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Abstract5

A small number of (perhaps only 6) broken-symmetries, marked by the edges6

of a hierarchical series of physical subsystem-types, may underlie the del-7

icate correlation-based complexity of life on our planet’s surface. Order-8

parameters associated with these broken symmetries might in the future9

help us broaden our definitions of community well-being. For instance we10

show that a model of metazoan attention-focus, on correlation-layers that11

look in/out from the 3 boundaries of skin, family & culture, predicts that12

behaviorally-diverse communities require a characteristic task-layer multi-13

plicity per individual of only about 41
4
of the six correlation layers that com-14

prise that community. The model may facilitate explorations of task-layer15

diversity, go beyond GDP & body count in quantifying the impact of policy-16

changes & disasters, and help manage electronic idea-streams in ways that17

strengthen community networks. Empirical methods for acquiring task-layer18

multiplicity data are in their infancy, although for human communities a19

great deal of potential lies in the analysis of web searches and perhaps other20

forms of self-reporting.21

Keywords: statistical inference, subsystem correlations, broken symmetry,22

layered complexity, order parameter, evolving codes, community health23

1. Introduction24

In this paper we examine an empirical way to characterize the extent25

to which organisms generally, and people in particular, manage to spend26

time addressing matters that look inward, as well as outward, from their27

boundaries of skin, family, and culture. The approach is inspired by the28

fact that discussions of both our intelligence and our well-being often center29
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around individual organisms instead of community processes (cf. Sloman and30

Fernbach (2017)), and that both community and individual measures of well-31

being face “a prodigious variety of pre-analytic conditions” consistent with32

commonsense, along with an awareness of scientific insights across disciplines33

(cf. Bishop (2015)).34

The approach here also benefits from the fact that quantitative definitions35

for order, information, entropy and even available-work have gained sophis-36

tication over the past century. Although initially considered properties local37

to a specific object, such quantities can often be seen as special cases of a38

more robust “non-local” definition that measures correlations between sub-39

systems (cf. Lloyd (1989)), as does e.g. the binary-logic distinction between40

true and false which depends on the match between an assertion, and “that41

in the world around” to which the assertion refers. In fact, the same tools42

lie at the heart of probability-based (Bayesian) data handling (cf. MacKay43

(2003); Ghosh et al. (2006)) and model-selection (cf. Burnham and Ander-44

son (2002); Gregory (2005)), which may play a key role implementing and45

choosing ideas that work in the days ahead.46

Modeling the processes by which order emerges, and then fades, is also47

an area of long-standing interest and increasing activity. Whether we are48

looking at the evolution of a star from a density fluctuation in an interstellar49

gas cloud, or emergence of a bubble in the center of a pot of water being50

heated on the stove, broken symmetries surrounding gradients, boundaries,51

or pool edges play an important role (cf. Anderson (1972)). Useful con-52

cepts sometimes called order-parameters, associated with the spontaneous53

breaking of symmetries (used here to denote the emergence of newly iden-54

tifiable asymmetries), are of special interest (e.g. Sethna (2006)). Studies55

of order-emergence generally have focused on one layer at a time, e.g. on56

the precipitation of one phase inside another, the development of correlated57

behaviors between individual cells in an organism, or the formation of special58

interest groups in a community.59

In this paper we specifically focus on the bloom and decline of layered60

complexity. This is a less developed topic, even though studies of “higher-61

order than pair” correlations in a wide variety of single-layer systems (e.g.62

Schneidman et al. (2006)) perhaps suggest that the “post-pair” correlations63

needed, e.g. among internal (base-level) molecules to prepare a one-celled64

(upper-level) microorganism for survival, may not be coming about by nat-65

ural selection on the base level alone. Put another way, our microorganism66

may have to spend resources nurturing (inward-looking) molecular correla-67
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Figure 1: Szilard vacuum-pump memory schematic relating subsystem correlations to
reversibly-thermalized work.

tions within, at the same time it is dealing with (outward-looking) challenges68

from its external environment.69

Even if we had robust theoretical underpinnings, however, the selection70

of order parameters for the upper layers of a complex-system hierarchy is71

likely to be a matter of field insight, plus trial and error. Lacking much of72

either at this point, in this paper we propose simply to examine the fractional73

attention that organisms can give to buffering correlations that look inward74

and outward from the three highest layers of organization, namely those75

associated with the boundaries of skin, family and culture.76

As we’ll see, the approach provides a framework for both characterization77

and for suprisingly-robust goal formulation (which e.g. works to balance a78

wide variety of opposing perspectives). However, we will only know what is79

working if we have ways to obtain data on these matters. That is the next80

“first step”.81

2. Symmetry and complexity82

We’ve attempted to outline possible technical connections to order-emergence83

in simpler systems with an earlier note (Fraundorf (2013)), but these are nei-84
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ther rigorous nor important here. Instead, one might simply consider that in85

the “natural history of invention”, complexity emerges when specific informa-86

tion on broken symmetries, generally associated with gradients, boundaries,87

or pool edges, becomes available in the outside world. If and when an asym-88

metry (or external correlation with it, including external awareness of it)89

fades, the associated complexity fades along with it. Thus for instance liq-90

uid water might be seen as isotropic for all practical purposes, even though91

we know that on the nanoscale it has neither translational nor orientational92

symmetry.93

One of the simplest examples of this is the Szilard vacuum-pump binary94

memory (Szilard (1929)), in which a symmetric two-piston assembly with re-95

movable partition (cf. Fig. 1) contains a single atom at an ambient-stablized96

temperature T, whose position can be “set” by removing the divider, insert-97

ing one piston using available work W = kT ln[2], followed by return of the98

partition and removal of the piston. We now know (i.e. have one bit of99

information about) which side the atom is on. We’ve added complexity to100

the world at cost of some thermodynamic availability.101

That information can be irreversibly lost if we (i) remove and reinsert the102

partition, (ii) close our eyes and spin the assembly randomly about an axis103

through the partition, or (iii) forget which side we put the atom on. Thus104

at no cost, the world can become less complex. This exercise illustrates the105

“one-way” nature of spontaneous correlation loss i.e. of entropy increase,106

the quantitative cost of complexity i.e. of correlation information between107

subsystems, plus several ways that complexity can spontaneously fade in the108

absence of effort to keep it in place.109

3. Multiple layers, external and internal110

Earth life is part of the hierarchy of broken symmetries that began with111

the collapse of the solar nebula, the accretion of planetesimals to form the112

planet, and the formation of a surface boundary layer on that planet sub-113

jected to the flow of ordered energy (from within and without) to power a114

layered system of biogeochemical cycles. In these flows shared-electrons first115

broke the symmetry between in-molecule and extra molecule interactions. In116

this context many broken symmetries emerged and then faded, but the key117

symmetry breaks that we focus on here established a hierarchy of correlated118

subsystems made up of correlated subsystems.119
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Figure 2: Yeast Rap1 versus equiprobable sequence-energetics, relating correlations to
work as in Fig. 1.

Thus one might be tempted to say that life began with the natural in-120

vention of bilayer membranes, whose closure allowed the break in symmetry121

between molecules inside and outside that membrane or cell wall. These122

single-celled lifeforms can not only tolerate a much wider range of condi-123

tions than us multi-celled organisms, but they also invented digital storage124

of information in molecular codes as illustrated in the Fig. 2 analysis of the125

information stored in a 10 nucleotide binding sequence (cf. Stormo et al.126

(1986)), for comparison to the vacuum-pump memory schematic above.127

Beyond that, shared resources (like steady-state flows) may have bro-128

ken the symmetry between in-tissue and external processes, giving rise to129

our first multi-celled organisms. Beyond this, metazoan skins allowed sym-130

metry between in-organism and out-organism processes to be broken, bias131

toward family members broke the symmetry between in-family and extra fa-132

milial processes, and membership-rules (like e.g. tribal xenophobia) broke133

the symmetry between in-culture and multi-cultural processes.134

If we take a closer look at the emergence of order, one might imagine135

subsystems on a first reference level becoming increasingly correlated through136

“pair interactions” (cf. Schneidman et al. (2003)) like: (i) argon atoms in137

a cooling gas or metal atoms in a cooling liquid which form kissing-number138

12 clusters, (ii) photosynthetic cells which form a 2D biofilm so that each139
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gets some access to the sunlight, or (iii) children on a playground who fall140

into a herd when chasing a soccer ball. Next, however, let’s imagine the141

emergence of order one layer up i.e. between clusters of atoms, cells, or142

individuals. In this case, higher order correlations (we refer to these here143

as post-pair) between first-level building blocks might be needed, like multi-144

atom sequences to hold together a polymer, channels between cells in a 3D145

assembly to provide access to external nutrients, or recognition (by a third146

child) that when two children are fighting they should probably side with the147

one which is their sibling.148

Although pair correlations between building blocks on one level can of149

course be key to the survival of higher level assemblies, the rationale behind150

emergence of higher order correlations (like altruism among individuals) is151

often easier to see in terms which look inward from the dynamics one level up152

(like selection in terms of family genetics or group culture cf. Okasha (2008);153

Nowak et al. (2010); Richerson and Boyd (2004)). This of course might154

seem at best abstract to researchers used to thinking in terms of lower-level155

component interactions alone.156

There may also be some reason to think about pair correlations (e.g.157

between molecules inside a cell, neural connections between cells, and indi-158

viduals in a community) when one is considering order emergence looking159

outward from the building blocks of one level of organization. In that con-160

text, one might tend to think about post-pair correlations between those161

same building blocks when looking inward from the boundary of a compos-162

ite entity one level up. In other words, adaptation of a composite entity to163

the world around often involves pair correlations between similar compos-164

ite entities, along with post-pair correlations of building blocks internal to165

that entity. This is the basis for our distinction between outward and in-166

ward looking correlations with respect to each boundary in the discussion to167

follow, even though mapping of these as pair and postpair, respectively, is168

approximate at best.169

In this paper we focus on the perspective of (a) metazoan individuals170

as both audience and agent, instead of for instance on (b) the perspective171

of individual micro-organisms, or (c) the perspective of whole family gene-172

pools even though this is of much recent interest in biology. In that context,173

therefore, we center our attention on the last three symmetry-break levels174

(skin, family, culture) and the six subsystem-correlation layers associated175

therewith.176
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Figure 3: At left is a random simplex-point picked 6-layer population of 10,000 individuals,
projected onto a ternary plot with subsystem correlations e.g. in/out from skin in the
lower left, in/out from family at top, and in/out from culture at lower right, resulting
in Mcm ≃ 6.0 and Mgeom ≃ 4.26. At right is a similar 6-layer population, in which
participation buffering of correlations that look in/out from family has been cut in half,
and of correlations that look in/out from culture has been divided by 4, resulting inMcm ≃
5.39 and Mgeom ≃ 3.87. The latter might be expected e.g. for a human population which
has limited access to jobs, and even more-limited access to cultural/professional education.

4. A task layer-multiplicity simplex177

Selection of order parameters for complex systems is sometimes more of178

an art than a science. Here as in the selection of order-parameters for simpler179

(albeit still-complex) thermodynamic systems, we seek a measure based on180

information available with minimal disruption.181

For inputs, we begin with (up to) L = 6 normalized positive numbers182

fi representing the fraction of an organism’s effort allocated to buffering183

subsystem correlations associated with each of the 6 subsystem correlation-184

layers i.e. which look in/out from skin, family and culture. In other words, by185

various means we try to get a sense of the types of tasks that individuals in a186

given community manage to spend their time on. For vizualization-purposes187

these six positive fi values (which add up to 1) allow us to map the layer-focus188

of organisms to individual points within the unit 5-simplex between 6 vertices,189

just as ternary-diagrams map any three normalized positive-numbers onto an190

equilateral triangle or 2-simplex in a plane. The latter in this context may be191

used to project normalized groups of these fractions, as shown in Fig.3, while192

a hexplot of ternary diagrams might be useful for a more complete view of193
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Figure 4: Six-projections of 100-member random simplex point-picked dot-cloud, with
projections of one individual organism circled. The attention-fraction associated with the
outer-vertices is labeled, while the central vertex in each ternary-plot triangle represents
the sum of the remaining fractions.
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an N = 6 population (cf. Fig. 4).194

To inventory order we then define a single metazoan-individual’s niche-195

network layer-multiplicity m as the behavior-defined effective-number of cor-196

relation buffering choices, expressed as an entropy-exponential in terms of197

that organism’s set of e.g. L = 6 fractional-attention values {f}:198

1 ≤ #choices ≡ m[{f}] =
L
∏

i=1

(

1

fi

)fi

= 2
#bits ≤ L (1)

where Σifi = 1 i.e. sums to one over the level-index i = 1, L.199

This multiplicity measure can also be expressed in terms of the number200

of bits of surprisalTribus (1961) or state-uncertainty S in bits about which201

correlation layer (e.g. self, friends, family, job, culture, profession) they are202

working on at any given time, i.e. S = ln2[m] = Σifi ln2[1/fi]. However203

use of #choices instead of #bits probably makes more sense here since the204

numbers are so small.205

Population-averages i.e. normalized-sums over allN community members206

(say using index j = 1, N) will be denoted with angle-brackets like 〈〉. Thus207

the population-average individual-multiplicity is 〈m〉 = (1/N)Σjmj .208

The population-average value for attention-fraction fi is 〈fi〉 = (1/N)Σjfij209

where fij is the jth individual’s layer i attention-fraction.210

We’ll use {〈f〉} to refer to the set of all L attention-fraction population-211

averages. This allows us to define a center-of-mass multiplicity Mcm =212

ΠL
i (1/〈fi〉)

〈fi〉, representing the spread in attention-focus for the community213

as a whole. In non-social organism communities, for instance, the fraction of214

time spent on matters of social hierarchy, let alone intra and extra cultural215

pursuits, may be quite small, pushing the center of mass multiplicity closer216

to only 3 of the 6 layers that we are considering here.217

We may also want to consider population average-surprisal or en-218

tropy 〈S〉 = (1/N)ΣN
j Sj. This leads simply to the geometric-average219

individual-multiplicity, defined as Mgeom = 2〈S〉 = (ΠN
j mj)

1/N for which220

it is easy to show that Mgeom ≤ Mcm. Because of this organic relation to221

the center-of-mass value, we’ll use Mgeom as our indicator of the spread in222

attention-focus for individual organisms with the community. For instance,223

a community of individuals might have a center of mass multiplicity of 6224

even if half of the individuals only take on nurturing (e.g. inward looking or225

post-pair correlation) tasks, while the other half only takes on adventuring226
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(i.e. outward-looking) tasks. In that case the geometric average multiplicity227

would only be about 3.228

The inequality above naturally lets us define organism and community229

specialization indices, whose logarithms are KL-divergences, which de-230

crease in value toward 1 only as the spread of individual foci begins to match231

that of the community as a whole. For the community specialization index232

R, we use 1 ≤ R ≡ Mcm/Mgeom ≤ Mcm. The community specialization233

index R would thus be only about 1 for a community in which all individuals234

spent equal amounts of time on all six layers, while for a community adopt-235

ing the “nurture/adventure” (or “yin/yang”) dichotomy mentioned above,236

the specialization index would approach 2.237

For use only in Fig. 5, although they are also useful for deriving some238

inequalities, along with individual multiplicity mj ≡ ΠL
i f

−fij
i one might also239

define individual specialization indices rj = (1/mj)Π
L
i 〈fi〉

−fij . Like the com-240

munity specialization index R, rj will always be between 1 and L.241

Finally, we recommend comparison of communities in this context with a242

“uniform-reference” community, in which all combinations of task assignment243

are equally probable. In general this will allow researchers to see operating244

biases toward effort spent buffering sub-system correlations on one layer or245

another. Comparison of experimental data from real communities, to this246

reference, might also help explore the possibility that task-layer diversity has247

a selective advantage, and/or is a useful measure of community well-being.248

Quantitative aspects of this reference are discussed further in Appendix A.249

5. Applications250

Describing live communities quantitatively in terms of subsystem corre-251

lations may be in its infancy. Operational models for describing subsystem252

correlations in biofilms, within and between species in plant communities, in253

communities of social insects, as well as in primate communities including254

our own, can only be done with help from experts with field involvement in255

each of these areas.256

The objective of this section is therefore simply to take a cursory look at257

some aspects of the potential for such an approach, with a bias toward its258

application in 6-layer human communities. Moreover we’ll focus mainly on259

uses not for detailed aspects of observed distributions, but on center-of-mass260

task layer-multiplicityMcm as a measure of correlation-layer activity relevant261

to the survival of living systems, and the perhaps more subtle adaptive-value262
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of task-layer diversity i.e. of a community with specialists and generalists263

of all sorts. These analyses treat all subsystem-correlation layers equally, in264

spite of a hierarchical structure which shows they are not i.e. individuals265

are clearly pre-requisite to family, which in turn may be pre-requisite to266

culture. By averaging over any given community’s population, data in this267

form is perhaps also by its nature “anonymous” as far as specific individuals268

in a community are concerned, even though establishing useful protocols for269

obtaining it in any given community type remain a future challenge to be270

discussed briefly in the next section.271

5.1. task-layer breadth272

Imagine that Mcm began increasing toward 2 when the metazoan skin of273

multi-celled organisms predicated the symmetry-break between self-focused274

behaviors (like hunger & fear) and pair-focused behaviors (like aggression275

& pair-bonding). When such social organisms began treating their young276

differently from the young of others, molecular code-pool boundaries facil-277

itated the symmetry-break between family-focused behaviors (like bower-278

building & child-rearing) and socially-focused behaviors (like status-pursuit279

& community-service) letting Mcm approach 4. Mcm was allowed to ap-280

proach 6 only after communicating organisms began recognizing distinc-281

tions between in-group and outsider patterns, allowing idea-pool symmetry-282

breaks to distinguish behaviors that are culturally-focused (like religion &283

sports) and extra-cultural (like professional-development & library-building).284

Astrophysical observations indicate that environments for such multi-layer285

correlation-structures are short-lived (e.g. Ward and Brownlee (2000)), so286

quantitative models for Mcm’s increase & decrease with time may be worth-287

while.288

These models might provide integrative measures of social patterns al-289

ready of interest, like division of responsibility between large and small ga-290

mete metazoans (i.e. femaile/male role specialization), and quantitative com-291

parison of the extent and nature of community cultural-correlations from292

one species to another or from one time to another for a given species. If293

center-of-mass multiplicity correlates with other measures of health in human294

communities, it could be especially important for going beyond single-layer295

measures, like gross domestic product and body count, for taking quanti-296

tative account of family and culture when assessing the impact of policy297

changes and disasters on a given community (cf. Fig. 3).298
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There are immediate as well as abiding practical possibilities here. Avail-299

able resources, as well as the preservation of task layer-diversity, means that300

individual-humans are fallible in that their capabilities will either span only a301

part of the 6-layer correlation-hierarchy that underlies human social-systems302

today, or be spread quite thin across all 6. This is also true, in spite of our303

evolutionary attraction to social-hierarchies, about the vision of any given304

leader or demagogue.305

Regardless as the ordered-energy available per-capita decreases (with ei-306

ther increasing population or energy-costs), we can expect the 6-layer struc-307

ture of our social-systems to experience pressure to deconstruct (e.g. Chais-308

son (2004)). The demagogues of communism and fascism in the last century,309

as well as the demagogues of religious-fundamentalism today, are evidence310

of pressure to toss out one layer or another of our social-organization. Data311

with which to track, and concepts with which to communicate, about these312

pressures and their effects will be important if we want to give human social-313

systems on earth a chance to do their best.314

5.2. task-layer diversity315

When diversity of task assignments for individuals, as distinct from the316

task-layer breadth of attention in the community as a whole, is maximized317

by random simplex point-picking as outlined in Appendix A, M∗
cm ≃ 6 but318

M∗
geom ≃ 4.26. In other words the opportunity to be equal may not argue319

that everyone contribute on all layers (specialization index R ≃ 1). How-320

ever we might look for a specialization index closer to 1.4 e.g. significantly321

less than the R ≃ 2 expected for a community with “nurture/adventure”322

role-specialization. This may help us address the “urgent question” posed in323

the late 19th century by Emile Durkheim in his dissertation on workplace324

divisions of labor (Durkheim (1893)), whether to choose roundedness or spe-325

cialization, by saying “if possible explore roundedness, but specialize when326

that works better for you”. This is consistent with subsequent trends away327

from rigid divisions of labor (e.g. based on heritage and gender) at home as328

well as at work.329

The physiological division of labor between large and small gamete meta-330

zoans in reproductive roles, e.g. in social insect communities, shows that331

task-layer diversity may not always be an adaptive choice. However com-332

munities with higher free-energy per capita and electronic information-flow333

seem to be moving away from cultural role-divisions. Fig. 5 illustrates by334

comparing R and Mgeom of a 6-layer model with task-diversity maximized335
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Figure 5: The red dots denote individual specialization indices rj as a function of indi-
vidual task-layer multiplicities mj for organisms in a 6-layer random simplex point-picked
population of 10,000 individuals. The blue-cross is the specialization index R for this pop-
ulaiton, the green dashed-cross for a more specialized “nurture/adventure” population.
The dashed lines follow rj ≃ L/mj for L of 2 through 6 layers, successively outward from
the origin.

by random simplex point-picking (larger plus) with the same quantities for336

a “yin-yang” community (smaller plus) in which half of the organisms each337

buffer subsystem correlations directed only inward, or only outward, from338

skin, family & culture.339

6. The data challenge340

All of the applications above are predicated on a source of data about341

attention-focus in a given community. One may attempt to acquire data on342

some organism communities by direct observation. In human communities,343

self-reporting and communication-traffic analysis may also be useful partic-344

ularly for data on short-term changes in attention-focus. A possible self-345

reporting strategy might involve experience-sampling (Hektner et al. (2007);346

Killingsworth and Gilbert (2010)) by selecting a layer from 1 to 6 on your347

phone, when the occasional request comes in. In fact, the community well-348

being categories in the Gallup-Healthways Well-Being 5 Index (Sears et al.349

(2014)) might be seen as mapping loosely to correlations that look inward350

from skin (“physical”), inward from family (“social”), outward from fam-351
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ily (“financial”), outward from skin (“community”), and in/out-ward from352

culture (combined e.g. as belief and profession related “purpose”).353

7. Conclusion354

We describe in this paper a physical “broken-symmetry” approach toward355

community-structure inventories. It is integrative in that it is inspired by356

work on broken-symmetries in simpler physical systems, and in that its basics357

should apply to living systems on other levels of organization and in different358

astrophysical settings.359

Its timing is important because discussions of well-being science have360

focused on the meaning, measurement, and improvement of individual as361

distinct from community well-being, and in that context not made explicit362

connections to the bloom and decline of complexity. As we turn our focus363

on a finite earth to sustainability, connections of individual well-being to364

our understanding of the gain and loss of complexity in both physical and365

biological systems will be important.366

By way of example, Cloninger’s measures (Cloninger (2004)) of uncon-367

scious style or temperament seem largely physiological, but his conscious368

“idea-mediated” elements of character (namely self-regulation, cooperative-369

ness, and judicial-transcendence as more active elements of our “post-paleolithic”370

development) might map reasonably well with our interest in one’s attention-371

focus on broken-symmetry subsystem correlations that look in/out, respec-372

tively, from skin, family, and culture. Clearly, experts from more than one373

field are called-upon to acquire and explore data relevant to possible con-374

nections like this, and more importantly to put such connections to good375

use.376

Appendix A. The uniform task-layer diversity reference377

A nice mathematical feature of simplex models, involving normalized frac-378

tions or probabilities, is that they follow the statistics of compositional anal-379

ysis (cf. Aitchison (1986/2003)). This means that the statistics is already380

well-explored, and it makes projections from a 5 simplex with 6 vertices into381

lower dimensional simplex spaces easy as well (cf. Figs. 3 and 4). Hence a382

wide range of understandable illustrations e.g. of the effect of policy changes383

and events on a community’s focus can be expected as more data on real384

communities in this format become available.385
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Figure A.6: This is a test of our Dirichlet-based routine for random simplex-point picking,
using a unit 2-simplex triangle with 3 vertices, because the uniformity associated with
10, 000 points is easily illustrated on a flat-screen ternary diagram.

For the moment, in order to explore an L-layer community in which all386

possible mixes of attention-focus for individuals occurs with equal probability,387

we examined analytical approaches, as wall as algorithms for random simplex-388

point picking based e.g. on the Dirichlet distribution (cf. Fig. A.6). When389

running these algorithms on say 100 communites each of a million individuals,390

they all predict that the center-of-mass multiplicity approaches L, since there391

is no bias in this random model toward effort directed toward one layer392

of community organization over another. In other words, we expect the393

population-average for attention-fraction fi to equal 1/L.394

This reference value (denoted with an asterisk) for a 6-layer community of395

M∗
cm ≃ 6 thus signifies the collective ability of the community to apportion396

its effort equally toward the buffering of correlations that look in/out from397

skin, family and culture. Limited historical opportunities, policy changes,398

disasters, and environmental changes can only reduce this value.399

The foregoing quantity, however, says nothing about role-specialization or400

the lack thereof. For instance, one might think of social-insect communities401

with extreme amounts of role specialization, but which nonetheless manage402

to buffer correlations on all the levels needed for their survival. One way403

to measure this is to look at the breadth of activities for individuals in the404
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community. Rather than measure diversity against a requirement that “alll405

individuals give equal effort in all layers”, however, we propose here that we406

look for biases in experimental data with respect to a community in which407

(as above) all possible task-assignments are equally probable. This kind of408

reference should help examine biases for or against any type of task-layer409

assignment.410

Following rigorous derivation of M∗
geom for communities with L ≤ 3, we411

infer that a uniform distribution of tasks for arbitrary L will give:412

M∗
geom = 2

∫
1

0
df1

∫ 1−f1
0

df2...
∫ 1−

∑L−2

i=1
fi

0
dfL−1(L−1)!S, (A.1)

where as usual S = ln2[Σ
L
i=1f

fi
i ] and fL = 1 − ΣL−1

i=1 fi. This implies that for413

communities of one to eight layers that414

M∗
geom = {1, e

1

2 , e
5

6 , e
13

12 , e
77

60 , e
29

20 , e
223

140 , e
481

280 } (A.2)

This assertion has been checked quantitatively to half dozen significant fig-415

ures for values through L = 6 by simplex-point picking, and suggests that416

a good rule of thumb (for L ≤ 10 within 0.5%) is M∗
geom ≃ 0.65L + 0.35.417

Thus unbiased distribution of task assignments in an L = 6 community418

means that individuals on average are buffering subsystem-correlations in419

only M∗
geom = e29/20 ≃ 4.2631 layers. This is good news, given that the420

opportunity to buffer more layers was probably absent during the paleolithic421

times of our species’ evolution. It is also good news for individuals in that,422

even when the opportunity to “do everything” is available, it may well not423

be your best choice.424
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