefánsson bijection and its inverse application.

Proposition 3.1. [35, Appendix A] Let ρ◦ and ρ• be probability measures on Z+ such that
mρ◦mρ• ≤ 1 and ρ◦ has geometric distribution with parameter 1−p ∈ (0, 1): ρ◦(k) = (1−p)pk
for k ≥ 0. Then, the image of GWρ◦,ρ• under ΦJS is GWρ, where

ρ(0) = 1− p and ρ(k) = p · ρ•(k − 1), k ∈ N.

Note that mρ − p = (1− p)mρ◦mρ• , so that (ρ◦, ρ•) is critical iff ρ itself is critical.

3.2 Random looptrees and scooped-out maps

We now introduce random looptrees and their tree of components to represent the boundary
of a planar map as a tree. This idea goes back to [23], while random looptrees were first
introduced in [24]. The following presentation is inspired by [23, Section 2.3].

Random looptrees. A looptree is a planar map whose edges are incident to two distinct
faces, one of them being the root face (such a map is also called edge-outerplanar). We
denote the set of finite looptrees by Lf . Informally, a looptree is a collection of simple cycles
glued along a tree structure. Consistently, there is a way to build looptrees from trees and
conversely.

We associate to every plane tree t ∈ Tf a looptree Loop(t) as follows. For every (black)
vertex u ∈ t•, connect all the incident (white) vertices of u in cyclic order. Then, Loop(t)
is the planar map obtained when discarding the black vertices and the edges of t. The root
edge of Loop(t) connects the origin of t to the last child of its first offspring in t. The inverse
application associates to a looptree l ∈ Lf a plane tree Tree(l), called the tree of components,
as follows. We add an extra vertex in every internal face of l, which we connect by an edge to
all the vertices of this face. The plane tree Tree(l) is then obtained by discarding the edges
of l. The root edge of Tree(l) connects the origin of l to the vertex lying inside the internal
face incident to the root edge of l. This is illustrated in Figure 6.
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Remark 3.2. In a looptree l, every internal face is rooted at the oriented edge whose origin
is the closest vertex to the origin of l, and such that the root face of l lies on its right. The
gluing of a planar map with a simple boundary of perimeter k into an internal face of degree
k is then determined by the convention that the root edges of the map and the face match.

t l
Loop

Tree

Figure 6: A looptree l and the associated tree of components t.

This definition of looptree slightly differs from that of [24, 23], that we now recall. Given
a plane tree t ∈ Tf , the looptree Loop(t) (or Loop′(t) in [24]) is build from t as follows. For
every u, v ∈ t, there is an edge between u and v iff one of the following conditions is fulfilled:
u and v are consecutive siblings in t, or v is either the first or the last child of u in t. We
will also need Loop(t), which is obtained from Loop(t) by contracting the edges linking a
vertex of t and its last child in t. These objects are rooted at the oriented edge between the
origin of t and its last child in t (resp. penultimate for Loop). See Figure 7 for an example.
We use the bold print Loop to distinguish this construction from Loop. Note that Loop(t)
is a looptree and can be obtained as the image of a plane tree by Loop, but the converse does
not hold: Loop does not allow several loops to be glued at the same vertex.

t Loop(t) Loop(t)

Figure 7: A tree t and the looptrees Loop(t) and Loop(t).

The scooped-out map. The scooped-out map of a planar map m was defined in [23] as
the looptree Scoop(m) obtained from the boundary ∂m by duplicating the edges whose both
sides belong to the root face. We call tree of components of m the tree of components of
Scoop(m), denoted by Tree(m) := Tree(Scoop(m)).

Any planar map m is recovered from Scoop(m) by gluing into the internal faces of
Scoop(m) the proper maps with a simple boundary (using Remark 3.2). These maps are
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the irreducible components of m, rooted at the oriented edge of ∂m which is the closest to
the root edge of m (and such that the root face lies on its right). Otherwise said, to every
black vertex u of t := Tree(m) corresponds a cycle of Scoop(m), and thus a planar map
with a simple boundary of perimeter deg(u). This construction provides a bijection

ΦTC : m 7→ (Tree(m), (m̂u : u ∈ Tree(m)•))

that associates to a bipartite map m ∈ M the plane tree t = Tree(m), whose vertices
at odd height have even degree, and a collection (m̂u : u ∈ t•) of bipartite maps with a
simple boundary of respective perimeter deg(u). See Figure 8 for an example. The following
relations between the perimeter of a map and the size of its tree of components will be useful:

|t| = #∂m + 1 and
∑

u∈t•
deg(u) = #∂m (t = Tree(m)). (31)

m

Scoop(m)

Figure 8: A planar map m and the associated scooped-out map Scoop(m).

3.3 Distribution of the tree of components

The purpose of this section is to provide the distribution of the tree of components of a
bipartite map under the probability measure Pq,rq defined by

Pq,rq(m) :=
r

#∂m/2
q wq(m)

F (rq)
, m ∈M. (32)

It is related to P(k)
q by conditioning with respect to the perimeter of the map: for every k ≥ 0,

Pq,rq (m | Mk) = P(k)
q (m), m ∈M. (33)

The main result of this section generalizes [4, Proposition 6] that deals with quadrangulations.
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Proposition 3.3. Let q be a weight sequence of type a ∈ [3/2, 5/2]. Under Pq,rq, Tree(M)
is a two-type Galton-Watson tree with offspring distribution (ν◦, ν•) defined by

ν◦(k) =
1

F (rq)

(
1− 1

F (rq)

)k
and ν•(2k + 1) =

1

F (rq)− 1

(
rqF

2(rq)
)k+1

F̂k+1, k ∈ Z+.

(With ν•(k) = 0 for k even.) Moreover, conditionally on Tree(M), the bipartite maps with a

simple boundary (M̂u : u ∈ Tree(M)•) associated to M by ΦTC are independent Boltzmann

bipartite maps with a simple boundary, having respective distribution P̂(deg(u)/2)
q .

Remark 3.4. The probability measure ν• is supported by odd integers, so the internal faces
of Scoop(M) have even degree. This is consistent with the fact that Pq,rq is supported by
bipartite maps. Note that M may have edges whose both sides are incident to the external
face: this corresponds to a vertex of degree 2 of Tree(M) associated to the bipartite map
with a simple boundary made of a single oriented edge.

Proof. Let us check that ν◦ and ν• are probability measures. This is clear for ν◦ which is a
geometric distribution. For ν•, we get recalling that 1 < F (rq) = F̂ (rqF

2(rq))

∑

k∈Z+

ν•(k) =
1

F (rq)− 1

(
F̂ (rqF

2(rq))− 1
)

= 1.

Let m ∈ M, and recall that ΦTC associates to m its tree of components t = Tree(m) and
a collection (m̂u : u ∈ t•) of bipartite maps with a simple boundary and perimeter deg(u).
Moreover, vertices of t• have even degree. Using (32) and (31), we have

Pq,rq(m) =
r

#∂m/2
q wq(m)

F (rq)
=

1

F (rq)

∏

u∈t•
rdeg(u)/2
q wq(m̂u).

Then, for every c > 0

1 =
∏

u∈t◦
cku
(

1

c

)|t•|
and

1

c
=
∏

u∈t•
cku
(

1

c

)|t◦|
.

Applying the first identity with c = 1− 1/F (rq) and the second one with c = F (rq) yields

Pq,rq(m) =
∏

u∈t◦

1

F (rq)

(
1− 1

F (rq)

)ku ∏

u∈t•

1

F (rq)− 1

(
rqF

2(rq)
)(ku+1)/2

wq(m̂u)

=
∏

u∈t◦
ν◦(ku)

∏

u∈t•
ν•(ku)wq(m̂u)

1

F̂(ku+1)/2

.

By convention, both sides equal zero if there exists u ∈ t• such that F̂(ku+1)/2 = 0. Finally,

Pq,rq

(
Tree(M) = t, M̂u = m̂u : u ∈ t•

)
= Pq,rq(M = m) = GWν◦,ν•(t)

∏

u∈t•
P̂(deg(u)/2)
q (m̂u),

which is the expected result.
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By Proposition 3.1, we obtain the following.

Corollary 3.5. Let q be a weight sequence of type a ∈ [3/2, 5/2]. Under Pq,rq, ΦJS(Tree(M))
is a Galton-Watson tree with offspring distribution ν defined by

ν(2k) =
1

F (rq)

(
rqF

2(rq)
)k
F̂k, k ∈ Z+ (and ν(k) = 0 for k odd).

As a consequence, the generating function of ν reads

Gν(s) =
1

F (rq)

∞∑

k=0

s2k
(
rqF

2(rq)
)k
F̂k =

1

F (rq)
F̂
(
rqF

2(rq)s
2
)
, s ∈ [0, 1]. (34)

From Lemma 2.10, we easily deduce the following formula for the mean of ν

mν = G′ν(1) =
1

F (rq)
2rqF

2(rq)F̂
′ (rqF 2(rq)

)
=

1

1 + F (rq)

2rqF ′(rq)

. (35)

Similarly, the generating function of ν• satisfies Gν•(0) = 0 and

Gν•(s) =
1

F (rq)− 1
· 1

s

(
F̂
(
rqF

2(rq)s
2
)
− 1
)
, s ∈ (0, 1]. (36)

We also have mν◦ = F (rq)− 1, so that by Proposition 3.1 and (35),

mν• =
mν

1− 1
F (rq)

− 1 =
1

1 + F (rq)

2rqF ′(rq)

· F (rq)

F (rq)− 1
− 1. (37)

The next result is a consequence of (18).

Lemma 3.6. The offspring distribution ν and the pair of offspring distributions (ν◦, ν•) are
critical if a ∈ [3/2, 2] and subcritical if a ∈ (2, 5/2].

We now describe the tail of the measures ν and ν•. The following is obtained by Propo-
sition 2.8, (34) and (36). For a = 3/2, as t→ 0+

Lν(t) = 1− t+
(
1 + 4ĉ3/2

)
t2 + o(t2), (38)

Lν•(t) = 1−
(

1

F (rq)− 1

)
t+

(
1

2
+ 4ĉ3/2

F (rq)

F (rq)− 1

)
t2 + o(t2). (39)

For a ∈ (3/2, 2), as t→ 0+

Lν(t) = 1− t+ 2
1

a−1 t
1

a−1 ̂̀(1/t) + o
(
t

1
a−1 ̂̀(1/t)

)
, (40)

Lν•(t) = 1−
(

1

F (rq)− 1

)
t+

F (rq)

F (rq)− 1
2

1
a−1 t

1
a−1 ̂̀(1/t) + o

(
t

1
a−1 ̂̀(1/t)

)
. (41)

Finally, for a ∈ (2, 5/2], as t→ 0+,

Lν(t) = 1− ĉat+ 2a−1ta−1̂̀(1/t) + o
(
ta−1̂̀(1/t)

)
, (42)

Lν•(t) = 1−
(

1− ĉa
F (rq)

F (rq)− 1

)
t+

F (rq)

F (rq)− 1
2a−1ta−1̂̀(1/t) + o

(
ta−1̂̀(1/t)

)
. (43)
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The function ̂̀(x) = ̂̀
1((1− exp(−2/x))−1) is slowly varying by [8, Proposition 1.5.7]. Note

that we recover formulas (35) and (37) from the definitions of ĉa (27) and Cq (23).

For a = 3/2, (38) and (27) entail that ν and ν• have finite variance equal to

σ2
ν =

(
2P (rq)

κ′3/2

)2

=

(
F (rq)

Zq(1−mµ)

)2

and σ2
ν• =

F (rq)

F (rq)− 1

((
F (rq)

Zq(1−mµ)

)2

− 1

)
.

(44)
If we assume additionally that r̂q > rqF

2(rq), there exists s > 1 such that Gν(s) < ∞ and
Gν•(s) <∞, so that ν and ν• have small exponential moments.

For a ∈ (3/2, 2), Karamata’s Tauberian theorem [8, Theorem 8.1.6], (40) and (41) give

ν([k,∞)) ∼
k→∞

2
1

a−1∣∣Γ
(
a−2
a−1

)∣∣ ·
̂̀(k)

k
1

a−1

and ν•([k,∞)) ∼
k→∞

F (rq)

F (rq)− 1
· 2

1
a−1∣∣Γ
(
a−2
a−1

)∣∣ ·
̂̀(k)

k
1

a−1

. (45)

Finally, when a ∈ (2, 5/2], the same version of Karamata’s Tauberian theorem gives

ν([k,∞)) ∼
k→∞

2a−1

|Γ (2− a) | ·
̂̀(k)

ka−1
and ν•([k,∞)) ∼

k→∞

F (rq)

F (rq)− 1
· 2a−1

|Γ (2− a) | ·
̂̀(k)

ka−1
. (46)

Proposition 3.7. For a = 3/2, ν and ν• have finite variance (and small exponential moments
iff r̂q > rqF

2(rq)). For a ∈ (3/2, 2), ν and ν• are in the domain of attraction of a stable
distribution with parameter 1/(a−1) ∈ (1, 2) and for a ∈ (2, 5/2], ν and ν• are in the domain
of attraction of a stable distribution with parameter a− 1 ∈ (1, 3/2].

Remark 3.8. Again, the value a = 2 has to be excluded, even when an analogue of Propo-
sition 2.6 holds. In this case, the expansion of the Laplace transform of ν is expected to
have a singularity of integer order, for which Karamata’s Tauberian theorem [8, Theorem
8.1.6] provides a weaker result. This issue can be circumvented by using De Haan theory [8,
Chapter 3], as we will see in Section 7 (under additional assumptions on the weight sequence).

The results of Proposition 3.3 and Corollary 3.5 transfer to P(k)
q . For every n ≥ 1, we

denote by GW(n)
ρ (resp. GW(n)

ρ◦,ρ•) the law of a Galton-Watson tree with offspring distribution
ρ (resp. (ρ◦, ρ•)) conditioned to have n vertices, provided this makes sense.

Corollary 3.9. Let q be a weight sequence of type a ∈ [3/2, 5/2]. For every k ≥ 0, under P(k)
q ,

Tree(M) has distribution GW(2k+1)
ν◦,ν• , and ΦJS(Tree(M)) has distribution GW(2k+1)

ν . Moreover,

conditionally on Tree(M), the maps (M̂u : u ∈ Tree(M)•) associated to M by ΦTC are

independent with respective distribution P̂(deg(u)/2)
q .

Proof. Recall from (31) that for every m ∈M, the size of t = ΦJS(Tree(m)) (or equivalently
of Tree(m)) equals #∂m + 1. Then, by Proposition 3.3, for every k ≥ 1,

GWρ({|t| = 2k + 1}) = GWρ◦,ρ•({|t| = 2k + 1}) = Pq,rq(Mk) =
rkqFk

F (rq)
,

which is positive by the results of Section 2.2. We conclude by applying Proposition 3.3.
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4 Scaling limits of the boundary of Boltzmann maps

This section deals with the scaling limits of the boundary of Boltzmann bipartite maps, in
the Gromov-Hausdorff sense. We refer to [18] for a complete definition of this topology. We
start with a preliminary result directly adapted of [23, Lemma 4.3].

Lemma 4.1. [23] For every m ∈M, we have Scoop(m) = Loop(ΦJS(Tree(m))).

Scaling limits for the boundary: the dense regime. We first focus on the dense phase
a ∈ (3/2, 2) and prove Theorem 1.1. The proof parallels that of [23, Theorem 1.2]. It is based
on the fact that the random β-stable looptree Lβ is the scaling limit of looptrees associated
to critical Galton-Watson trees conditioned to survive, when the offspring distribution is in
the domain of attraction of a stable law with parameter β [24, Theorem 4.1].

Proof of Theorem 1.1. For every k ≥ 0, let Mk be a random planar map with distribution
P(k)
q and set Tk := ΦJS(Tree(Mk)). By definition of Loop, we have

dGH

(
Loop(Tk),Loop(Tk)

)
≤ 2H(Tk), (47)

where H(Tk) is the overall height of Tk. Indeed, the longest path of vertices of Tk that are
identified in Loop(Tk) has length at most H(Tk). By the scaling limits results for conditioned
Galton-Watson trees ([27, Theorem 3.1], [38, Theorem 3]) we have that

H(Tk)

ka−1
−→
k→∞

0 in probability. (48)

The results of [27, 38] together with (48) ensure that the invariance principle of [24, Theorem
4.1] applies: there exists a slowly varying function Λ such that

Λ(k)

(2k)a−1
· Loop(Tk)

(d)−→
k→∞

L 1
a−1
,

in the Gromov-Hausdorff sense. Applying (47), (48) and Lemma 4.1, we deduce that

Λ(k)

(2k)a−1
· Scoop(Mk)

(d)−→
k→∞

L 1
a−1
,

in the Gromov-Hausdorff sense. This concludes the proof since for any planar map m, ∂m
and Scoop(m) define the same metric space.

Remark 4.2. As a byproduct, we get a scaling limit result for the tree Tk := ΦJS(Tree(Mk)):
there exists a slowly varying function Λ′ such that in the Gromov-Hausdorff sense

Λ′(k)

(2k)2−a · Tk
(d)−→
k→∞

T 1
a−1
,

where Tβ is the stable tree with parameter β [28, 29].

Scaling limits for the boundary: the subcritical regime. In the subcritical case, we
need to make assumptions on the partition function F̂k to obtain a convergence result. Let
q be a subcritical weight sequence and assume that r̂q > rqF

2(rq). For every k ≥ 0, let Mk
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be a random planar map with distribution P(k)
q . Then, there exists a constant Kq such that

in distribution for the Gromov-Hausdorff topology

Kq√
2k
· ∂Mk

(d)−→
k→∞

Te, (49)

where Te is the Continuum Random Tree [1, 2]. The proof relies on the convergence result
of looptrees [22, Theorem 14], for which we need the offspring distribution ν to have small
exponential moments, i.e. that r̂q > rqF

2(rq). As mentioned in Remark 2.9, we do not
know if this is satisfied for any subcritical sequence q (but only for subcritical Boltzmann
quadrangulations). However, we believe that [22, Theorem 14] holds under a finite variance
assumption, and hope to investigate this in a future work.

Scaling limits for the boundary: the generic and dilute regimes. In the generic
and dilute regimes, we also need extra assumptions on the partition function F̂k. Let q be a
weight sequence of type a = (2, 5/2], and assume that there exists a slowly varying function
`d such that

F̂k ∼
k→∞

`d(k)

ka
r̂q
−k. (50)

For every k ≥ 0, let Mk be a random planar map with distribution P(k)
q . Then, there exists

a constant Kq such that in distribution for the Gromov-Hausdorff topology

Kq

2k
· ∂Mk

(d)−→
k→∞

S1, (51)

where S1 stands for the unit circle. The proof can be adapted from [23, Theorem 1.2], which
is itself based on the results of [36, 39] about condensation in non-generic trees. As mentioned

in Remark 2.9, we do not have an equivalent of the partition function F̂k in general, which
is needed to apply the results of [36, 39]. However, we believe that (51) holds independently
of (50) and also hope to investigate this in a future work. By Remark 2.9, (50) is satisfied
for critical Boltzmann quadrangulations. In this case, [7, Theorem 8] also proves that

√
3

2k
·Mk

(d)−→
k→∞

FBD1,

in the Gromov-Hausdorff sense. The random compact metric space FBD1 is the Free Brownian
Disk with perimeter 1, a.s. homeomorphic to the unit disc [7] (which is consistent with (51)).

5 Local limits of the boundary of Boltzmann maps

In this section, we are interested in local limits of Boltzmann planar maps and their boundary.

5.1 Local limits of Galton-Watson trees

The local topology. The local topology on the set M is induced by the local distance

dloc(m,m′) := (1 + sup {R ≥ 0 : BR(m) ∼ BR(m′)})−1
, m,m′ ∈M. (52)
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Here, BR(m) is the ball of radius R in m for the graph distance, centered at the origin
vertex. More precisely, B0(m) is the origin of m, and for every R ∈ N, BR(m) contains all
the vertices of m at distance less than R from the origin, and all the edges whose endpoints
are in this set. Equipped with dloc,M is a metric space whose completion is denoted byM′.
The elements of M∞ :=M′ \M can be considered as infinite planar maps, i.e. the proper
embedding of an infinite and locally finite graph into a non-compact surface, dissecting the
latter into a collection of simply connected domains (see [26, Appendix] for more on this).
The set Tloc of locally finite trees is the completion of Tf for dloc. It is also obtained by
extending the definition of a finite plane tree to possibly infinite trees, but whose vertices all
have finite degree (i.e. ku(t) <∞ for every u ∈ t).

In order to take account of convergence towards plane trees with vertices of infinite degree,
a weaker form of local convergence has been introduced in [36] (see also [34, Section 6] for a
detailed presentation). The idea is to replace the ball BR(t) in (52) by the sub-tree B←R (t),
called the left ball of radius R of t. Formally, the root vertex belongs to B←R (t), and a vertex
u = ûk ∈ t belongs to B←R (t) iff û ∈ t, k ≤ R and |u| ≤ R.

For our purposes, a slightly stronger form of convergence is needed. Let us introduce
a notation. For every t ∈ Tf and every u ∈ t, we denote by (−u1,−u2, . . . ,−uku) =
(uku, u(ku − 1), . . . , u1) the children of u in counterclockwise order. For every t ∈ Tf and
every R ≥ 0, the left-right ball of radius R in t is the sub-tree B↔R (t) defined as follows.
First, ∅ ∈ B↔R (t). Then, a vertex u ∈ t belongs to B↔R (t) iff û ∈ B↔R (t), |u| ≤ 2R and
u ∈ {û1, . . . , ûR}∪{−û1, . . . ,−ûR} (i.e. u is among the R first or last children of its parent).

We call local-∗ topology the topology on Tf induced by the distance

d∗loc(t, t
′) := (1 + sup {R ≥ 0 : B↔R (t) = B↔R (t′)})−1

, t, t′ ∈ Tf .

The set T of general plane trees is the completion of Tf for d∗loc. An element of T can also be
seen as a tree embedded in the plane. In restriction to Tloc, the local and local-∗ topologies
coincide.

Local limits of conditioned Galton-Watson trees. We next recall results concerning
local limits of Galton-Watson trees conditioned to survive.

The critical case. The critical setting was first investigated by Kesten in [37] (see also [46])
for monotype trees and extended by Stephenson in [56, Theorem 3.1] to multi-type trees.
Let (ρ◦, ρ•) be a critical pair of offspring distributions, and recall that for every probability
measure ρ on Z+ with mean mρ ∈ (0,∞), the size-biased distribution ρ̄ is defined by

ρ̄(k) :=
kρ(k)

m
, k ∈ Z+.

The infinite random tree T◦,•∞ = T◦,•∞ (ρ◦, ρ•) is defined as follows in [56]. It has a.s. a unique
infinite spine, i.e. a distinguished sequence of vertices (u0 = ∅, u1, . . .) such that ûk = uk−1 for
every k ≥ 1. White (resp. black) vertices of the spine have offspring distribution ρ̄◦ (resp. ρ̄•),
and a unique child in the spine chosen uniformly at random among their offspring. Outside
of the spine, white (resp. black) vertices have offspring distribution ρ◦ (resp. ρ•), and all
the number of offspring are independent. The tree T◦,•∞ is illustrated in Figure 10, and its
distribution is denoted by GW(∞)

ρ◦,ρ• .

Proposition 5.1. [56, Theorem 3.1] Let (ρ◦, ρ•) be a critical pair of offspring distributions.
For every k ≥ 1, assume that GWρ◦,ρ•({|t| = k}) > 0 and let T ◦,•k be a tree with distribution
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GW(k)
ρ◦,ρ•. Then, we have in distribution for the local topology

T ◦,•k
(d)−→
k→∞

T◦,•∞ (ρ◦, ρ•).

The condition GWρ◦,ρ•({|t| = k}) > 0 for every k ≥ 1 can be relaxed, provided we
consider subsequences along which it is satisfied. A similar result holds for critical monotype
Galton-Watson trees conditioned to survive. Then, the limiting tree is called Kesten’s tree.

The subcritical case. We first deal with subcritical monotype trees, first considered in [36], and
studied in full generality in [34, Theorem 7.1]. Let ρ be a subcritical offspring distribution
(such that ρ(0) ∈ (0, 1)). The infinite random tree T∞ = T∞(ρ) is defined as follows in
[36, 34]. It has a.s. a unique finite spine of random size L, such that

P (L = k) = (1−mρ)m
k−1
ρ , k ∈ N.

The last vertex of the spine has infinite degree. The L − 1 first vertices of the spine have
offspring distribution ρ̄, and a unique child in the spine chosen uniformly among the offspring.
Outside of the spine, vertices have offspring distribution ρ, and all the number of offsprings
are independent. This defines a random element of T .

Proposition 5.2. [34, Theorem 7.1] Let ρ be a subcritical offspring distribution with no
exponential moment (and ρ(0) ∈ (0, 1)). For every k ≥ 1, assume that GWρ({|t| = k}) > 0

and let Tk be a tree with distribution GW(k)
ρ . Then, in distribution for the local-∗ topology,

Tk
(d)−→
k→∞

T∞(ρ).

Proof. The proof follows from [34, Theorem 7.1]. However, the notion of convergence in this
result is equivalent to the convergence of left-balls of any radii (see [34, Lemma 6.3]), which
is weaker than our statement. Then, observe that for every t ∈ Tf , k ≥ 0 and R ≥ 0 we have

GW(k)
ρ (B↔R (T ) = t) = GW(k)

ρ (B←2R(T ) = t) .

Indeed, GW(k)
ρ is invariant under the operation consisting in exchanging the descendants of

(u(R + 1), . . . u(2R)) and (−u1, . . . − uR) for every u ∈ T such that ku(T ) > 2R (which
exchanges B↔R (T ) and B←2R(T )). This concludes the argument.

We extend Proposition 5.2 to a two-type Galton-Watson tree. Let (ρ◦, ρ•) be a subcritical
pair of offspring distributions. We build a two-type version T◦,•∞ = T◦,•∞ (ρ◦, ρ•) of T∞ as
follows. It has a.s. a unique spine, with random number of vertices 2L′ satisfying

P (L′ = k) = (1−mρ◦mρ•)(mρ◦mρ•)
k−1, k ∈ N.

The topmost (black) vertex of the spine has infinite degree. The 2L′ − 1 first vertices of the
spine have offspring distribution ρ̄◦ (if white) and ρ̄• (if black), with a unique child in the
spine chosen uniformly among the offspring. Outside of the spine, white (resp. black) vertices
have offspring distribution ρ◦ (resp. ρ•), and all the number of offsprings are independent.
We keep the notation GW(∞)

ρ◦,ρ• for the distribution of T◦,•∞ . See Figure 10 for an illustration.
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Proposition 5.3. Let (ρ◦, ρ•) be a subcritical pair of offspring distributions, such that ρ◦ has
geometric distribution with parameter 1 − p ∈ (0, 1): ρ◦(k) = (1 − p)pk for k ≥ 0, and such
that ρ• has no exponential moment. For every k ≥ 1, assume that GWρ◦,ρ•({|t| = k}) > 0

and let T ◦,•k be a tree with distribution GW(k)
ρ◦,ρ•. Then, in distribution for the local-∗ topology,

T ◦,•k
(d)−→
k→∞

T◦,•∞ (ρ◦, ρ•).

The condition GWρ◦,ρ•({|t| = k}) > 0 for every k ≥ 1 can be relaxed by considering
subsequences. For every t ∈ Tf and every u ∈ t, we denote by [∅, u] (resp. [∅, u)) the
ancestral line of u in t, u included (resp. excluded).

Proof. For every k ≥ 1, let Tk := ΦJS(T ◦,•k ). By Proposition 3.1, Tk has distribution GW(k)
ρ ,

where ρ satisfies
ρ(0) = 1− p and ρ(k) = p · ρ•(k − 1), k ∈ N.

In particular, ρ satisfies the hypothesis of Proposition 5.2. For every N ≥ 1, let uN = uN(Tk)
be the first vertex of B↔N (Tk) in contour order having 2N offspring (or the root vertex if
such a vertex does not exist). For every R ≥ 0, we also let Tk〈uN , R〉 be the collection of
subtrees of Tk containing all the children of uN different from {±uN1, . . .± uNR}, as well as
their descendants. Finally, set Tk[N,R] := B↔N (Tk)\Tk〈uN , R〉, and extend these definitions
to T∞ = T∞(ρ). We denote by u∞ the a.s. unique vertex with infinite degree of T∞, and
let T∞[R] be the subtree of T∞ in which children of u∞ different from {u∞1, . . . u∞R} and
their descendants are discarded. This definition immediately extends to T◦,•∞ .

Fix R ≥ 0. By Proposition 5.2 and the definition of T∞, we have in the local sense

Tk[N,R + 1]
(d)−→
k→∞

T∞[N,R + 1], and T∞[N,R + 1]
(d)−→

N→∞
T∞[2(R + 1)]. (53)

In particular, the event (measurable with respect to B↔N (Tk))

E(R,N, k) :=

{
sup

u∈Tk[N,R+1]

(|u| ∨ ku) < N

}

has probability tending to one when k and then N go to infinity. On the event E(R,N, k),
one has Tk\Tk[N,R + 1] ⊆ Tk〈uN , R + 1〉, which in turn enforces

B↔R (T ◦,•k ) = B↔R (Φ−1
JS (Tk)) ⊆ Φ−1

JS (Tk[N,R + 1]). (54)

Indeed, under this assumption, the images of vertices of Tk\Tk[N,R + 1] in Φ−1
JS (Tk) are

descendants of the children of u′N := Φ−1
JS (uN) that are not in {±u′N1, . . .±u′NR}. (See Section

3.1 for details on the inverse Janson-Stefánsson bijection, and Figure 9 for an illustration.)
Let d ≥ 0, and keep the notation u∞ for the pointed vertex of degree d in T∞[d] and

T◦,•∞ [d]. We denote by GW[d]
ρ the distribution of (T∞[d], u∞), and by GW[d]

ρ◦,ρ• the distribution

of (T◦,•∞ [d], u∞). Then, the image of GW[d]
ρ◦,ρ• under ΦJS reads

ΦJS

(
GW[d]

ρ◦,ρ•

)
= GW[d+1]

ρ . (55)

We temporarily admit (55) and conclude the proof. Let A be a Borel set for the local-∗
topology. We have by (54) that for every k ≥ 1 and N ≥ 1

∣∣P (B↔R (T ◦,•k ) ∈ A)− P
(
B↔R

(
Φ−1

JS (Tk[N,R + 1])
)
∈ A

)∣∣ ≤ 2P (E(R,N, k)c).
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Next, for every N ≥ 1, (53) entails

∣∣P
(
B↔R

(
Φ−1

JS (Tk[N,R + 1])
)
∈ A

)
− P

(
B↔R

(
Φ−1

JS (T∞[N,R + 1])
)
∈ A

)∣∣ −→
k→∞

0.

Then, by (53) again and the fact that T∞[2(R + 1)] is a.s. finite,

∣∣P
(
B↔R

(
Φ−1

JS (T∞[N,R + 1])
)
∈ A

)
− P

(
B↔R

(
Φ−1

JS (T∞[2(R + 1)])
)
∈ A

)∣∣ −→
N→∞

0.

Finally, for every R ≥ 0, B↔R (T◦,•∞ ) = B↔R (T◦,•∞ [2R + 1]) by definition so that by (55),

P
(
B↔R

(
Φ−1

JS (T∞[2(R + 1)])
)
∈ A

)
= P (B↔R (T◦,•∞ [2R + 1]) ∈ A) = P (B↔R (T◦,•∞ ) ∈ A) .

As a conclusion, by letting k and then N go to infinity, we have

lim
k→∞
|P (B↔R (T ◦,•k ) ∈ A)− P (B↔R (T◦,•∞ ) ∈ A)| = 0,

which ends the proof.

Let us now prove assertion (55). Let (t, u∗) be a pointed plane tree such that ku∗(t) = d+1.
By definition, (t′, v∗) := Φ−1

JS (t, u∗) is a pointed plane tree satisfying kv∗(t
′) = d, and v∗ ∈ t′•.

Then, we have by definition of ρ◦ and the identity
∑

u∈t′◦ ku(t
′) = |t′•|,

GW[d]
ρ◦,ρ•

(
Φ−1

JS ((t, u∗))
)

= GW[d]
ρ◦,ρ• ((t′, v∗)) =

1−mρ◦mρ•

mρ◦

∏

u∈t′◦

(1− p)pku(t′)
∏

u∈t′•
u6=v∗

ρ•(ku(t
′))

=
p(1−mρ◦mρ•)

mρ◦

∏

u∈t′◦

(1− p)
∏

u∈t′•
u6=v∗

p · ρ•(ku(t′)).

Vertices of t′◦ are mapped to leaves of t by ΦJS, while vertices of t′•\{v∗} with degree k are
mapped to vertices of t with degree k + 1. By the formula mρ − p = (1− p)mρ◦mρ• , we get

GW[d]
ρ◦,ρ•

(
Φ−1

JS ((t, u∗))
)

= (1−mρ)
∏

u∈t
ku(t)=0

(1− p)
∏

u∈t\{u∗}
ku(t)>0

p · ρ•(ku(t)− 1)

= (1−mρ)
∏

u∈t\{u∗}
ρ(ku(t)),

which is GW[d+1]
ρ ((t, u∗)), as expected.

We conclude with a property of T◦,•∞ under the assumptions of Proposition 5.3. Let
u∞ be the a.s. unique vertex with infinite degree of T◦,•∞ , and û∞ its parent. There exists
j ∈ {1, . . . , kû∞} such that u∞ = û∞j. We define the vertex u←∞ as û∞(j − 1) if j > 1, and
û∞ itself if j = 1. The vertex u∞ and its incident edges disconnect T◦,•∞ in infinitely many
connected components that we denote by (Ti : i ∈ Z). For every i 6= 0, Ti is the connected
component containing u∞i, rooted at the oriented edge going from u∞i to its first child in
T◦,•∞ . Finally, T0 is the connected component containing the root vertex of T◦,•∞ , and has the
same root edge as T◦,•∞ . Note that u←∞ is a vertex of T0.
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RR

Tk

Tk〈uN , R〉

Tk[N,R]
uN

Φ−1

JS
u′N

Φ−1

JS
(Tk[N,R])

Φ−1

JS(Tk)
Φ−1

JS
(Tk〈uN , R〉)

Figure 9: The image of Tk by Φ−1
JS , on the event E(R,N, k). The boxed vertex is the last leaf

of Tk in contour order, while the crossed vertex is the last leaf among the descendants of uN .

Lemma 5.4. The plane trees (Ti : i ∈ Z) are independent. For every i 6= 0, Ti has
distribution GWρ◦,ρ•, while T0 has the size-biased distribution GWρ◦,ρ• defined by

GWρ◦,ρ•(t) =
|t|GWρ◦,ρ•(t)

GWρ◦,ρ•(|T |)
, t ∈ Tf .

Moreover, conditionally on T0, u←∞ has uniform distribution on T0.

Proof. We focus on T0. Let (t, u∗) be a pointed plane tree, and let u◦ be either the parent
of u∗ in t if u∗ ∈ t•, or u∗ itself otherwise. Then, (T0, u

←
∞) = (t, u∗) enforces û∞ = u◦. Since

kû∞(T0) = kû∞(T◦,•∞ )− 1 a.s. and by definition of ρ◦, we obtain

P ((T0, u
←
∞)) = (t, u∗)) =

∏

u∈t◦
u∈[∅,u◦)

ρ̄◦(ku(t))

ku(t)

∏

u∈t•
u∈[∅,u◦)

ρ̄•(ku(t))

ku(t)

∏

u∈t◦
u/∈[∅,u◦]

ρ◦(ku(t))
∏

u∈t•
u/∈[∅,u◦]

ρ•(ku(t))

× ρ̄◦(ku◦(t) + 1)
1

ku◦(t) + 1
(1−mρ◦mρ•)(mρ◦mρ•)

|u◦|
2

=
p(1−mρ◦mρ•)

mρ◦

∏

u∈t◦
ρ◦(ku(t))

∏

u∈t•
ρ•(ku(t)) = (1−mρ)GWρ◦,ρ•(t).

We conclude by Proposition 3.1, which gives GWρ◦,ρ•(|T |) = GWρ(|T |) = (1−mρ)
−1.

5.2 Random infinite looptrees.

We now define infinite looptrees out of the infinite random trees T◦,•∞ = T◦,•∞ (ρ◦, ρ•).

The critical case. When (ρ◦, ρ•) is critical, T◦,•∞ is a.s. locally finite. We extend the mapping
Loop to any locally finite plane tree t ∈ Tloc by defining Loop(t) as the consistent sequence
of maps {Loop(B2R(t)) : R ≥ 0}. This mapping is continuous on Tloc for the local topology.
When t is infinite and one-ended (i.e., with a unique infinite spine), Loop(t) is an infinite
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looptree, that is an edge-outerplanar map whose root face is the unique infinite face. Then,
L∞ = L∞(ρ◦, ρ•) is the random infinite looptree

L∞ := Loop(T◦,•∞ ).

We call T◦,•∞ the tree of components of L∞, and denote it by Tree(L∞). The looptree L∞ is
illustrated in Figure 10.

The subcritical case. When (ρ◦, ρ•) is subcritical, ρ◦ geometric and ρ• has no exponential
moment, T◦,•∞ has a.s. a unique vertex u∞ with infinite degree. Since u∞ has odd height, the
sequence (Br(Loop(B↔R (T◦,•∞ ))) : R ≥ 0) is eventually stationary, for every r ≥ 0. Conse-
quently, we define L∞ = L∞(ρ◦, ρ•) as the local limit

L∞ := lim
R→∞

Loop(B↔R (T◦,•∞ )). (56)

Although L∞ is not a looptree in the aforementioned sense, we keep the notation L∞ =
Loop(T◦,•∞ ) and T◦,•∞ = Tree(L∞). By Lemma 5.4, L∞ can be obtained as follows. We
associate to u←∞ the oriented edge e←∞ of T0 that links either û∞ to u←∞ if u←∞ has odd height,
or û∞ to its parent otherwise. For every i ∈ Z, we define the looptree Li := Loop(Ti) (with
root edge ei). Following the rooting convention of Section 3.2, to e←∞ is associated an oriented
edge e←0 of L0. We now consider the graph of Z embedded in the plane. For every i 6= 0, we
embed Li in the lower half-plane such that the vertex i of Z matches the origin vertex of Li,
and the edges (i− 1, i) and ei are consecutive in counterclockwise order around i. We apply
the same construction to L0, but use e←0 instead of e0. The resulting planar map, rooted at
e0, is L∞ = Loop(T◦,•∞ ). See Figure 10 for an illustration.

(mρ◦mρ• < 1)u∞

T0

0 1-1

(mρ◦mρ• = 1)

T2 T4

2 3 4

T-2

T1 T3T-1

T-3

T-4

-2-3-4

L∞(ρ◦, ρ•)

L∞(ρ◦, ρ•)
T◦,•∞ (ρ◦, ρ•)

T◦,•∞ (ρ◦, ρ•)

Figure 10: The infinite looptree L∞ and its tree of components T◦,•∞ .

Using the continuity of the mapping Loop and Proposition 5.1 in the critical case, and
(56) and Proposition 5.2 in the subcritical case we get the following result.
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Lemma 5.5. Let (ρ◦, ρ•) be a (sub)critical pair of offspring distributions such that ρ◦ has
a geometric distribution and ρ• has no exponential moment. Assume that for every k ≥ 1,
GWρ◦,ρ•({|t| = k}) > 0 and let T ◦,•k be a tree with distribution GW(k)

ρ◦,ρ•. Then, in distribution
for the local topology

Lk := Loop(T ◦,•k )
(d)−→
k→∞

L∞(ρ◦, ρ•).

The internal faces of L∞ = Loop(T◦,•∞ ) are all finite in the critical case, while there is a
unique infinite internal face in the subcritical case. In both cases, the internal faces of L∞
are in bijection with Tree(L∞)• = (T◦,•∞ )•, so that the degree of the face and the degree of
the vertex match. Following Remark 3.2, we define a fill-in mapping that associates to T◦,•∞
and a collection (M̂u : u ∈ (T◦,•∞ )•) of bipartite maps with a simple boundary of perimeter
deg(u) the map

M∞ = Φ−1
TC

(
T◦,•∞ ,

(
M̂u : u ∈ (T◦,•∞ )•

))
,

obtained from L∞ by gluing the map M̂u in the face of L∞ associated to u, for every u ∈
(T◦,•∞ )•. We keep the notation Φ−1

TC by consistency, although we consider infinite trees.

5.3 Local limits of Boltzmann planar maps with a boundary

The local limits of Boltzmann bipartite maps with a boundary have been studied in [21].

Proposition 5.6. [21, Theorem 7] Let q be an admissible weight sequence. Then, we have
the weak convergence for the local topology

P(k)
q =⇒

k→∞
P(∞)
q .

The probability measure P(∞)
q is supported on infinite planar maps with a.s. one end and a

unique face of infinite degree, which is the root face.

We let M∞ = M∞(q) be a planar map with distribution P(∞)
q , called the Infinite Boltz-

mann Half-Planar Map with weight sequence q (q-IBHPM in short). In the quadrangular case,
M∞ is a Uniform Infinite Half-Planar Quadrangulation with skewness UIHPQp considered in
[4] (which includes the standard UIHPQ with a general boundary of [25]).

By definition, the boundary ∂m of an infinite map m ∈M∞ is the map made by vertices
and edges incident to its root face. Therefore, the definition of the scooped-out map extends
to M∞. We are interested in the continuity of Scoop with respect to the local topology.

Lemma 5.7. Let (mk : k ∈ N ∪ {∞}) be a sequence of planar maps such that m∞ has one
end and in the local sense

mk −→
k→∞

m∞.

Then, in the local sense,
Scoop(mk) −→

k→∞
Scoop(m∞).

Proof. First, if (#∂mk : k ≥ 1) is bounded, there exists R ≥ 0 such that for every k ≥ 1,
∂mk ⊆ BR(mk) and the result follows. Thus, we can assume that #∂mk →∞ as k →∞.

For every k ∈ N ∪ {∞}, let p(k) := #∂mk/2 and denote by (vk(0), vk(1), . . . , vk(p(k)))
the sequence of vertices associated with the corners of the root face of mk, starting at the

33



origin, in right contour order. We use the notation (vk(0), vk(−1), . . . , vk(−p(k))) for the left
contour order, so that vk(p(k)) = vk(−p(k)).

Let r ≥ 0. We now prove that there exists R ≥ 0 and K ≥ 1 such that for every k ≥ K,

V(Br(mk)) ∩ {vk(l) : |l| > R} = ∅. (57)

We proceed by contradiction. Because of the local convergence assumption, the sequence
(#V(Br(mk)) : k ≥ 0) is bounded. Moreover, for every v ∈ V(Br(mk)) we have

#{−p(k) ≤ l ≤ p(k) : vk(l) = v} ≤ degmk
(v) ≤ sup

u∈V(Br(mk))

degmk
(u),

which is also bounded. Therefore, there exists M ≥ 0 such that for every k ≥ 0,

#{−p(k) ≤ l ≤ p(k) : vk(l) ∈ V(Br(mk))} ≤M.

Let N ≥ 0. By assumption, there exists infinitely many k such that p(k) > 2M(N + 2) and

V(Br(mk)) ∩ {vmk
(l) : |l| > M(N + 2)} 6= ∅.

As a consequence, in the cycle (−p(k), . . . , p(k)), there exists two distinct sequences of con-
secutive indices (i, . . . , i+ x) and (j, . . . , j + y) such that x, y ≥ N + 2 and

V(Br(mk)) ∩ {vk(l) : i ≤ l ≤ i+ x} = {vk(i), vk(i+ x)},
and similarly for (j, . . . , j + y). In particular, the sets of vertices E1 := {vk(i+ 1), . . . , vk(i+
x − 1)} and E2 := {vk(j + 1), . . . , vk(j + y − 1)} are disjoint. Indeed, a vertex v ∈ E1 ∩ E2

would disconnect Scoop(mk) in two submaps each containing a vertex at distance less than r
from the origin, which is in contradiction with v /∈ Br(mk). Now, for every −p(k) ≤ i < p(k),
(vk(i), vk(i+1)) is an edge of Scoop(mk). Therefore, the sets of edges {((vk(l), vk(l+1)) : i <
l ≤ i+N + 1} and {((vk(l), vk(l + 1)) : j < l ≤ j +N + 1} are disjoint sets of N half-edges
contained in Br+N(mk)\Br(mk). This holds for infinitely many k ≥ 1, thus for m∞ by local
convergence. Since m∞ has one end and N is arbitrary, this is a contradiction.

Let us choose R and K such that assertion (57) holds for every k ≥ K. By local conver-
gence, (57) holds for m∞ as well. For every k ≥ K, let 〈vk(−R), . . . , vk(R)〉 be the sub-map
induced by the R first half-edges of Scoop(mk) in left and right contour order. We denote
by H the measurable function such that 〈vk(−R), . . . , vk(R)〉 = H(mk) = H(BR(mk)). By
(57) and local convergence, we have for every k ≥ K

Br(Scoop(mk)) = Br(H(BR(mk)) −→
k→∞

Br(H(BR(m∞)) = Br(Scoop(m∞)),

which concludes the proof.

When a planar map m has a unique infinite irreducible component, it is called the core
of m and denoted by Core(m). Then, m is recovered from Core(m) by gluing finite bipartite
maps (with a general boundary) on vertices of the boundary of Core(m). Note that the
boundary of Core(m) may be finite or infinite. We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. For every k ≥ 1, let Mk be a planar map with distribution P(k)
q . By

Corollary 3.9, T ◦,•k := Tree(Mk) is a two-type Galton-Watson tree with offspring distribution
(ν◦, ν•) conditioned to have 2k + 1 vertices. By Proposition 5.6 and Lemma 5.7, we have

Scoop(Mk)
(d)−→
k→∞

Scoop(M∞).
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On the other hand, by Lemma 5.5,

Scoop(Mk) = Loop(T ◦,•k )
(d)−→
k→∞

L∞(ν◦, ν•),

in distribution for the local topology. Lemma 3.6 and Proposition 3.7 conclude the first
part of the proof. For a ∈ [3/2, 2], Scoop(M∞) has only finite internal faces, which are the
boundaries of the irreducible components of M∞. Since Scoop(M∞) and M∞ are one-ended,
these irreducible components are necessarily finite. For a ∈ (2, 5/2], Scoop(M∞) has a unique
infinite internal face, which is the boundary of an infinite irreducible component. Since M∞
is one-ended, the other irreducible components are finite, and M∞ has a well defined core.

Local limits: the subcritical and dense regimes. When q is of type a ∈ [3/2, 2], M∞(q)
can be entirely described by the looptree L∞(ν◦, ν•) and a collection of independent Boltz-
mann maps. This generalizes [4, Theorem 4] which deals with subcritical quadrangulations.

Proposition 5.8. Let q be a weight sequence of type a ∈ [3/2, 2], and T◦,•∞ = T◦,•∞ (ν◦, ν•).

Conditionally on T◦,•∞ , let (M̂u : u ∈ (T◦,•∞ )•) be a collection of independent bipartite maps

with a simple boundary and distribution P̂(deg(u)/2)
q . Then, the infinite bipartite map

M∞ = Φ−1
TC

(
T◦,•∞ ,

(
M̂u : u ∈ (T◦,•∞ )•

))

has distribution P(∞)
q , the law of the q-IBHPM.

Proof. The proof closely follows that of [4, Theorem 4]. For every t ∈ Tloc and every R ≥ 1,
let CutR(t) be the subtree of t made of vertices u ∈ t such that |u| ≤ 2R. Consistently, if m =
Φ−1

TC(t, (m̂u : u ∈ t•)), CutR(m) is the bipartite map Φ−1
TC(CutR(t), (m̂u : u ∈ CutR(t)•)).

Let R ≥ 1 and for every k ≥ 0, let Mk be a bipartite map with distribution P(k)
q . Let

m ∈M and (t, (m̂u : u ∈ t•)) = ΦTC(m). By Proposition 3.3 and 5.1, we have

P(k)
q (CutR(M) = m) = GW(2k+1)

ν◦,ν• (CutR(T ) = t)
∏

u∈t•
P̂(deg(u)/2)
q (m̂u)

−→
k→∞

GW(∞)
ν◦,ν•(CutR(T ) = t)

∏

u∈t•
P̂(deg(u)/2)
q (m̂u) = P (CutR(M∞) = m).

This concludes since BR(m) = BR(CutR(m)) if m = Φ−1
TC(t, (m̂u : u ∈ t•)) with t ∈ Tloc.

Remark 5.9. The tree-like structure of M∞ when a ∈ [3/2, 2] makes statistical mechanics
models on it easier to study. In particular, the simple random walk on M∞ is a.s. recurrent
(see [4, Corollary 2] for a proof) and the critical thresholds for Bernoulli site, bond and face
percolation on M∞ equal one a.s..

Local limits: the dilute and generic regimes. When q is of type a ∈ (2, 5/2], M∞ =
M∞(q) cannot be fully described using finite bipartite maps. By the construction of Section
5.2, Scoop(M∞) is obtained from the infinite simple boundary of Core(M∞) by attaching to
its vertices independent looptrees (Li : i ∈ Z) whose trees of components have distribution
GWν◦,ν• , except for that looptree containing the root edge of M∞, whose tree of components
has distribution GWν◦,ν• . We believe that the finite irreducible components of M∞ are
independent Boltzmann bipartite maps with a simple boundary (conditionally on ∂M∞).
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Moreover, given Propositions 3.3 and 5.3, we conjecture that there exists a distribution P̂(∞)
q

supported on bipartite planar maps with an infinite simple boundary such that P̂(k)
q ⇒ P̂(∞)

q

as k → ∞, and that Core(M∞) has distribution P̂(∞)
q . This would provide a complete

description of the q-IBHPM, and has been achieved in the special case of the UIHPQ in [25,
Proposition 6]. However, our techniques are not sufficient to prove these assertions.

6 Application to the rigid O(n) loop model on quad-

rangulations

We now give applications to the rigid O(n) loop model on quadrangulations, building on [11].

The rigid O(n) loop model on quadrangulations. We describe the setup of [11] (see also
[20]). A quadrangulation with a boundary is a planar map with a boundary whose internal
faces all have degree 4. Given a quadrangulation with a boundary q, a loop configuration
on q is a collection ` = (`k : k ∈ N) of disjoint closed simple paths in the dual of q that do
not visit the root face f∗. The loop configuration is known as rigid if moreover every loop
crosses a quadrangle through opposite sides. See Figure 2 for an illustration. The pair (q, `)
is then called a (rigid) loop-decorated quadrangulation with a boundary. The set of all such
pairs (q, `) is denoted by O (resp. Ok if additionally q has perimeter 2k). The set O1 is
in bijection with loop-decorated quadrangulations of the sphere. For every (q, `) ∈ O, we
denote by #` the number of loops in `, by |`| the total length (i.e. the total number of edges)
of the loops of `, and by |`| the number of edges, or perimeter, of a loop ` ∈ `.

For every n ∈ (0, 2) and every g, h ≥ 0, we define the measure W(n;g,h) on O by

W(n;g,h)((q, `)) := g#F(q)−|`|h|`|n#`, (q, `) ∈ O. (58)

In other words, we put a weight g per empty quadrangle of q, a weight h per quadrangle
crossed by a loop, and a weight n per loop. We also define the partition function

F ◦k :=
∑

(q,`)∈Ok

W(n;g,h)((q, `)), k ∈ Z+. (59)

When this partition function is finite (which does not depend on k), we say that (n; g, h) is
admissible and define the O(n) probability measure on Ok with parameters (n; g, h) by

P
(k)
(n;g,h)((q, `)) :=

W(n;g,h)((q, `))

F ◦k
, (q, `) ∈ Ok, k ∈ Z+. (60)

P(n;g,h) := P
(1)
(n;g,h) is the O(n) distribution on loop-decorated quadrangulations of the sphere.

The gasket decomposition. The work [11] is based on the gasket decomposition of loop-
decorated quadrangulations with a boundary, that we now recall (see also [20]). First, for
every (q, `) ∈ O and every ` ∈ `, the interior and exterior of ` are well defined thanks to the
root edge of q. Then, the inner (resp. outer) contour of ` is formed by the edges of q that
are incident to faces of q crossed by `, and that belong to the interior (resp. exterior) of `.

The gasket decomposition of (q, `) ∈ Ok consists in discarding the outer-most loops
(`i : i ∈ I) of ` (i.e. that are not contained in the interior of another loop) as well as the
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edges crossed by these loops. This disconnects (q, `) in #I + 1 connected components, as
shown in Figure 11. The gasket is the connected component Gasket(q, `) containing the
root edge of q. It is the element of Mk formed by the edges of q that are exterior to all
loops. The faces of Gasket(q, `) are either quadrangles of q, or holes corresponding to the
loops (`i : i ∈ I) (with degree |`i|). The other connected components are the interiors of the
outer-most loops, which are loop-decorated quadrangulations ((qi, `i) : i ∈ I) with perimeter
|`i|. By convention, the root edge of qi lies on the leftmost shortest path from the root edge
of q to qi (with the convention that `i lies on its right).

Given m ∈Mk and (q, `) ∈ Ok such that Gasket(q, `) = m, (q, `) is recovered by gluing
into each face of Gasket(q, `) of degree 2p the proper elements of Op, with in-between a ring
or necklace of 2p quadrangles crossed by a loop. When p = 2, we can also glue an empty
quadrangle. The following result is proved in [11], see in particular [11, Equation 2.3].

Proposition 6.1. [11] Let (n; g, h) be admissible, k ≥ 0 and (Q,L) a loop-decorated quad-

rangulation with distribution P
(k)
(n;g,h). Denote by (li : i ∈ I) the outer-most loops of (Q,L),

and by ((Qi, Li) : i ∈ I) the associated loop-decorated quadrangulations. Then, Gasket(Q,L)

has distribution P(k)
q , where the weight sequence q = q(n; g, h) = (qk : k ∈ N) satisfies

qk = gδ2(k) + nh2kF ◦k (n; g, h). (61)

Moreover, conditionally on (|li| : i ∈ I), ((Qi, Li) : i ∈ I) are independent loop-decorated

quadrangulations with distribution P
(|li|)
(n;g,h).

Remark 6.2. We are interested in limits of large loops in the rigid O(n) model on quadran-
gulations. Due to the rigidity constraint on loops, we can substitute loops (that are paths in
the dual map) for their inner contours (in the primal map). Proposition 6.1 ensures that for
every k ≥ 0, in the rigid O(n) loop model on Ok, every loop of perimeter 2p is distributed as

the boundary of a Boltzmann bipartite map with law P(p)
q for a suitable value of q. Therefore,

the study of large loops reduces to the study of the boundary of a large Boltzmann bipartite
map. For instance, consider the rigid O(n) loop model on O1 with parameters (n; g, h), and
pick a loop using a deterministic criterion (e.g. the loop that is the closest to the root edge).
Now, condition this loop to have perimeter 2p (which is an event of positive probability).

Then, its inner contour is the boundary of a map with law P(p)
q , for q satisfying (61).

The phase diagram. In [11], the parameters of the O(n) model have been classified accord-
ing to the distribution of the gasket. A triplet (n; g, h) is called subcritical, generic critical or
non-generic critical with parameter α if the weight sequence q associated to (n; g, h) by (61)
is subcritical, generic critical or non-generic critical with parameter α. This results in the
exact phase diagram of Figure 3 (see also [11, Figure 12]). As mentioned in [20], the work
[11] must be completed by [17, Appendix] to get this diagram. Let n ∈ (0, 2), and set

b :=
1

π
arccos

(n
2

)
.

Then, we have a critical line h = hc(n; g) that separates the region where the model is
subcritical (a = 3/2) and the pairs (g, h) such that (n; g, h) is non-admissible. The critical line
has two parts. First, an arc of parabola that links (g = 0, h = 2b2/(2−n)) to the special point
(g∗, h∗) = (g∗(n), h∗(n)), with explicit equation [11, Equation (6.18)]. Then, a second part
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Figure 11: The gasket decomposition of the loop-decorated quadrangulation (q, `) of Figure
2. Note that holes may be non-simple faces of Gasket(q, `).

that links (g∗, h∗) to (g = 1/12, h = 0) (corresponding to pure quadrangulations) with a more
intricate parametrization [11, Equation (6.14)]. The regime changes along the critical line:
for g < g∗, the parameters are non-generic critical with parameter a = 2−b ∈ (3/2, 2), which
corresponds to the dense phase, while for g > g∗, the parameters are generic critical (a = 5/2).
Finally the special point (g∗, h∗) is non-generic critical with parameter a = 2 + b ∈ (2, 5/2),
which corresponds to the dilute phase.

The situation is simpler in the non-generic critical cases. In [11] (as in [44, 16]), the
definition of a non-generic critical weight sequence q is less general than our, and implies
that there exists a constant χq such that

Fk ∼
k→∞

χq
(4Zq)

k

ka
,

see [11, Equation (3.15)], [16, Equation (6)] or [21, Equation (5.8)]. In particular, the slowly
varying function ` defined in Definition 2.4 is equivalent to a constant. Using this in the
computations of Sections 2.2, 2.3 and 4, we finally obtain that the slowly varying function Λ
of Theorem 1.2 can be replaced by a constant C = C(q) = C(n, g, h). Then, Theorems 1.3
and 1.4 follow from Proposition 6.1 and the phase diagram, by applying Theorems 1.1 and
1.2. By Remark 6.2, these results extend to any loop conditioned to be large in the rigid
O(n) loop model on quadrangulations (possibly with a boundary).
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7 The non-generic critical case with parameter α = 3/2

We have seen in Remarks 2.7 and 3.8 that the critical parameter α = 3/2 (a = 2) plays a
special role. In particular, Karamata’s Tauberian theorem does not yield an equivalent for
the tail of the probability measure ν. We now provide such an estimate by calling on De
Haan theory [8, Chapter 3] and using a special weight sequence introduced in [3].

The special weight sequence. We recall the definition of the special weight sequence of
[3]. Here, we draw on [16, Section 5] and define the weight sequence q∗ = (q∗k : k ∈ N) by

q∗k :=
1

4
61−kΓ(k − 3/2)

Γ(k + 5/2)
1k≥2 k ∈ N.

Then, q∗ is admissible, critical, and of type a = 2. There exists a continuous family of such
sequences covering all the values of a ∈ (3/2, 5/2] (the case a = 5/2 corresponding to critical
quadrangulations). This weight sequence is convenient because we obtain an explicit formula
for the partition function Fk by combining [16, Lemma 14] and [16, Equation (7)]:

Fk =
3

4

6k

(k + 3/2)(k + 1/2)
, k ∈ Z+.

Consequently, rq = 1/6 and we have the explicit formula

F (x) =
1

4x
− 3

4(6x)3/2
(1− 6x) log

(
1 +
√

6x

1−
√

6x

)
, (62)

from which we deduce the asymptotic expansions as x→ r−q

F (x) =
3

2
+

3

4

(
1− x

rq

)
log

(
1− x

rq

)
+

3

2
(1− log(2))

(
1− x

rq

)
(1 + o(1)), (63)

F ′(x) = −9

2
(3− 2 log(2))− 9

2
log

(
1− x

rq

)
+ o(1). (64)

The generating function of bipartite maps with a simple boundary. We now focus on
estimates for the generating function F̂ . Unlike the previous cases, an asymptotic expansion
of F̂ itself is not sufficient; we rather need an expansion of its derivative. As in Section 2.3,
the function P (x) = xF 2(x) is continuous increasing from [0, rq] onto [0, P (rq)] with inverse
denoted by P−1, and P (rq) = 3/8. Moreover, we have as x→ r−q

P (x) = P (rq)+P (rq)

(
1− x

rq

)
log

(
1− x

rq

)
+P (rq)(2 log(2)−1)

(
1− x

rq

)
(1+o(1)). (65)

In what follows, we put c∗ = 2 log(2)− 1. We define the function

R(x) :=
1

P (rq)
(P (rq)− P (rq(1− x))) , x ∈ [0, 1],

which is continuous increasing onto [0, 1], with inverse R−1 defined by

R−1(y) = 1− 1

rq
P−1 (P (rq)(1− y)) , y ∈ [0, 1]. (66)
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The asymptotic expansion of R reads

R(x) = −x log(x)− c∗x+ o(x) as x→ 1−. (67)

We now need the Lambert W function, defined as the (multivalued) inverse function of
x 7→ xex. Here, we use the lower branch W−1, continuous decreasing from [−e−1, 0) onto
(−∞,−1], which satisfies the identities

W−1(−x) = log

( −x
W−1(−x)

)
and W−1(x log(x)) log(x), x ∈ (0, e−1]. (68)

We also have the asymptotic expansion

W−1(−x) = log(x)− log(− log(x)) + o(1) as x→ 0+. (69)

The Lambert W function has a principal branch W0, but the lower branch is more suitable
to our needs. We introduce the function

Q(x) := R

( −x
W−1(−x)

)
, x ∈ (0, e−1],

which is continuous increasing from (0, e−1] onto (0, R(e−1)]. By (68), its inverse function
Q−1 satisfies

Q−1(y) = −R−1(y) log
(
R−1(y)

)
and R−1(y) =

−Q−1(y)

W−1(−Q−1(y))
, y ∈ (0, R(e−1)]. (70)

Using (67), (68) and (69) we get

Q(x) = x− c∗ x

log(x)
+ o

(
x

log(x)

)
as x→ 0+. (71)

Then, Q′(0+) = 1, (Q−1)′(0+) = 1 and Q−1(y) ∼ y as y → 0+. Back to (71), we have

Q−1(y) = y − c∗ y

log(y)
+ o

(
y

log(y)

)
as y → 0+. (72)

Together with (70) and (69), this yields

R−1(y) = − y

log(y)
− y log(− log(y))

log2(y)
− c∗ y

log2(y)
+ o

(
y

log2(y)

)
as y → 0+. (73)

Finally, by (66) we obtain

P−1(y) = rq + rq

(
1− y

P (rq)

)
1

log
(

1− y
P (rq)

) + rq

(
1− y

P (rq)

) log
(
− log

(
1− y

P (rq)

))

log2
(

1− y
P (rq)

)

+ rqc
∗
(

1− y

P (rq)

)
1

log2
(

1− y
P (rq)

)(1 + o(1)) as y → P (rq)
−. (74)
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This proves that r̂q = P (rq) by Lemma 2.10. The next step is to derive the asymptotic

expansion of F̂ ′. By differentiating both sides in the equation of Lemma 2.10 we find

F̂ ′(y) =
1

y

(
1

P−1(y)F ′(P−1(y))
+

2

F (P−1(y))

)−1

, y ∈ (0, P (rq)). (75)

Using (63), (64) and (74) we obtain the wanted expansion: as y → P (rq)
−,

F̂ ′(y) = 2 +
2

log
(

1− y
P (rq)

) +
2 log

(
− log

(
1− y

P (rq)

))

log2
(

1− y
P (rq)

) − 2(3− 2 log(2))

log2
(

1− y
P (rq)

)(1 + o(1)). (76)

The tree of components. We are now interested in properties of the tail of the probability
measures ν and ν• of Section 3.3. To do so, we need estimates on the derivative of the Laplace
transform Lν . Recalling the form of the generating function of ν from (34), we get

L′ν(t) = −2P (rq)

F (rq)
e−2tF̂ ′

(
P (rq)e

−2t
)
, t > 0. (77)

By (76), we obtain

− L′ν(t) = 1 +
1

log(2t)
+

log (− log (2t))

log2 (2t)
− 3− 2 log(2)

log2 (2t)
+ o

(
1

log2 (t)

)
, as t→ 0+. (78)

Since ν is critical, the Laplace transform Lν̄ of the size-biased measure ν̄ equals −L′ν . As a
consequence,

Lν̄
(

1
λx

)
− Lν̄

(
1
x

)

log2(x)
−→
x→∞

log(λ), ∀ λ > 0. (79)

Let us introduce a notation for the tail of the probability measure ν̄, say

T (x) :=
∑

k≥x
kν(k), x ∈ R.

By De Haan’s Tauberian theorem [8, Theorem 3.9.1], (79) is equivalent to

T (λx)− T (x)

log2(x)
−→
x→∞

log(λ), ∀ λ > 0. (80)

The function T is said to be in the class Πlog2 with index 1. By an integration by parts (see
also the last line in the proof of [8, Theorem 8.1.6]), we have for every x > 0

xν((x,∞)) = T (x)− x
∫ ∞

x

T (t)

t2
dt. (81)

Finally, by De Haan’s Theorem [8, Theorem 3.7.3], (80) and (81) we obtain the following.

Proposition 7.1. Let q∗ be the special weight sequence of type a = 2. Then, we have

ν([k,∞)) ∼
k→∞

1

k log2(k)
and ν•([k,∞)) ∼

k→∞

3

k log2(k)
.

In particular, ν and ν• are in the domain of attraction of a Cauchy distribution (stable with
parameter a− 1 = 1).
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Remark 7.2. We have seen in Theorem 1.2 that when a = 2, the local limits of the boundary
of Boltzmann bipartite maps behave as in the dense phase. However, Proposition 7.1 suggests
that ν• has a very heavy tail, meaning that the local limit of the boundary has very large
loops. We believe that the scaling limits of the boundary behave as in the dilute phase when
a = 2, meaning that we expect the limit to be a circle, but the normalizing sequence to be
negligible compared to the perimeter 2k of the map (typically of order k/ log(k)).
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