E. Cadenas and K. J. Davies, Mitochondrial free radical generation, oxidative stress, and aging, Free Radic, Biol. Med, vol.29, issue.00, pp.222-230, 2000.

T. Finkel and N. J. Holbrook, Oxidants, oxidative stress and the biology of ageing, Nature, vol.408, issue.6809, pp.239-247, 2000.
DOI : 10.1038/35041687

M. H. Shishehbor, M. Brennan, X. Fu, M. Goormastic, G. L. Pearce et al., Association of Nitrotyrosine Levels With Cardiovascular Disease and Modulation by Statin Therapy, JAMA, vol.289, issue.13, pp.1675-1680, 2003.
DOI : 10.1001/jama.289.13.1675

L. M. Sayre, G. Perry, and M. A. Smith, Oxidative Stress and Neurotoxicity, Chemical Research in Toxicology, vol.21, issue.1, pp.172-188, 2008.
DOI : 10.1021/tx700210j

I. M. Fearon, G. Phillips, T. Carr, M. Taylor, D. Breheny et al., The Role of Oxidative Stress in Smoking-Related Diseases, Mini-Reviews in Organic Chemistry, vol.8, issue.4, pp.360-371, 2011.
DOI : 10.2174/157019311797440317

H. Tohgi, T. Abe, K. Yamazaki, T. Murata, E. Ishizaki et al., Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer's disease, Neuroscience Letters, vol.269, issue.1, pp.52-54, 1999.
DOI : 10.1016/S0304-3940(99)00406-1

T. J. Anderson, Nitric Oxide, Atherosclerosis and the Clinical Relevance of Endothelial Dysfunction, Heart Fail. Rev, vol.8, pp.71-86, 2003.
DOI : 10.1007/1-4020-7960-5_5

R. F. Loeser, C. S. Carlson, M. D. Carlo, and A. Cole, Detection of nitrotyrosine in aging and osteoarthritic cartilage: Correlation of oxidative damage with the presence of interleukin-1? and with chondrocyte resistance to insulin-like growth factor 1, Arthritis & Rheumatism, vol.9, issue.9, pp.2349-2357, 2002.
DOI : 10.1002/art.10496

G. T. Liberatore, V. Jackson-lewis, S. Vukosavic, A. S. Mandir, M. Vila et al., Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease, Nat. Med, vol.5, pp.1403-1409, 1999.

G. C. Curhan and E. N. Taylor, 24-h uric acid excretion and the risk of kidney stones, Kidney International, vol.73, issue.4, pp.489-496, 2008.
DOI : 10.1038/sj.ki.5002708

D. I. Feig, D. Kang, and R. J. Johnson, Uric Acid and Cardiovascular Risk, New England Journal of Medicine, vol.359, issue.17, pp.1811-1821, 2008.
DOI : 10.1056/NEJMra0800885

Y. Zhao, X. Yang, W. Lu, H. Liao, and F. Liao, Uricase based methods for determination of uric acid in serum, Microchimica Acta, vol.817, issue.1-2, pp.1-6, 2009.
DOI : 10.1007/s00604-008-0044-z

S. Feng, J. Wang, X. Chen, and J. Fan, Kinetic spectrofluorimetric determination of trace ascorbic acid based on its inhibition on the oxidation of pyronine Y by nitrite, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.61, issue.5, pp.841-844, 2005.
DOI : 10.1016/j.saa.2004.06.008

K. R. Dhariwal, W. O. Hartzell, and M. Levine, Ascorbic acid and dehydroascorbic acid measurements in human plasma and serum, Am, J. Clin. Nutr, vol.54, pp.712-716, 1991.

Y. Tao, X. Zhang, J. Wang, X. Wang, and N. Yang, Simultaneous determination of cysteine, ascorbic acid and uric acid by capillary electrophoresis with electrochemiluminescence, Journal of Electroanalytical Chemistry, vol.674, pp.65-70, 2012.
DOI : 10.1016/j.jelechem.2012.03.009

V. B. Koman, C. Santschi, N. R. Von-moos, V. I. Slaveykova, and O. J. Martin, Portable oxidative stress sensor: Dynamic and non-invasive measurements of extracellular H2O2 released by algae, Biosensors and Bioelectronics, vol.68, pp.245-252, 2015.
DOI : 10.1016/j.bios.2014.12.044

T. Tsai, T. Chen, and S. Chen, Selective Electroanalysis of Ascorbic Acid Using a Nickel Hexacyanoferrate and Poly(3,4-ethylenedioxythiophene) Hybrid Film Modified Electrode, Electroanalysis, vol.49, issue.14, pp.1655-1662, 2010.
DOI : 10.1002/elan.200900610

Y. Li and X. Lin, Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode, Sensors and Actuators B: Chemical, vol.115, issue.1, pp.134-139, 2006.
DOI : 10.1016/j.snb.2005.08.022

W. Richard, D. Evrard, and P. Gros, A Novel Electrochemical Sensor Based on a Mixed Diazonium/PEDOT Surface Functionalization for the Simultaneous Assay of Ascorbic and Uric Acids. Towards an Improvement in Amperometric Response Stability, Electroanalysis, vol.46, issue.6, pp.1390-1399, 2014.
DOI : 10.1002/elan.201300632

W. Richard, D. Evrard, and P. Gros, New insight into 4-nitrobenzene diazonium reduction process: Evidence for a grafting step distinct from NO2 electrochemical reactivity, Journal of Electroanalytical Chemistry, vol.685, pp.685-2012
DOI : 10.1016/j.jelechem.2012.09.014

URL : https://hal.archives-ouvertes.fr/hal-00744350

D. Chung, K. Kim, and S. Choi, Electrochemical DNA biosensor based on avidin???biotin conjugation for influenza virus (type A) detection, Applied Surface Science, vol.257, issue.22, pp.9390-9396, 2011.
DOI : 10.1016/j.apsusc.2011.06.015

S. M. Khor, G. Liu, J. R. Peterson, S. G. Iyengar, and J. J. Gooding, An Electrochemical Immunobiosensor for Direct Detection of Veterinary Drug Residues in Undiluted Complex Matrices, Electroanalysis, vol.37, issue.8, pp.1797-1804, 2011.
DOI : 10.1002/elan.201100205

V. S. Vasantha and S. Chen, Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes, Journal of Electroanalytical Chemistry, vol.592, issue.1, pp.77-87, 2006.
DOI : 10.1016/j.jelechem.2006.04.026

A. Balamurugan and S. Chen, Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid, Analytica Chimica Acta, vol.596, issue.1, pp.92-98, 2007.
DOI : 10.1016/j.aca.2007.05.064

F. Sékli-belaïdi, P. Temple-boyer, and P. Gros, Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids, Journal of Electroanalytical Chemistry, vol.647, issue.2, pp.159-168, 2010.
DOI : 10.1016/j.jelechem.2010.06.007

C. Christophe, F. Sékli-belaïdi, J. Launay, P. Gros, E. Questel et al., Elaboration of integrated microelectrodes for the detection of antioxidant species, Sensors and Actuators B: Chemical, vol.177, pp.350-356, 2013.
DOI : 10.1016/j.snb.2012.11.032

URL : https://hal.archives-ouvertes.fr/hal-01508104

D. Aguilar, C. Barus, W. Giraud, E. Calas, E. Vanhove et al., Silicon-based electrochemical microdevices for silicate detection in seawater, Sensors and Actuators B: Chemical, vol.211, pp.116-124, 2015.
DOI : 10.1016/j.snb.2015.01.066

URL : https://hal.archives-ouvertes.fr/hal-01225642

A. C. Ferrari, F. Bonaccorso, V. Fal-'ko, K. S. Novoselov, S. Roche et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, pp.4598-4810, 2015.
DOI : 10.1002/9781118144602.ch13

Y. Liu, X. Dong, and P. Chen, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev., vol.49, issue.6, pp.2283-2307, 2012.
DOI : 10.1039/C1CS15078B

J. Liu, Z. Liu, C. J. Barrow, and W. Yang, Molecularly engineered graphene surfaces for sensing applications: A review, Analytica Chimica Acta, vol.859, pp.1-19, 2015.
DOI : 10.1016/j.aca.2014.07.031

L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang et al., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nature Communications, vol.332, pp.699-700, 2012.
DOI : 10.1038/ncomms1702

B. J. Kang, J. H. Mun, C. Y. Hwang, and B. J. Cho, Monolayer graphene growth on sputtered thin film platinum, Journal of Applied Physics, vol.106, issue.10, 2009.
DOI : 10.1063/1.3254193

Y. Li, X. Wu, H. Wu, and H. Qiang, Redistribution of carbon atoms in Pt substrate for high quality monolayer graphene synthesis, Journal of Semiconductors, vol.36, issue.1, pp.13005-13006, 2015.
DOI : 10.1088/1674-4926/36/1/013005

B. J. Lee and G. H. Jeong, Comparative study on graphene growth mechanism using Ni films, Ni/Mo sheets, and Pt substrates, Applied Physics A, vol.16, issue.1, pp.15-24, 2014.
DOI : 10.1007/s00339-014-8493-1

P. M. Tatauliker, D. A. Price, J. J. Burmeister, S. Nagari, J. E. Quintero et al., Ceramic-based microelectrode arrays: Recording surface characteristics and topographical analysis, Journal of Neuroscience Methods, vol.198, issue.2, pp.222-229, 2011.
DOI : 10.1016/j.jneumeth.2011.04.004

L. Assaud, J. Schumacher, A. Tafel, S. Bochmann, S. Christiansen et al., Systematic increase of electrocatalytic turnover at nanoporous platinum surfaces prepared by atomic layer deposition, J. Mater. Chem. A, vol.3, pp.8450-8458, 2015.
DOI : 10.1039/C5TA00205B

P. Trinsoutrot, C. Rabot, H. Vergnes, A. Delamoreanu, A. Zenasni et al., High quality graphene synthesized by atmospheric pressure CVD on copper foil, Surface and Coatings Technology, vol.230, pp.87-92, 2013.
DOI : 10.1016/j.surfcoat.2013.06.050

URL : https://hal.archives-ouvertes.fr/hal-00908798

L. Shi, Y. Liu, F. Yang, L. Gao, and J. Sun, A symmetrical bi-electrode electrochemical technique for high-efficiency transfer of CVD-grown graphene, Nanotechnology, vol.25, issue.14, pp.957-4484
DOI : 10.1088/0957-4484/25/14/145704

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, issue.18, 2006.
DOI : 10.1103/PhysRevLett.97.187401

URL : https://hal.archives-ouvertes.fr/hal-00130091

H. J. Park, J. Meyer, S. Roth, and V. Skakalova, Growth and properties of few-layer graphene prepared by chemical vapor deposition, Carbon, vol.48, issue.4, pp.1088-1094, 2010.
DOI : 10.1016/j.carbon.2009.11.030

A. C. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Physical Review B, vol.64, issue.7, 2001.
DOI : 10.1103/PhysRevB.64.075414

Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang et al., Raman Studies of Monolayer Graphene: The Substrate Effect, The Journal of Physical Chemistry C, vol.112, issue.29, pp.10637-10640, 2008.
DOI : 10.1021/jp8008404

F. S. Belaidi, A. Civélas, V. Castagnola, A. Tsopela, L. Mazenq et al., PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid, Sensors and Actuators B: Chemical, vol.214, pp.1-9, 2015.
DOI : 10.1016/j.snb.2015.03.005

URL : https://hal.archives-ouvertes.fr/hal-01227352

M. Sajid, M. K. Nazal, M. Mansha, A. Alsharaa, S. M. Sajid-jillani et al., Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review, TrAC Trends in Analytical Chemistry, vol.76, pp.15-29, 2016.
DOI : 10.1016/j.trac.2015.09.006