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Weak approximations for arithmetic means of geometric Brownian motions and
applications to Basket options ∗

Romain Bompis †

Abstract. In this work we derive new analytical weak approximations for arithmetic means of geometric Brownian mo-
tions using a scalar log-normal Proxy with an averaged volatility. The key features of the approach are to keep
the martingale property for the approximations and to provide new integration by parts formulas for geometric
Brownian motions. Besides, we also provide tight error bounds using Malliavin calculus, estimates depending on
a suitable dispersion measure for the volatilities and on the maturity. As applications we give new price and im-
plied volatility approximation formulas for basket call options. The numerical tests reveal the excellent accuracy
of our results and comparison with the other known formulas of the literature show a valuable improvement.
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1. Introduction.
� Motivation. In Mathematical Finance, the quick and efficient approximation of sums of Geo-

metric Brownian motions (GBMs in short) is very useful in many problems. Among them we cite
the pricing of basket options in equity models where the basket is an average of assets, the pricing of
swaptions in the Libor market interest rate model where the swap rate is a stochastic convex combina-
tion of Libor rates modelled with GBMs or the forward models for commodities.
For these previous examples, the multivariate log-normal model may seem restrictive because practi-
tioners have adopted more sophisticated models as local or/and stochastic volatility models with many
factors. However the classical Black-Scholes model remains still extremely popular and one can in-
deed be really interested in the use of equivalent multivariate formulas.
Although the mathematical theory does not present any particular difficulty, the lack of tractability
for the multidimensional log-normal distribution does not allow the computation of prices and hedges
in closed form any more. Hence practitioners have to resort to numerical methods : numerical inte-
gration/PDE methods for low dimension or Monte Carlo simulations for high dimension. However,
these methods may be to slow for real time-issues while many areas of computational finance have a
crucial need of real-time, robust and accurate pricing/calibration algorithms. Then an alternative is to
use analytical approximations and this is the aim of this work.

� Methodology and main results. In this paper, adapting the Proxy principle developed in [7]-
[8]-[10]-[17], we provide approximations in law of arithmetic means of GBMs, using as proxy, a
suitable one-dimensional GBM with an averaged volatility. We apply the results for the pricing of
basket call options and obtain analytical formulas which are very accurate while remaining very fast
and easy to implement. In addition, we also derive new implied volatility approximation formulas.
The approximation formula for basket call options (See Theorem 13) takes the form of an explicit
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2 ROMAIN BOMPIS

one-dimensional log-normal representation:

CallBasket(T,K) = CallBS(T,K) +
∑

i

Ci,T GreekBS
i + error,

where the main term is the Black-Scholes formula, Ci,T are weights depending on the time-dependent
volatility structure of the GBMs, GreekBS

i are Greeks in the Black-Scholes model well defined as soon
as the log-normal proxy is non degenerate and the error is rigorously estimated w.r.t. the maturity and a
dispersion measure of the volatilities. Roughly speaking, error is expected to be small when the GBMs
have a close volatility structure or/and when the maturity T is short and these features are encoded in
the non asymptotic error estimates of Theorems 5, 13 and 14 which emphasize the role played by the
coefficients in the approximation accuracy. Besides the numerical results show an excellent accuracy,
much higher than main formulas of the literature.
Despite the inspiration of [7]-[17] where Gaussian proxies are used, we develop new tools to perform
an expansion directly around a log-normal proxy without working on the logarithms of prices. In
particular, we use a suitable interpolation between the Basket dynamic and the log-normal proxy
preserving martingale properties (see subsection 2.2.1) and provide new Malliavin integration by parts
formulas to compute the corrective terms (see Lemma 7).

� Literature review. The literature is very profuse and we only summarize the main ideas related
to approximations/expansions in the context of options pricing.

First regarding the asymptotic expansions, we begin with papers related to price approximation
formulas. For perturbation of the PDE pricing, see the valuable reference [14] where approximation
formulas for basket options with log-normal assets are provided though the error analysis is not han-
dled. Regarding the stochastic analysis point of view, we refer to [25] in which the authors establish
formally a third order asymptotic formula for the pricing of multi-asset cross-currency options using
Malliavin calculus. The resulting approximation reads as an expansion around the Bachelier (Gaus-
sian) model. We refer to [18] for the pricing of Asian and Basket options using Taylor expansions
(without error analysis) of characteristic functions in small volatility using a one dimensional log-
normal proxy matching the two first moments. Passing now to works providing implied volatility
approximations, see [16] for the shape of the implied volatility surface at the money in the small matu-
rity asymptotic using links between the spot and implied volatility dynamics. or the strike asymptotic,
see [3] where approximations of the around the money implied volatility of index options in a multi-
dimensional time-homogeneous local volatility model are obtained using large-deviation techniques.
Extensions of this work are provided in a series of papers of Bayer and Laurence [6] (ATM options),
[5] (short maturity and small volatility expansions) and [4] (small/large strike regime).

Last we focus on the non asymptotic expansions. In [12], Carmona et al. take advantage of
the convexity of x 7→ x+ to compute explicitly quite tight lower and upper bounds for the basket
price. Another valuable reference is Piterbarg [23] who uses Markovian projections to approximate
the dynamic of the Basket with a one dimensional local volatility model. Next an important reference is
the paper of Gobet and Miri [17] for the approximation in law of general averaged diffusion processes
using the geometric mean as proxy for the mean of exponentials. Here we provide an enhancement of
the results by considering a more accurate martingale proxy and by providing a third order formula.
We finally cite some works related to spread options: see [1] for the pricing of rainbow options using a



WEAK APPROXIMATIONS FOR MEANS OF GEOMETRIC BROWNIAN MOTIONS 3

recursive procedure, [15] for approximations of the exercise boundary, [2] for the short-maturity skew
behaviour using Malliavin calculus techniques or again the Thesis of Landon [20, Chapter 8] where
the proxy principle is used in the general local volatility case but without error analysis.

�Contribution. As a comparison with these existing works, our contribution is threefold. First, for
the arithmetic mean of GBMs, we provide new high order explicit approximations: (1) using a suitable
one-dimensional log-normal proxy and new integration by parts formulas, (2) preserving martingale
properties, (3) with a rigorous non-asymptotic error analysis using relevant dispersion measures under
a local non-degeneracy condition. Second, we apply the results to basket call options by providing
explicit formulas of price and implied volatility which the shape at the money for short maturity is
consistent with the results of [23], [16] and [2]. Finally, numerical investigations indicate that our
formulas are very accurate with a valuable improvement in comparison to the approximations in [14]-
[12]-[20]-[17]-[18]-[25]. In addition, the review of the benchmark formulas and their comparison
postponed to Appendix B may interest the reader.

� Organization of the paper. The paper is organized as follows. We state the weak expan-
sion results in section 2: first we define the setting, notations and assumptions used throughout our
work, second we expose the methodology and we finally provide a third order approximation formula
Theorem 5). The explicit derivation of the expansion coefficients and the error analysis are given in
section 3 with complementary proofs in Appendix A. Section 4 is devoted to the application of the
results to basket call options with price formulas (Theorem 13) and approximations of the implied
volatility (Theorem 14). Then numerical experiments are gathered in section 5 to illustrate the ex-
cellent accuracy of our approximation formulas, taking as a benchmark the Monte Carlo method and
making the comparison with the previously quoted formulas of the literature which are made explicit
in Appendix B.

2. Weak expansion.

2.1. Setting.

2.1.1. Framework and proxy process. Given a fixed time horizon T > 0 and d ≥ 1, let
consider d driftless GBMs S 1,. . . ,S d starting from the initial value 1 to model financial assets, which
are solutions of the SDEs, for any i ∈ {1, . . . , d} :

dS i,t

S i,t
= 〈σi(t) | dWt〉, S i,0 = 1,(1)

where (Wt)t∈[0,T ] is a standard Brownian motion (GM in short) in Rq on a filtered probability space
(Ω,F , (Ft)0≤t≤T ,P) with the usual assumptions on the filtration (Ft)0≤t≤T , (σi(t))t∈[0,T ] is a bounded
measurable function taking values in Rq representing the volatility vector of the i-th GBM and 〈. | .〉
denotes the inner product on Rq. Introducing the weights (αi)i∈{1,...,d} ∈ [0; 1]d, such that

∑d
i=1αi = 1,

we consider the associated discrete probability measure µ defined for any x ∈ Rd by µ[x.] =
∑d

i=1 αixi.
Then we define the arithmetic mean process of the S i:

S := µ[S .] =

d∑
i=1

αiS i, S 0 = 1,(2)

and our aim is to derive analytical approximations of E[h(S T )] for a given payoff function h at least
a.e. once time differentiable with polynomial growth and a given maturity T > 0.
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Remark 1. Actually our framework is equivalent to the general case with positive weights ai ≥ 0
and GBMs with drift and any positive initial value: dS̄ i,t/S̄ i,t = 〈σi(t) | dWt〉 + βi(t)dt, S̄ i,0 > 0.

Indeed one has g
(∑d

i=1 aiS̄ i,T
)

= h
(∑d

i=1 αiS i,T
)

with h(S ) = g(QT S ), QT =
∑d

i=1 aiS̄ i,0e
∫ T

0 βi(t)dt and

αi := (aiS̄ i,0e
∫ T

0 βi(t)dt)/QT . Hence we keep our initial setting more convenient for the subsequent
analysis.

To approximate the law of S , we are looking for a proxy process. Computing the dynamic of the mean
process (2), one has :

dS t =

d∑
i=1

αiS i,t〈σi(t) | dWt〉 ⇒ dS t = S t〈σ(t) | dWt〉, with: σ(t) =

d∑
i=1

S i,t

S t
αiσi(t)

Then one obtains a GBM dynamic by freezing at their initial values all the stochastic processes in-
volved in the above stochastic Basket volatility σ(t) :

dS t

S t
≈ 〈

d∑
i=1

S i,0

S 0
αiσi(t) | dWt〉 = 〈

d∑
i=1

αiσi(t) | dWt〉

This is a method adopted by the practitioners in the financial industry and similarly to [14] and [20,
Chapter 7], one considers a martingale proxy given by the following log-normal process:

dS P
t = S P

t 〈σ̄(t) | dWt〉, S P
0 = S 0 = 1(3)

where σ̄(t) is the arithmetic mean of the volatility vectors :

σ̄(t) := µ[σ.(t)] =

d∑
i=1

αiσi(t).(4)

But we go further because we will also provide corrective terms and we give thereafter the hy-
potheses stressing the limits of applicability of the weak expansion presented in subsection 2.2.1.

Remark 2. In [17], the geometric mean S GM
T =

∏d
i=1 S αi

i,T = e
∫ T

0 〈σ̄(t)|dWt〉−
1
2

∫ T
0

∑d
i=1 αi |σi(t)|2dt is used

as proxy. In addition to systemically underestimating the arithmetic mean of exponentials and S P
T =

e
∫ T

0 〈σ̄(t)|dWt〉−
1
2

∫ T
0 |

∑d
i=1 αiσi(t)|2dt, S GM

T is not a martingale in the general case. That means for instance that
the approximation of E

[
S T

]
= 1 could be inexact with the proxy S GM

T , what is an undesirable feature.

2.1.2. Notations, definitions and assumptions.
� Vectors, scalar products and norms.
• For a column vector v ∈ Rq, we denote by v∗ its transpose which is a row vector.
• We recall that 〈. | .〉 stands for the inner product on Rq and | · | for the Euclidean norm on Rq.
• For a r.v. Y ∈ Rm (m ≥ 1) and for p ≥ 1, ||Y ||p = (E|Y |p)

1
p denotes its Lp-norm in the Lp space.

� Functions. We introduce H1
P

(R) the space of real-valued functions a.e. differentiable, having,
with their first derivative, a polynomially growth. Hence, φ ∈ H1

P
(R) if ∃ Cφ, Cφ(1) ≥ 0 and pφ ≥ 1

such that : {
|φ(x)| ≤ Cφ(1 + |x|pφ), for any x ∈ R.
|φ(1)(x)| ≤ Cφ(1)(1 + |x|pφ−1), for any x ∈ R.
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Assuming h ∈ H1
P

(R) ensures that h(S T ) + h(1)(S T ) ∈ L1. In addition, for n ∈ N, Cn
P

(R) denotes the
space of real-valued functions n-times continuously differentiable with polynomially bounded deriva-
tives.

� Assumption (Hσ) on the volatilities.
(Hσ)-i) For any i ∈ {1 . . . , d}, σi is a bounded measurable function from [0,T ] to Rq. We set:

|σ|∞ := max
i∈{1,...,d}

|σi|∞ = max
i∈{1,...,d}

sup
t∈[0,T ]

|σi(t)|.

One has obviously |σ̄|∞ ≤ |σ|∞. Then one introduces two dispersion measuresMσ̄,i andMσ̄:

Mσ̄,i = |σi − σ̄|∞ and Mσ̄ = max
i∈{1,...,d}

Mσ̄,i.

Clearly the following inequalities hold: Mσ̄,i ≤ Mσ̄ andMσ̄ ≤ 2|σ|∞. Errors will be quan-
tified in terms of the control µ[(Mσ̄,.)k] =

∑d
i=1 αi(Mσ̄,i)k, for k ≥ 1, whose meaning is the

following: if µ[Mσ̄,.] = 0, then, for any i ∈ {1, . . . , d}, either αi = 0 (and the contributions of
S i on S and of σi on σ̄ are null) or σi = σ̄. In all these cases, S T = S P

T and the approximation
is exact.

(Hσ)-ii) We defineVP
T =

∫ T
0 |σ̄(t)|2dt the variance of the log-normal r.v. S P

T and we assume that:

VP
T =

∫ T

0
|σ̄(t)|2dt > 0(5)

In other words, the proxy S P
T follows a non degenerate log-normal law.

From (Hσ)-ii), we easily deduce the next proposition:

Proposition 3. Assume (Hσ) and that h ∈ H1
P

(R). One defines1 the n-th Greek for h:

Gh
n := ∂n

S n
0
E[h(S P

T )] = ∂n
εnE

[
h
(
(1 + ε)S P

T
)]∣∣∣

ε=0.(6)

One has the following control, ∀n ≥ 1 :

|Gh
n| ≤ CnCh(1)[VP

T ]−
n−1

2 ,(7)

for a constant Cn > 0 depending on a non-decreasing way on |σ|∞, T and on the ellipticity ratio |σ|
2
∞T
VP

T
.

Proof. Consider the Gaussian density D(y) := exp
(
− y2/(2VP

T )
)
/
√

2πVP
T for any y ∈ R, to get

readily, transferring the higher derivatives into the Gaussian density:

Gh
n = ∂n

εn

{∫
R

h
(
(1 + ε)ey− 1

2V
P
T
)
D(y)dy

} ∣∣∣∣
ε=0

=

∫
R

h(1)(ey− 1
2V

P
T )ey− 1

2V
P
T ∂n−1

εn−1D
(
y − ln(1 + ε)

)∣∣∣
ε=0dy.

The proof is completed using standard upper bounds for the derivatives ofD.

1well defined as soon as h has polynomial growth and S P
T is non-degenerate, i.e. our assumption (Hσ).
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� Generic constants and upper bounds. In the derivation of error estimates, we keep the same
notation c for all non-negative constants depending on: universal constants, the index p considered for
Lp-norms, the growth parameters Ch, Ch(1) , ph of h, in a non decreasing way on the model parameters
Mσ̄, |σ|∞, the ellipticity ratio |σ|2∞T/VP

T and T . The constants c remain bounded as these dependence
parameters go to 0 and do not depend on µ and d. To state the error estimate, one uses the following
notations: A ≤c B for positive A, meaning A ≤ cB for a generic constant c and "A = O(B)" standing
for |A| ≤c B.

2.2. Approximation methodology.

2.2.1. Corrective processes. Approximations S i,T ≈ S P
T are expected to be accurate if |σ|∞,

Mσ̄ and T are globally small enough. Nevertheless, we can not reasonably expect E[h(S T )] ≈
E[h(S P

T )] to be solely accurate enough and we provide correction terms. To derive them, we lever-
age the next interpolations: {

dS η
i,t = S η

i,t〈σ
η
i (t) | dWt〉, S η

i,0 = 1,
σ
η
i (t) = ησi(t) + (1 − η)σ̄(t),

(8)

where η is an interpolation parameter lying in [0, 1] averaging the volatilities σi and σ̄. One also
defines the convex combination of the interpolated processes S η =

∑d
i=1 αiS

η
i which is a martingale

for any η ∈ [0, 1] and equals S for η = 1 on the one hand, and coincide with S P for η = 0 on the other
hand.

Remark 4. Our parametrization differs from the one used in [20, Chapter 7] denoted by S̃ η
t :

S η
t =

d∑
i=1

αie
∫ t

0 〈σ
η
i (s)|dWs〉−

1
2

∫ t
0 |ησi(t)+(1−η)σ̄(t)|2ds , S̃ η

t =

d∑
i=1

αie
∫ t

0 〈σ
η
i (s)|dWs〉−

1
2

∫ t
0

(
η|σi(s)|2+(1−η)|σ̄(s)|2

)
ds,

which is not a martingale in general for η ∈]0, 1[. Consequently the resulting approximation may
suffer from numerical arbitrage. We think that preserving the martingale property (serving as a base
for call/put parity relationship for instance) is crucial and this a benefit of our work.

Regarding the closed form of S η
i,t in (8), one has that almost surely for any t, η→ S η

i,t is C∞([0, 1],R).
Besides it is more convenient to differentiate the SDEs satisfied by S η

i (see [19]) and then to resolve
the resulting SDEs. One obtains using the Leibniz formula for the derivatives of S η

i,t w.r.t. η denoted

by S η,(k)
i,t (with the convention S η,(0)

i,t := S η
i,t) that for any k ≥ 1:

dS η,(k)
i,t =S η,(k)

i,t 〈σ
η
i (t) | dWt〉 + kS η,(k−1)

i,t 〈σi(t) − σ̄(t) | dWt〉, S η,(k)
i,0 = 0

One solves this linear system using [24] and a readily induction leads to, for any k ≥ 1:

S η,(k)
i,t =k!S η

i,t

∫ t

0

∫ tk−1

0
. . .

∫ t1

0
dZηi,t0 . . . dZηi,tk−2

dZηi,tk−1
(9)

with Zηi,. the Gaussian process defined by:

dZηi,t = 〈σi(t) − σ̄(t) | dWt − σ
η
i (t)dt〉.(10)
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When considering the above derivatives and processes at η = 0, we use the notations S (k)
i,t := S 0,(k)

i,t and

Zi,t := Z0
i,t. In addition, S η,(k)

t =
∑d

i=1 αiS
η,(k)
i,t stands for the derivatives of S η

t w.r.t. η. With (9), the
processes useful for the next calculations are defined, for any t ∈ [0,T ], by :

S (k)
t =

∑d
i=1 αiS

(k)
i,t ,

S (k)
i,t = k!S P

t

∫ t
0

∫ tk−1

0 . . .
∫ t1

0 dZi,t0 . . . dZi,tk−2dZi,tk−1 , i ∈ {1, . . . , d},
dZi,t = 〈σi(t) − σ̄(t) | dWt − σ̄(t)dt〉.

(11)

Owing to the identities
∑d

i=1 αiσi = σ̄ and
∑d

i=1 αi = 1, observe with (11) that, ∀t ∈ [0,T ] :

S (1)
t =

d∑
i=1

αiS
(1)
i,t =

d∑
i=1

αiS P
t

∫ t

0
〈σi(s) − σ̄(s) | dWs − σ̄(s)ds〉 = 0(12)

2.2.2. Taylor expansions. Assume that h ∈ C3
P

(R). To obtain a third order approximation
formula, perform Taylor expansions twice : first for the function h at S = S T around S = S P

T , second
for the interpolated process S η

T at η = 1 around η = 0 :

E
[
h(S T )

]
=E

[
h(S P

T )
]
+ E

[
h(1)(S P

T )(S T − S P
T )

]
+

1
2
E
[
h(2)(S P

T )(S T − S P
T )2] + . . .

=E
[
h(S P

T )
]
+ E

[
h(1)(S P

T )
S (2)

T

2
]
+ E

[
h(1)(S P

T )
S (3)

T

3!
]
+

1
2
E
[
h(2)(S P

T )
(S (2)

T

2
)2]

+ Error3,h,(13)

using the identity (12). The explicit calculus of the corrective terms E
[
h(1)(S P

T )
S (2)

T
2

]
, E

[
h(1)(S P

T )
S (3)

T
3!

]
and 1

2
[
h(2)(S P

T )
(S (2)

T
2

)2] is provided in Proposition 8 of subsection 3.1 whereas estimate of Error3,h is
given in subsection 3.2. This leads to the Theorem (stated for only h ∈ H1

P
(R)) given in the next

subsection.

2.3. Third order weak approximation.

Theorem 5 (Third order weak approximation using the log-normal proxy). Assume (Hσ) and
suppose that h ∈ H1

P
(R). Then we have the following weak approximation:

E
[
h(S T )

]
=E

[
h(S P

T )
]
+ Cor3,h + Error3,h,(14)

where the corrective term Cor3,h is given by:

Cor3,h =
1
2
[
Gh

2 + Gh
3
] d∑

i=1

αiC2
i +

[
Gh

2 + 3Gh
3 + Gh

4
]{1

6

d∑
i=1

αiC3
i +

1
2

∑
i, j∈{1,...,d}

αiα jCiC jCi, j
}

+
1
4
Gh

2

∑
i, j∈{1,...,d}

αiα jC2
i, j +

1
8
[
Gh

2 + 15Gh
3 + 25Gh

4 + 10Gh
5 + Gh

6
]( d∑

i=1

αiC2
i

)2
,(15)

with the Greeks Gh defined in (6) and with the coefficients:

Ci =

∫ T

0
〈σi(t) − σ̄(t) | σ̄(t)〉dt, Ci, j =

∫ T

0
〈σi(t) − σ̄(t) | σ j(t) − σ̄(t)〉dt.(16)



8 ROMAIN BOMPIS

The error term is estimated as follows:

|Error3,h| ≤c Ch(1)µ[(Mσ̄,.)4]T 2.(17)

Corollary 6. If one prefers to restrict to a second order approximation, it simply writes:

E
[
h(S T )

]
=E

[
h(S P

T )
]
+

1
2
[
Gh

2 + Gh
3
] d∑

i=1

αiC2
i + O

(
Ch(1)µ[(Mσ̄,.)3]T

3
2
)

(18)

Proof. It is sufficient to show that additional corrective terms of the expansion (14) are of order
O
(
Ch(1)µ[(Mσ̄,.)3]T

3
2
)

using Proposition 3 for the Greeks and regarding the magnitudes of the coeffi-
cients Ci and Ci, j defined in (16). We let this verification to the reader.

We make several additional remarks:
a) As announced, the expansion involves only a scalar log-normal r.v. with coefficients Ci an Ci, j

independent of the payoff function h.
b) The result states that for a large class of test functions h, the error is of order four w.r.t. the

standard deviationMσ̄

√
T and is null ifMσ̄ = 0 (meaning that all the r.v. S i,T are identical) or again

if Ch(1) = 0 (meaning that h is constant). On the other hand [17] provides an error estimate only in
terms of |σ|∞

√
T (magnitude of the volatilities), what does not take into account the dispersion of the

volatilities.
c) The call/put parity relationship is preserved within these approximations. Indeed, remark that

the above expansion formula is exact for the payoff function h(S ) = (S −K) as E
[
h(S T )

]
= E

[
h(S P

T )
]

=

1 − K and as the Greeks, all equal to or greater than order 2, vanish.
d) Notice that if, all the r.v. S i,T are i.i.d. with the common volatility coefficient σ and if αi := 1/d

for any i ∈ {1, . . . , d}, then Ci = 0 2 for any i ∈ {1, . . . , d}. Then the second order expansion (18)
reduces to the main term. To achieve a better accuracy, it is thus necessary to use the third order
formula whose the corrective term reduces to Cor3,h = 1

4G
h
2
∑

i, j∈{1,...,d} αiα jC2
i, j = 1

4G
h
2(d − 1)(VP

T )2. 3

e) As the generic constants do not depend on d, one could under technical assumptions pass to
the limit when the discrete probability measure µ converges to some probability measure (see the
arguments in [17, Section 2.5]). These investigations with applications to asian options are left for
further research.

3. Proof of Theorem 5.

3.1. Computation of the expansion coefficients.

3.1.1. Notations. In all the following, ϕ is a smooth function with bounded derivatives.

2In this case σi = (0, . . . , 0, σ︸︷︷︸
i

, 0, . . . , 0)∗ and σ̄ = σ/d(1, . . . , 1)∗. Thus it comes Ci =
∫ T

0

(
〈σi(t) | σ̄(t)〉 − 〈σ̄(t) |

σ̄(t)〉
)
dt =

∫ T

0

(
σ2(t)/d − σ2(t)/d

)
dt = 0.

3In this case, a similar calculus gives that Ci, j =
∫ T

0
〈σi(t) − σ̄(t) | σ j(t) − σ̄(t)〉dt equals C1,1 := (d − 1)/d

∫ T

0
σ2(t)dt =

(d−1)VP
T if i = j or C1,2 := −1/d

∫ T

0
σ2(t)dt = −VP

T if i , j. Then it comes
∑

i, j∈{1,...,d} αiα jC2
i, j = 1/d2[dC2

1,1 +d(d−1)C2
1,2

]
=

(d − 1)(VP
T )2.
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� Integral operator. We adopt the following notation for any n ≥ 1 and any l1, . . . , ln measurable
and bounded functions:

ω(l1, . . . , ln)T
0 :=

∫ T

0
l1(t1)

∫ T

t1
l2(t2) . . .

∫ T

tn−1

ln(tn)dtn . . . dt2dt1.(19)

� Differential operator. We introduce a differential operator L intensively used in the following:

Lϕ : S 7→ Sϕ(1)(S ).(20)

Its compound of order n is denoted by Ln := L ◦ · · · ◦ L︸       ︷︷       ︸
n times

. By convention L0 is the identity operator.

3.1.2. Integration by parts formulas. First we provide integration by parts formulas for S P
T in

the following Lemma which proof is postponed to Appendix A.1.

Lemma 7. Let N ≥ 1 be fixed, and consider for j = 1, . . . ,N, measurable and bounded de-
terministic functions t 7→ l j(t) taking values in R and t 7→ L j(t) taking values in Rq. Then, in-
troduce for i = 1, . . . ,N, the following 2N uni-dimensional processes defined by dY0

i (t) = li(t)dt,
dY1

i (t) = 〈Li(t) | dWt〉. Using the notation Ñ :=
∑N

k=1 Ik for any (I1, . . . , IN) ∈ {0, 1}N , the following
identity holds:

E

(
ϕ
(
S P

T
) ∫ T

0

∫ tN

0
. . .

∫ t2

0
dY I1

1 (t1) . . . dY IN−1
N−1(tN−1)dY IN

N (tN)
)

= ω(Λ1, . . . ,ΛN)T
0E

[
LÑϕ

(
S P

T
)]
,(21)

where Λk(t) :=
{

lk(t) if Ik = 0,
〈σ̄(t) | Lk(t)〉 if Ik = 1.

and where the integral operator ω and the differential

operator L are defined respectively in (19) and (20). We make explicit E
[
Lkϕ

(
S P

T
)]

up to k = 6:

E
[
Lkϕ

(
S P

T
)]

=



G
ϕ
1 for k = 1,
G
ϕ
1 + G

ϕ
2 for k = 2,

G
ϕ
1 + 3Gϕ2 + G

ϕ
3 for k = 3,

G
ϕ
1 + 7Gϕ2 + 6Gϕ3 + G

ϕ
4 for k = 4,

G
ϕ
1 + 15Gϕ2 + 25Gϕ3 + 10Gϕ4 + G

ϕ
5 for k = 5,

G
ϕ
1 + 31Gϕ2 + 90Gϕ3 + 65Gϕ4 + 15Gϕ5 + G

ϕ
6 for k = 6,

where Gϕi = E
[
ϕ(i)(S P

T
)(

S P
T
)i]

= ∂i
εiE

[
ϕ
(
(1 + ε)S P

T
)]∣∣∣

ε=0 = ∂i
S i

0
E
[
ϕ(S P

T )
]

owing to the regularity of ϕ.

The explicit calculus of the corrective terms is given in the next Proposition proven in Appendix A.2.
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Proposition 8. One has for the coefficients Ci and Ci, j defined in Theorem 5:

1
2
E
[
ϕ(1)(S P

T )
S (2)

T

2
]

=
1
2
(
G
ϕ
2 + G

ϕ
3
) d∑

i=1

αiC2
i ,(22)

1
6
E[ϕ(1)(S P

T )S (3)
T ] =

1
6
(
G
ϕ
2 + 3Gϕ3 + G

ϕ
4
) d∑

i=1

αiC3
i ,(23)

1
2
E
[
ϕ(2)(S P

T )
(S (2)

T

2
)2]

=
1
2
(
G
ϕ
2 + 3Gϕ3 + G

ϕ
4
) ∑

i, j∈{1,...,d}

αiα jCiC jCi, j +
1
4
G
ϕ
2

∑
i, j∈{1,...,d}

αiα jC2
i, j

+
1
8
(
G
ϕ
2 + 15Gϕ3 + 25Gϕ4 + 10Gϕ5 + G

ϕ
6
)( d∑

i=1

αiC2
i

)2
.(24)

Remind that the Greeks in the r.h.s. are well defined even if ϕ is not smooth.

3.2. Error analysis.

3.2.1. Representation of Error3,h for smooth h and outline of the proof.

Definition 9. Assume (Hσ). We introduce for any k ∈ N, the S-residual processes defined by:

RS ,k = S −
k∑

j=0

S ( j)

j!
=

∫ 1

0
S η,(k+1) (1 − η)k

k!
dη.(25)

where by convention, S (0) = S P. Owing to (12), one has the useful identity RS ,0 = RS ,1.

Assume that h ∈ C3
P

(R) to obtain using (13) the following representation for Error3,h:

Error3,h =E
[
h(1)(S P

T )RS ,3
T

]
+

1
2
E
[
h(2)(S P

T )RS ,2
T (RS ,2

T + S (2)
T )

]
+E

[(
RS ,1

T
)3

∫ 1

0
h(3)(S P

T + ηRS ,1
T

) (1 − η)2

2
dη

]
.(26)

One proves the estimate (17) for the above error term in three steps:
1. Lp norm estimates of the interpolated process S η and of its derivatives;
2. Small Gaussian noise perturbation to smooth the function h;
3. Careful use of Malliavin integration by parts formulas to achieve the proof.

3.2.2. Approximation of S and related error estimates.

Lemma 10. Assume (Hσ). We have the following estimates ∀p ≥ 1, and for any k ≥ 1:

sup
t∈[0,T ],η∈[0,1]

||S η,(k)
i,t ||p ≤c

(
Mσ̄,i

√
T
)k, ∀i ∈ {1, . . . , d},(27)

sup
t∈[0,T ],η∈[0,1]

||S η,(k)
t ||p ≤c µ[(Mσ̄,.)k]T

k
2 ,(28)

sup
t∈[0,T ]

||RS ,k
t ||p ≤c µ[(Mσ̄,.)k+1]T

k+1
2 ,(29)
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Proof. W.l.o.g. assume p ≥ 2. For (27), starting from (9), one shows by induction that we have
the following bound for any k ≥ 1:

sup
t∈[0,T ],η∈[0,1]

∣∣∣∣∣∣∣∣ ∫ t

0

∫ tk−1

0
. . .

∫ t1

0
dZηi,t0 . . . dZηi,tk−2

dZηi,tk−1

∣∣∣∣∣∣∣∣
p
≤c

(
Mσ̄,i

√
T
)k

with the Gaussian process dZηi,t = 〈σi(t) − σ̄(t) | dWt − σ
η
i (t)dt〉. The result stands for k = 1 owing to

standard computations involving the Burkholder-Davis-Gundy and Hölder inequalities:∣∣∣∣∣∣∣∣ ∫ t

0
dZηi,s

∣∣∣∣∣∣∣∣p
p
≤c t

p
2M

p
σ̄,i + tpM

p
σ̄,i|σ|

p
∞ ≤c t

p
2M

p
σ̄,i(30)

Then if the results stands for a certain rank k ≥ 1, the same calculations give the estimate:∣∣∣∣∣∣∣∣ ∫ t

0

( ∫ tk

0
. . .

∫ t1

0
dZηi,t0 . . . dZηi,tk−1

)
dZηi,tk

∣∣∣∣∣∣∣∣p
p

≤c
(
t

p
2−1M

p
σ̄,i + tp−1M

p
σ̄,i|σ|

p
∞

) ∫ t

0

∣∣∣∣∣∣∣∣ ∫ tk

0
. . .

∫ t1

0
dZηi,t0 . . . dZηi,tk−1

∣∣∣∣∣∣∣∣p
p
dtk ≤c

(
Mσ̄,i

√
T
)p(k+1).

We are done. The second estimate (28) is handled with the Minkowski inequality and (27). The proof
of (29) is straightforward using the representation (25) and the previous estimate (28).

3.2.3. Regularization of h with a small noise perturbation. For smooth function h, estimate
of Error3,h is straightforward using its representation (26) and Lemma 10. To account for non-smooth
functions and to overcome some degeneracy in the Malliavin sense, we suitably regularize the function
h using small noise perturbation. This standard scheme of proof has been successfully employed in
[17]-[11] and we adapt the arguments for GBMs processes instead of Gaussian processes. Let W⊥ be
an extra independent scalar BM and consider the C∞

P
(R)-function:

hδ(S ) = E
[
h
(
S × exp(δW⊥T )

)]
= E

[
hδ/
√

2
(
S × exp(δW⊥T/2)

)]
,(31)

with the small parameter δ assumed positive:

δ = µ[(Mσ̄,.)4]T
3
2 > 0.(32)

Replacing h by hδ in our expansion analysis induces extra errors quantified below.

Lemma 11. Assume (Hσ) and suppose that h ∈ H1
P

(R). Then, for any n ∈ N we have the
estimates:

sup
η∈[0,1]

∣∣∣E[hδ(S η
T )

]
− E

[
h(S η

T )
]∣∣∣ ≤cCh(1)µ[(Mσ̄,.)4]T 2,∣∣∣Ghδ

n − G
h
n

∣∣∣ ≤cCh(1)µ[(Mσ̄,.)4]T 2(VP
T
)− n

2 ,

with hδ defined in (31) and Ghδ
n the Greeks for hδ.
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Proof. For the first estimate, write:

hδ(S
η
T ) − h(S η

T ) = E
[
S (eδW

⊥
T − 1)

∫ 1

0
h(1)(S [

1 + λ(eδW
⊥
T − 1)

])
dλ

]∣∣∣
S =S η

T
.

and conclude with the estimate E
[
eδW

⊥
T −1

]
= E

[
δW⊥T

∫ 1
0 eλδW

⊥
T dλ

]
= O(δ

√
T ). For the second estimate,

denoting byD(y) := exp
(
− y2/(2VP

T )
)
/
√

2πVP
T for any y ∈ R the Gaussian density, write for ε > −1:

G
hδ
n − G

h
n =

∫
R
E
[
h
(
ey− 1

2V
P
T +δW⊥T

)
− h

(
ey− 1

2V
P
T
)]
∂i
εiD

(
y − ln(1 + ε)

)∣∣∣
ε=0dy

Complete the proof by combining the first estimate with standard upper bounds for derivatives ofD.

Regarding the magnitudes of the coefficients Ci and Ci, j defined in (16), Lemma 11 readily gives the
estimate: ∣∣∣Error3,h

∣∣∣ =
∣∣∣E[h(S T )

]
− E

[
h(S P

T )
]
− Cor3,h

∣∣∣ ≤ ∣∣∣Error3,hδ

∣∣∣ + O
(
Ch(1)µ[(Mσ̄,.)4]T 2).

Hence, proving the error estimate (17) is reduced to prove the following Proposition:

Proposition 12. Assume (Hσ) and suppose that h ∈ H1
P

(R). We have the estimate:∣∣∣Error3,hδ

∣∣∣ = O
(
Ch(1)µ[(Mσ̄,.)4]T 2).

This is performed in Appendix A.3 using Malliavin integration by parts formulas.

4. Application to the Basket Call options. In all the following, we consider basket call op-
tions with payoff h(S ) = (S −K)+

4, for a strike K > 0. Hence h ∈ H1
P

(R) and Theorem 5 is applicable.
In order to obtain more tractable and hopefully more accurate formulas, we also provide approxima-
tions of the implied volatility.

4.1. Notations.
� Call options. We denote by Call(T,K) the price at time 0 of a basket call option with maturity T
and strike K, written on the asset S =

∑d
i=1 αiS i that is Call(T,K) = E[(S T − K)+]. As usual, ATM

(At The Money) Call refers to K ≈ S 0 = 1, ITM (In The Money) to K � 1, OTM (Out The Money)
to K � 1.
� Black-Scholes Call price function. For the sake of completeness, we give the Black-Scholes Call
price function depending on the spot S 0, the total varianceV and the strike K :

CallBS(S 0,V,K) = S 0N
(
d1(S 0,V,K)

)
− KN

(
d2(S 0,V, k)

)
(33)

where:

N(x) =

∫ x

−∞

N ′(y)dy, N ′(y) =
e−y2/2
√

2π
,

d1(S 0,V,K) =
ln

(
S 0/K

)
√
V

+
1
2

√
V, d2(S 0,V,K) =d1(S 0,V,K) −

√
V.

4The risk-free rate and the dividend yield are supposed null. Adaptation of the results for non-zero but deterministic
interest rates and dividends is straightforward by considering the change of variable discussed in Remark 1 .
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One has E[(S P
T − K)+] = CallBS(1,VP

T ,K) which equals Call(T,K) = E[(S T − K)+] whenMσ̄ = 0.
When unambiguous, we also write d1 = d1(1,VP

T ,K) and d2 = d2(1,VP
T ,K) and use the notation

k := ln(K) for the log-moneyness.

� Implied Black-Scholes volatility. For (T,K) given, the implied Black-Scholes volatility of a basket
call option price Call(T,K) is the unique non-negative volatility parameter σI(T,K) such that:

(34) CallBS(1, σI(T,K)2T,K
)

= Call(T,K).

�Quadratic mean of the volatility on [0,T ].

Finally we introduce σ̄(0,T ) =

√
1
T

∫ T
0 |σ̄(t)|2dt =

√
1
TV

P
T the quadratic mean of the proxy

volatility parameter on [0,T ].

4.2. Price approximation formulas. Price approximation formulas for basket call options are
easily obtained using Theorem 5, Corollary 6 and the closed forms of Greeks (see Appendix B.1):

Theorem 13 (Second and third order basket call option price approximations). Assume (Hσ).
Then we have the basket call price approximations:

Call(T,K) =CallBS(1,VP
T ,K) −

1
2
N
′

(d1)
H1(d1)
VP

T

d∑
i=1

αiC2
i + O

(
µ[(Mσ̄,.)3]T

3
2
)
,(35)

=CallBS(1,VP
T ,K) +

N
′

(d1)√
VP

T

{
−

1
2

H1(d1)√
VP

T

d∑
i=1

αiC2
i

+
H2(d1)
VP

T

[1
6

d∑
i=1

αiC3
i +

1
2

∑
i, j∈{1,...,d}

αiα jCiC jCi, j
]

+
1
4

∑
i, j∈{1,...,d}

αiα jC2
i, j +

1
8

H4(d1)(
VP

T
)2

( d∑
i=1

αiC2
i

)2
}

+ O
(
µ[(Mσ̄,.)4]T 2),(36)

with Ci and Ci, j defined in Theorem 5 and with the Hermite polynomials Hi defined in Appendix B.1.

4.3. Expansion formulas for the implied volatility. To obtain approximations of the implied
volatility, write expansions (35)-(36) in terms of the sensitivities VegaBS and VommaBS (defined in
Appendix B.1) w.r.t. the volatility to obtain the approximations:

Call(T,K) =CallBS(1,VP
T ,K) + VegaBS(1, σ̄(0,T )2T,K

)
ΣI

2(T,K) + O
(
µ[(Mσ̄,.)3]T

3
2
)

=CallBS(1,VP
T ,K) + VegaBS(1, σ̄(0,T )2T,K

)
[ΣI

2(T,K) + ΣI
3(T,K)]

+
1
2

VommaBSΣI
2(T,K)2 + O

(
µ[(Mσ̄,.)4]T 2)
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where ΣI
2(T,K) and ΣI

3(T,K) are defined by:

ΣI
2(T,K) = −

H1(d1)

2σ̄2(0,T )T
3
2

d∑
i=1

αiC2
i ,(37)

ΣI
3(T,K) =

H2(d1)
σ̄3(0,T )T 2

[1
6

d∑
i=1

αiC3
i +

1
2

∑
i, j∈{1,...,d}

αiα jCiC jCi, j
]

+
1

σ̄(0,T )T
1
4

∑
i, j∈{1,...,d}

αiα jC2
i, j +

1
8

(d3
1σ̄(0,T )

√
T − 6d2

1 + 3)

σ̄5(0,T )T 3

( d∑
i=1

αiC2
i

)2
(38)

These formulas read as expansions of the implied volatility. The next Theorem states without
proof (derivation of error estimates is quite standard, we refer to [10, Section 3.4] for full details) that
the approximated implied volatility approximations write as polynomials of degrees 1 or 3 w.r.t. the
log-moneyness k := ln(K).

Theorem 14 (Second and third order implied volatility approximations). Assume (Hσ). We
have the next implied volatility approximations:

Call(T,K) =CallBS(σ̃I
2(T,K)2T,K) + O

(
µ[(Mσ̄,.)3]T

3
2
)
,(39)

Call(T,K) =CallBS(σ̃I
3(T,K)2T,K) + O

(
µ[(Mσ̄,.)4]T 2).(40)

with σ̃I
2(T,K) and σ̃I

3(T,K) such that:

σ̃I
2(T,K) =σ̄(0,T ) + ΣI

2(T,K), σ̃I
3(T,K) =σ̃I

2(T,K) + ΣI
3(T,K),

and ΣI
2(T,K) and ΣI

3(T,K) defined in (37)-(38).

The next Corollary analyses the behaviour of the implied volatility ATM for short maturity by
formally differentiating 5 σ̃I

3(T,K) w.r.t. k := ln(K) at (T, k) = (0, 0).

Corollary 15 (Shape of the implied volatility ATM for short maturity). Assume that σ̄(t) is con-
tinuous at t = 0. Then the level, the slope and the curvature ATM for short maturity are approximated
by the next formulas:

σI(T, k)|(T=0,k=0) ≈σ̄(0, 0) = |σ̄(0)|,

∂kσ
I(T, k)|(T=0,k=0) ≈

1
2σ̄(0, 0)3

d∑
i=1

αiC′i (0)2,

∂2
k2σ

I(T, k)|(T=0,k=0) ≈
1

σ̄(0, 0)5

[1
3

d∑
i=1

αiC′i (0)3 +
∑

i, j∈{1,...,d}

αiα jC′i (0)C′j(0)C′i, j(0)
]

−
3

2σ̄(0, 0)7

( d∑
i=1

αiC′i (0)2
)2
.

with C′i (0) = 〈σi(0) − σ̄(0) | σ̄(0)〉 and C′i, j(0) = 〈σi(0) − σ̄(0) | σ j(0) − σ̄(0)〉 for any i, j ∈ {1, . . . , d}.

5The presented approximations are not analytical, we use the heuristics that derivatives of the expansion should coincide
with the expansions of the derivatives.
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Our level and skew exactly coincide with those of [23], [16] and [2] (see Appendix B.3).

5. Numerical experiments. In the context of basket call options, we numerically illustrate the
accuracy of the second and third order approximation formulas on both prices and implied volatilities
provided in Theorems 13 and 14. First, we consider two 10-dimensional examples : firstly an i.i.d.
case and secondly a correlated case. Then we consider a 2-dimensional toy model and perform an
impact analysis of the correlation. Additional tests for different volatilities and maturities are left for
further works.
In all the tests, we approximate the implied volatility for various strikes denoted by K, chosen to
approximately equal eq|σ̄|

√
T where q takes the value of various quantiles of the standard Gaussian

law (1%-5%-10%-20%-30%-40%-50%-60%-70%-80%-90%-95%-99%) to consider far ITM and far
OTM options. As a benchmark, we use Monte Carlo simulations (denoted by (MC)) with 109 simula-
tions and the Proxy as control variate to speed the convergence. This allows a 95%-confidence interval
width of one bp6 or less for all the following Monte Carlo estimates. Then we compute the approx-
imative implied volatilities using our second and third order approximation formulas on both prices
and implied volatilities (denoted respectively by Vol(App2), App2Vol, Vol(App3) and App3Vol)
and the following benchmark formulas of the literature (see Appendix B.2): D’Aspremont [14] (order
2), Carmona and Durrleman [12] (a priori order 2), Landon [20] (order 2), Gobet-Miri [17] (order
2), Ju [18] (order 3) and Shiraya-Takahashi [25] (order 3) formulas denoted respectively by (DAF),
(CDF)inf, (CDF)sup, (LF), (GMF), (JUF) and (STF).
In addition we have proposed and tested a common modification of the D’Aspremont and Landon
formulas denoted by (MDALF) (see equation (67)).
All the following computations are performed using C++ on a Intel(R) Core(TM) i5 CPU@2.40GHz
with 4 GB of ram.

5.1. I.i.d. case in dimension 10. In the first test, we take for any i ∈ {1, . . . , d} the parameters::

d =10, S 0,i =1, T =1Y, αi =10%, Vols =30% × I10,

where Vols is the matrix which contains (in row) all the volatility vectors of the assets and I10 the
identity matrix in dimension 10. The values of the parameters allowing to quantify the error are the
following: |σ̄| = 30%/

√
10 ≈ 9.49% and Mσ̄ = µ[Mσ̄,.] = 27%. Although the proxy volatility is

quite small due to the diversification, the dispersion parametersMσ̄ and µ[Mσ̄,.] are quite important.
The execution time of (MC) is close to 12 hours while the execution time of the various analytical
approximations is almost instantaneous: less than 0.1s.
Results are given in Table 1. First we represent the results of order 2 formulas and then those of order
3 in order to make easier comparisons. As all the second order formulas, excepting (CDF)sup and
(GMF), lead exactly to the same results 7 with a uniform approximated implied volatility equalling
9.49%, we only indicate results for Vol(App2), (CDF)sup and (GMF).

Regarding the results, first remark that the true implied volatility estimated by (MC) has small
variations (5 bps of amplitude). Error for Vol(App2) is around 20 bps what is quite important and
it is necessary to use a third order formula to improve the accuracy. (GMF) is quite inaccurate (more

61 bp (basis point) equals 0.01%.
7This is due to the fact that, at the second order, the main part of the approximation is captured by the main term, i.e. the

Black-Scholes price as noticed in subsection 2.3.
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K (%) 80 86 89 92 95 98 100 102 105 108 112 116 124

(MC) 9.66 9.66 9.67 9.67 9.67 9.68 9.68 9.68 9.69 9.69 9.69 9.70 9.71
Vol(App2) 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49
(CDF)sup 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00
(GMF) ND 4.99 7.66 8.13 8.37 8.52 8.59 8.65 8.72 8.78 8.84 8.88 8.91

Vol(App3) 9.67 9.67 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.67 9.67
App3Vol 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68
(JUF) 9.65 9.66 9.67 9.67 9.67 9.68 9.68 9.68 9.69 9.69 9.69 9.70 9.71
(STF) 9.82 9.72 9.70 9.69 9.68 9.68 9.68 9.67 9.67 9.66 9.65 9.63 9.57

Table 1
Estimates of the implied volatility (%) in the 10-dimensional i.i.d. case.

than 100 bps of error) and approximated prices are sometimes outside arbitrage bounds (indicated by
ND in Table 1). The upper bound (CDF)sup equals the volatility of the assets and is too large. Then
for the third order, our formulas are very closed to (MC) with an error less than 1 bp for all the strikes
excepting the largest strike for which the error is 4 bps. (JUF) [18] is the most accurate method with
errors less than 1 bp for all strikes, but the formula remains a little bit more complicated than ours.
Notice that the proxy volatility used in [18] (see (69)) equals 9.68%, i.e. the ATM implied volatility,
whereas |σ̄| = 9.49%. (STF) is very accurate ATM, but less accurate ITM and OTM (errors up to 16
bps). Finally comparing Vol(App3) and App3Vol, notice that results are very close. For its simplicity,
it seems better to use App3Vol.
As a conclusion the accuracy of our formulas is very satisfying and our third order formulas surpass
in accuracy all the benchmark approximations excepting (JUF) for high strikes which is slightly more
accurate.

5.2. Correlated case in dimension 10. We now consider assets having initial values different
from 1 and we use the normalisation described in Remark 1. We use a volatility matrix generated with
a uniform random sampling8. The parameters of the model are the following (with α2 the weights
after normalisation) :

d =10, S 0,i =
(
97 132 39 176 75 106 165 43 88 141

)∗
,

T =1Y, α1 =
(
44% 21% 12% 8% 6% 4% 2% 1% 1% 1%

)∗
,

S 0 ≈104, α2 ≈
(
41% 27% 5% 14% 4% 4% 3% 0% 1% 1%

)∗

8We have generated a covariance matrix using the genPositiveDefMat function of the R package clusterGeneration with
a random correlation matrix and uniform random variances in [0 : 16%] such that volatilities are in [0 : 40%] with mean
close to 30%.
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Vols =



34.33 0 0 0 0 0 0 0 0 0
10.46 36.45 0 0 0 0 0 0 0 0
-7.95 9.19 21.85 0 0 0 0 0 0 0
0.74 -1.76 -6.02 28.48 0 0 0 0 0 0
2.35 -1.95 2.58 2.21 6.64 0 0 0 0 0
0.65 -3.35 14.51 -2.63 -4.24 23.92 0 0 0 0

-5.54 3.42 1.49 -10.81 0.49 0.24 9.22 0 0 0
5.52 0.02 -20.80 1.25 0.39 -18.90 10.91 7.25 0 0

-9.70 0.19 10.57 -2.63 3.10 9.73 -11.37 6.70 10.69 0
-2.19 -8.25 -17.47 -11.56 6.87 0.25 -8.22 0.06 -6.59 9.11



× 1%

d∑
i=1

α2,i|σi| ≈ 32%, |σ̄| ≈ 19.45%, Mσ̄ ≈ 26.78%, µ[Mσ̄,.] ≈ 21.79%

The mean of the volatilities of the assets is close to 30%, the volatility of the proxy is quite important,
around 20%, and the dispersion parameters are large (Mσ̄ close to 27% and µ[Mσ̄,.] close to 22%).
We give the results with this new set of parameters in Table 2 and we also provide two Figures 1
and 2 thereafter representing the comparison between the estimated implied volatility (MC) and the
approximated implied volatilities of order two (excepting (CDF)sup because estimations are too large)
and then of order three :

K 66 75 81 88 94 99 104 109 115 122 133 143 163

(MC) 17.29 18.01 18.40 18.81 19.12 19.35 19.57 19.77 20.00 20.24 20.58 20.85 21.31
Vol(App2) 15.98 17.74 18.22 18.63 18.93 19.16 19.37 19.58 19.81 20.06 20.41 20.66 20.99
App2Vol 17.39 17.95 18.28 18.65 18.93 19.16 19.37 19.58 19.81 20.07 20.44 20.76 21.33
(DAF) 16.68 18.13 18.59 19.00 19.29 19.52 19.73 19.93 20.14 20.37 20.67 20.87 21.10
(CDF)inf 17.15 17.86 18.25 18.66 18.97 19.21 19.42 19.62 19.85 20.09 20.42 20.69 21.14
(CDF)sup 31.61 31.73 31.79 31.86 31.92 31.96 32.00 32.03 32.07 32.12 32.18 32.23 32.32
(LF) ND 17.19 18.05 18.67 19.06 19.33 19.55 19.75 19.95 20.13 20.33 20.44 20.49
(MDALF) 15.22 17.65 18.19 18.64 18.95 19.19 19.40 19.61 19.83 20.07 20.39 20.62 20.91
(GMF) ND 18.39 18.75 18.92 18.99 19.03 19.06 19.08 19.10 19.12 19.14 19.15 19.18

Vol(App3) 17.44 18.04 18.42 18.81 19.12 19.36 19.58 19.78 20.01 20.24 20.57 20.83 21.26
App3Vol 17.41 18.04 18.42 18.81 19.12 19.36 19.58 19.78 20.01 20.24 20.57 20.82 21.22
(JUF) 17.02 18.13 18.51 18.85 19.12 19.32 19.52 19.72 19.96 20.22 20.61 20.92 21.37
(STF) 17.41 17.85 18.38 18.82 19.13 19.36 19.58 19.78 20.00 20.24 20.61 20.88 20.54

Table 2
Estimates of the implied volatility (%) in the 10-dimensional correlated case.
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Figure 1. Estimates of the implied volatility by MC and second order formulas in the 10-dimensional correlated case.

The true implied volatility estimated by (MC) has now large variations (from 17.32% to 21.31%).
The best price second order formula is the lower bound (CDF)inf: errors are roughly of 15 bps for
all strikes. Regarding App2Vol, errors are close to 20 bps ATM what is quite important but the fitting
is curiously quite good ITM and OTM (7 bps and 2 bps for the extreme strikes). The upper bound
(CDF)sup is close to the mean of the volatility of the assets and is too large. Notice that as expected,
Vol(App2) and (MDALF) give very close results, mostly ATM : 20 bps of error ATM and even less
accurate results for the extreme strikes (more than 30 bps). Observe however that Vol(App2) gives
slightly better results ITM and OTM. Regarding (LF), results are excellent ATM but bad ITM and
OTM. (GMF) leads to clearly less accurate results, ATM as well as OTM and ITM. Finally, for the third
order, observe that results are excellent OTM and very close whatever is the considered approximation.
Results for (STF) are bad for the largest strike and middling for (JUF) for the smallest strike (error
of 27 bps) while remaining satisfying for Vol(App3) and App3Vol (5 and 9 bps OTM and 15 and
12 bps ITM). Accuracy is very good for Vol(App3) and App3Vol ITM and OTM, slightly better for
Vol(App3) OTM and slightly better for App3Vol ITM. Notice that results are biased for (JUF) ATM
(5 bps). The proxy volatility of (JUF) (see(69)) is around 19.83% whereas |σ̄| ≈ 19.45% which is
closer to the ATM implied volatility 19.57%.
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Figure 2. Estimates of the implied volatility by MC and third order formulas in the 10-dimensional correlated case.

Here again, the accuracy of our third order formulas is excellent, showing an improving accuracy in
comparison to the literature formulas.

5.3. Impact of the correlation in dimension 2. Here we consider a toy model in dimension 2
with :

d =2, S 0,1 =S 0,2 = 1, T =1Y, α1 =α2 = 50%, Vols =

(
30% 0

ρ × 30%
√

1 − ρ2 × 30%

)
,

where the correlation ρ takes the values
{−90%,−75%,−50%,−25%,−10%, 0%, 10%, 25%, 50%, 75%, 90%}. For the second order, we only
indicate the results for Vol(App2) and (GMF) because results are the same for all the methods except-
ing (GMF). Whatever is the correlation, (CDF)sup is flat and equals 30% what is a strong overestimation
except for correlation close to 100%. For the third order, Vol(App3) and App3Vol give same results
for ρ ≥ 25%. Results are given in Tables 3 to 13. We also indicate the values of the parameters |σ̄|,
Mσ̄, µ[Mσ̄,.] and σ̃ (the proxy volatility σ̃ used in [18], see (69)).
First observe that the more the correlation is close to −100% (anti-correlated case):

• The more the volatility of the proxy |σ̄| (from 6.71% to 29.24%) has small magnitude.
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• The more the true implied volatility has variations: one observes a positive skew whatever is
the correlation. For instance the implied volatility varies from 7.66% to 10.41% for ρ = −90%,
from 21.39% to 21.53% for ρ = 0% and is flat, equal to 29.24% for ρ = 90%.

• The more the dispersion parametersMσ̄ and µ[Mσ̄,.] (which are always equal) are important
(from 28.50% to 6.54%).

• The less the approximation formulas are accurate.
Whatever is the correlation, Vol(App2) is flat, equals |σ̄| and always underestimates the (MC) volatil-
ity. Results are quite bad for negative correlations (from 100 bps to 370 bps for ρ = −90%, and from
20 bps to more than 30 bps for ρ = −10%). Errors are around 10 bps for ρ = 25%, 5 bps for ρ = 50%
and 0 bp for ρ = 90% (in this case, all the estimations coincide and are flat). (GMF) is clearly less
accurate with estimations outside the arbitrage bounds for very negative correlation values. Regarding
the third order, App3Vol gives flat estimation of the volatility whatever is the correlation. Results are
bad for very negative correlations (from 170 bps to 100 bps for ρ = −90% and from 80 bps to 90
bps for ρ = −75%), are average for negative correlations (from 25 bps to 45 bps for ρ = −50% and
from 15 bps to 20 bps for ρ = −25%) and are acceptable when approaching ρ = 0% (around 10 bps
for ρ = −10% and around 5 bps for ρ = 0%). For positive correlations, errors are always less than 5
bps and results are excellent ATM. Vol(App3) is not flat with an increasing behaviour ITM and a de-
creasing behaviour OTM. The formula coincides with App3Vol ATM, is globally less accurate OTM
and more accurate ITM with errors from 60 bps to 210 bps for ρ = −90%. The approximation starts
to be flat from ρ = −25%. For its robustness, we prefer use App3Vol. (STF) is also not flat with an
increasing behaviour ITM and a decreasing behaviour OTM. Results are similar to App3Vol ATM but
globally quite bad ITM and OTM whatever is the correlation (from 170 bps to 250 bps for ρ = −90%,
from 30 bps to 70 bps for ρ = 0% and from 140 bps to 150 bps for ρ = 75%). This is due to the fact
that even for the very correlated case (ρ close to 100%), the underlying model of the method (STF) is
Gaussian whereas the true model is almost log-normal, what induces a high sensitivity on the wings.
Finally regarding (JUF), one remarks that results are globally less bad than all the other formulas
for very negative correlation (ND for ρ = −90%), excepting for the smallest strike where our third
order approximations give better results. Results are satisfying from the correlation −25% and very
good from the correlation −10% with smaller errors than our formulas. In particular the fitting ATM
is excellent. This is due to the fact that the proxy volatility σ̃ used in [18] defined in (69) is very close
to the ATM implied volatility, whatever is the correlation (excepting for the correlation −90% with an
error of around 50 bps).

K (%) 85 89 91 94 96 98 100 101 103 105 108 111 116

(MC) 7.66 7.82 7.92 8.09 8.22 8.37 8.54 8.63 8.83 9.04 9.39 9.76 10.41
Vol(App2) 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71
(GMF) ND ND ND 4.06 4.85 5.20 5.41 5.50 5.62 5.72 5.83 5.92 6.02

Vol(App3) 8.23 8.63 8.84 9.14 9.30 9.40 9.43 9.42 9.36 9.24 9.00 8.74 8.34
App3Vol 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43
(JUF) ND 6.61 7.32 7.95 8.27 8.57 8.86 9.00 9.27 9.54 9.92 10.23 10.60
(STF) 8.83 8.99 9.10 9.27 9.37 9.43 9.43 9.41 9.31 9.15 8.83 8.46 7.87

Table 3
Estimates of the implied volatility (%) in the 2-dimensional case with ρ = −90%. One has |σ̄| ≈ 6.71%, Mσ̄ =

µ[Mσ̄,.] ≈ 28.50% and σ̃ ≈ 9.03%.
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K (%) 78 83 87 91 94 96 100 102 105 109 114 119 127

(MC) 11.29 11.37 11.44 11.52 11.60 11.67 11.76 11.82 11.92 12.08 12.30 12.55 13.01
Vol(App2) 10.61 10.61 10.61 10.61 10.61 10.61 10.61 10.61 10.61 10.61 10.61 10.61 10.61
(GMF) ND ND 9.00 9.46 9.63 9.75 9.83 9.87 9.93 9.98 10.04 10.08 10.13

Vol(App3) 11.72 11.85 11.93 12.00 12.04 12.06 12.07 12.07 12.05 12.01 11.95 11.87 11.74
App3Vol 12.07 12.07 12.07 12.07 12.07 12.07 12.07 12.07 12.07 12.07 12.07 12.07 12.07
(JUF) 10.15 10.87 11.18 11.42 11.58 11.73 11.88 11.97 12.11 12.28 12.48 12.66 12.87
(STF) 12.53 12.28 12.17 12.12 12.10 12.09 12.07 12.05 12.01 11.92 11.75 11.54 11.16

Table 4
Estimates of the implied volatility (%) in the 2-dimensional case with ρ = −75%. One has |σ̄| ≈ 10.61%, Mσ̄ =

µ[Mσ̄,.] ≈ 26.25% and σ̃ ≈ 11.98%.

K (%) 70 78 82 88 92 96 100 103 108 113 121 127 141

(MC) 15.43 15.48 15.51 15.56 15.59 15.62 15.66 15.69 15.74 15.80 15.90 15.98 16.22
Vol(App2) 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
(GMF) ND 13.80 14.18 14.40 14.48 14.53 14.56 14.58 14.61 14.63 14.66 14.68 14.70

Vol(App3) 15.67 15.71 15.73 15.75 15.75 15.76 15.76 15.76 15.75 15.75 15.73 15.72 15.68
App3Vol 15.76 15.76 15.76 15.76 15.76 15.76 15.76 15.76 15.76 15.76 15.76 15.76 15.76
(JUF) 15.17 15.35 15.43 15.52 15.58 15.64 15.69 15.73 15.79 15.85 15.94 16.00 16.12
(STF) 16.55 16.03 15.92 15.83 15.80 15.78 15.76 15.75 15.72 15.68 15.58 15.48 15.12

Table 5
Estimates of the implied volatility (%) in the 2-dimensional case with ρ = −50%. One has |σ̄| ≈ 15.00%, Mσ̄ =

µ[Mσ̄,.] ≈ 22.50% and σ̃ ≈ 15.74%.

K (%) 65 73 79 85 90 95 100 104 110 116 126 135 153

(MC) 18.65 18.68 18.69 18.71 18.73 18.75 18.76 18.78 18.80 18.82 18.86 18.90 19.00
Vol(App2) 18.37 18.37 18.37 18.37 18.37 18.37 18.37 18.37 18.37 18.37 18.37 18.37 18.37
(GMF) 14.04 17.60 17.89 18.01 18.06 18.09 18.11 18.12 18.14 18.15 18.16 18.17 18.19

Vol(App3) 18.78 18.79 18.79 18.80 18.80 18.80 18.80 18.80 18.80 18.80 18.79 18.79 18.78
App3Vol 18.80 18.80 18.80 18.80 18.80 18.80 18.80 18.80 18.80 18.80 18.80 18.80 18.80
(JUF) 18.57 18.63 18.67 18.70 18.73 18.75 18.77 18.79 18.82 18.84 18.88 18.91 18.96
(STF) 19.40 19.01 18.91 18.86 18.83 18.81 18.80 18.80 18.78 18.75 18.70 18.64 18.21

Table 6
Estimates of the implied volatility (%) in the 2-dimensional case with ρ = −25%. One has |σ̄| ≈ 18.37%, Mσ̄ =

µ[Mσ̄,.] ≈ 18.75% and σ̃ ≈ 18.80%.

K (%) 62 71 77 84 89 95 100 105 111 118 129 139 159

(MC) 20.33 20.35 20.36 20.38 20.39 20.40 20.41 20.42 20.43 20.44 20.47 20.49 20.54
Vol(App2) 20.12 20.12 20.12 20.12 20.12 20.12 20.12 20.12 20.12 20.12 20.12 20.12 20.12
(GMF) 17.48 19.56 19.77 19.86 19.90 19.92 19.94 19.95 19.95 19.96 19.97 19.98 19.99

Vol(App3) 20.42 20.42 20.43 20.43 20.43 20.43 20.43 20.43 20.43 20.43 20.43 20.42 20.42
App3Vol 20.43 20.43 20.43 20.43 20.43 20.43 20.43 20.43 20.43 20.43 20.43 20.43 20.43
(JUF) 20.30 20.33 20.35 20.37 20.38 20.40 20.41 20.42 20.44 20.45 20.47 20.49 20.52
(STF) 20.87 20.55 20.50 20.47 20.45 20.44 20.43 20.42 20.41 20.40 20.37 20.33 19.82

Table 7
Estimates of the implied volatility (%) in the 2-dimensional case with ρ = −10%. One has |σ̄| ≈ 20.12%, Mσ̄ =

µ[Mσ̄,.] ≈ 16.50% and σ̃ ≈ 20.43%.
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K (%) 61 70 76 83 89 94 100 105 111 119 131 141 163

(MC) 21.39 21.40 21.41 21.42 21.42 21.43 21.44 21.44 21.45 21.46 21.48 21.49 21.53
Vol(App2) 21.21 21.21 21.21 21.21 21.21 21.21 21.21 21.21 21.21 21.21 21.21 21.21 21.21
(GMF) 19.53 20.77 20.93 21.00 21.03 21.05 21.06 21.07 21.08 21.08 21.09 21.10 21.10

Vol(App3) 21.44 21.45 21.45 21.45 21.45 21.45 21.45 21.45 21.45 21.45 21.45 21.45 21.45
App3Vol 21.45 21.45 21.45 21.45 21.45 21.45 21.45 21.45 21.45 21.45 21.45 21.45 21.45
(JUF) 21.36 21.38 21.40 21.41 21.42 21.43 21.44 21.45 21.46 21.47 21.48 21.49 21.51
(STF) 21.68 21.51 21.50 21.48 21.47 21.46 21.45 21.45 21.44 21.43 21.42 21.40 20.81

Table 8
Estimates of the implied volatility (%) in the 2-dimensional case with ρ = 0%. One has |σ̄| ≈ 21.21%,Mσ̄ = µ[Mσ̄,.] =

15.00% and σ̃ ≈ 21.45%.

K (%) 59 69 75 82 88 94 100 105 112 120 132 144 167

(MC) 22.39 22.40 22.40 22.41 22.41 22.42 22.42 22.43 22.43 22.44 22.45 22.46 22.48
Vol(App2) 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25
(GMF) 20.80 21.90 22.02 22.08 22.11 22.12 22.13 22.14 22.14 22.15 22.15 22.16 22.16

Vol(App3) 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43
App3Vol 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43
(JUF) 22.37 22.39 22.40 22.41 22.41 22.42 22.42 22.43 22.44 22.44 22.45 22.46 22.47
(STF) 20.87 20.55 20.50 20.47 20.45 20.44 20.43 20.42 20.41 20.40 20.37 20.33 19.82

Table 9
Estimates of the implied volatility (%) in the 2-dimensional case with ρ = 10%. One has |σ̄| ≈ 22.25%, Mσ̄ =

µ[Mσ̄,.] ≈ 14.92% and σ̃ ≈ 22.43%.

K (%) 57 67 73 81 88 94 100 106 113 122 135 147 173

(MC) 23.81 23.82 23.82 23.82 23.83 23.83 23.83 23.83 23.84 23.84 23.85 23.85 23.86
Vol(App2) 23.72 23.72 23.72 23.72 23.72 23.72 23.72 23.72 23.72 23.72 23.72 23.72 23.72
(GMF) 22.77 23.48 23.56 23.61 23.62 23.63 23.64 23.64 23.65 23.65 23.65 23.66 23.66

Vol(App3) 23.84 23.84 23.84 23.84 23.84 23.84 23.84 23.84 23.84 23.84 23.84 23.84 23.84
(JUF) 23.81 23.81 23.82 23.82 23.83 23.83 23.83 23.84 23.84 23.84 23.85 23.85 23.86
(STF) 23.56 23.74 23.82 23.85 23.84 23.84 23.84 23.84 23.83 23.83 23.86 23.87 23.00

Table 10
Estimates of the implied volatility (%) in the 2-dimensional case with ρ = 25%. One has |σ̄| ≈ 23.72%, Mσ̄ =

µ[Mσ̄,.] ≈ 14.52% and σ̃ ≈ 23.84%.

K (%) 50 54 65 71 80 87 93 100 106 114 124 139 153

(MC) 26.02 26.02 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.04
Vol(App2) 25.98 25.98 25.98 25.98 25.98 25.98 25.98 25.98 25.98 25.98 25.98 25.98 25.98
(GMF) 25.58 25.88 25.91 25.93 25.94 25.95 25.95 25.95 25.95 25.95 25.95 25.95 25.96

Vol(App3) 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03
(JUF) 26.02 26.02 26.02 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03 26.03
(STF) 25.03 25.80 25.95 26.02 26.03 26.03 26.03 26.03 26.03 26.04 26.11 26.12 24.86

Table 11
Estimates of the implied volatility (%) in the 2-dimensional case with ρ = 50%. One has |σ̄| ≈ 25.98%, Mσ̄ =

µ[Mσ̄,.] ≈ 12.99% and σ̃ ≈ 26.02%.

Appendix A. Technical proofs.

A.1. Proof of Lemma 7. We proceed by induction and provide firstly a technical result:
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K (%) 52 63 69 78 86 93 100 107 115 126 143 158 192

(MC) 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07
Vol(App2) 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06
(GMF) 27.97 28.04 28.05 28.05 28.05 28.05 28.05 28.06 28.06 28.06 28.06 28.06 28.06

Vol(App3) 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07
(JUF) 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07 28.07
(STF) 26.29 27.71 27.94 28.05 28.07 28.07 28.07 28.08 28.08 28.10 28.21 28.22 26.53

Table 12
Estimates of the implied volatility (%) in the 2-dimensional case with ρ = 75%. One has |σ̄| ≈ 28.06%, Mσ̄ =

µ[Mσ̄,.] ≈ 9.92% and σ̃ ≈ 28.07%.

K (%) 50 61 68 78 85 92 100 107 116 127 145 161 197

(MC) 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24
Vol(App2) 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24
(GMF) 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24

Vol(App3) 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24
(JUF) 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24
(STF) 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24

Table 13
Estimates of the implied volatility (%) in the 2-dimensional case with ρ = 90%. On has |σ̄| ≈ 29.24%,Mσ̄ = µ[Mσ̄,.] ≈

6.54% and σ̃ ≈ 29.24%.

Lemma 16. For any c : [0,T ] → Rq square integrable and predictable process, one has the
following identity:

E
[
ϕ
(
S P

T
) ∫ T

0
〈c(t) | dWt〉

]
= E

[
Lϕ

(
S P

T
) ∫ T

0
〈σ̄(t) | c(t)〉dt

]
,

where the differential operator L is defined in (20).

Proof. Observe that the Malliavin derivative S P
T is DtS P

T = 1t≤T S P
T σ̄
∗(t) and ϕ

(
S P

T
)
∈ D1,∞ with

Dt
[
ϕ(S P

T )
]

= 1t≤Tϕ
(1)(S P

T
)
S P

T σ̄
∗(t) = 1t≤TLϕ

(
S P

T
)
σ̄∗(t). Then identify

∫ T
0 〈c(t) | dWt〉 with the Skoro-

hod operator and apply the duality relationship [22, Definition 1.3.1 and Proposition 1.3.11].

The case (N = 1, I1 = 0) is obvious whereas the case (N = 1, I1 = 1) exactly corresponds to Lemma 16.
Now suppose that the formula (21) holds for N ≥ 2. Then apply Lemma 16 if IN+1 = 1 to get:

E

(
ϕ
(
S P

T
) ∫ T

0

∫ tN+1

0
. . .

∫ t2

0
dY I1

1 (t1) . . . dY IN
N (tN)dY IN+1

N+1(tN+1)
)

=E

(
LIN+1ϕ

(
S P

T
) ∫ T

0
ΛN+1(tN+1)

∫ tN+1

0
. . .

∫ t2

0
dY I1

1 (t1) . . . dY IN
N (tN)dtN+1

)
=E

(
LIN+1ϕ

(
S P

T
) ∫ T

0

( ∫ T

tN
ΛN+1(s)ds

)
dY IN

N (tN)
∫ tN

0
. . .

∫ t2

0
dY I1

1 (t1) . . . dY IN−1
N−1(tN−1)

)
,

where we applied at the last equality the identity
∫ T

0 f (t)Ztdt =
∫ T

0
( ∫ T

t f (s)ds
)
dZt for any continuous

semi-martingale Z starting from 0 and any measurable, bounded and deterministic function f (apply
the Itô’s Lemma to the product Zt

∫ T
t f (s)ds). We conclude without difficulty.
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A.2. Proof of Proposition 8. For (22), write E
[
ϕ(1)(S P

T )
S (2)

T
2

]
=

∑d
i=1 αiE[ϕ(1)(S P

T )S (2)
i,T ] and use

(11) to obtain the following calculus:

1
2
E[ϕ(1)(S P

T )S (2)
i,T ] =E

[
ϕ(1)(S P

T )S P
T

∫ T

0

( ∫ t

0
〈σi(s) − σ̄(s) | σ̄(s)ds〉

)
〈σi(t) − σ̄(t) | σ̄(t)dt〉

]
.

−E
[
ϕ(1)(S P

T )S P
T

∫ T

0

( ∫ t

0
〈σi(s) − σ̄(s) | σ̄(s)ds〉

)
〈σi(t) − σ̄(t) | dWt〉

]
−E

[
ϕ(1)(S P

T )S P
T

∫ T

0

( ∫ t

0
〈σi(s) − σ̄(s) | dW(s)〉

)
〈σi(t) − σ̄(t) | σ̄(t)dt〉

]
+E

[
ϕ(1)(S P

T )S P
T

∫ T

0

( ∫ t

0
〈σi(s) − σ̄(s) | dW(s)〉

)
〈σi(t) − σ̄(t) | dWt〉

]
Then write ϕ(1)(S P

T )S P
T = Lϕ(S P

T ) and apply Lemma 7 to get the identity:

1
2
E[ϕ(1)(S P

T )S (2)
i,T ] =E

[
{L − 2L2 +L3}ϕ

(
S P

T
)]
ω
(
〈σi − σ̄ | σ̄〉, 〈σi − σ̄ | σ̄〉

)T
0

=
[
G
ϕ
2 + G

ϕ
3
]
ω
(
〈σi − σ̄ | σ̄〉, 〈σi − σ̄ | σ̄〉

)T
0 .

Conclude with the identity ω
(
〈σi − σ̄ | σ̄〉, 〈σi − σ̄ | σ̄〉

)T
0 = 1

2

( ∫ T
0 〈σi(t) − σ̄(t) | σ̄(t)〉dt

)2
= 1

2C2
i .

Then for (23), write E[ϕ(1)(S P
T )S (3)

T ] =
∑d

i=1 αiE[ϕ(1)(S P
T )S (3)

i,T ] and use (11) to obtain for S (3)
i,T :

1
6

S (3)
i,T = S P

T

∑
j1, j2, j3∈{0,1}

∫ T

0

( ∫ t

0

( ∫ s

0
〈σi(u) − σ̄(u) | dX j1,u〉

)
〈σi(s) − σ̄(s) | dX j2,s〉

)
〈σi(t) − σ̄(t) | dX j3,t〉

with (X j,.) j∈{0,1} defined by:

dX j,t =

{
dWt for j = 0,
−σ̄(t)dt for j = 1.

(41)

Then use again Lemma 7 to obtain the identity:

1
6
E
[
ϕ(1)(S P

T )S (3)
i,T

]
=E

[
{−L + 3L2 − 3L3 +L4}ϕ

(
S P

T
)]
ω
(
〈σi − σ̄ | σ̄〉, 〈σi − σ̄ | σ̄〉, 〈σi − σ̄ | σ̄〉

)T
0

=
1
6
[
G
ϕ
2 + 3Gϕ3 + G

ϕ
4
]
C3

i ,

and achieve the proof. Finally for (24), one has using (11) the following result:

1
2
E
[
ϕ(2)(S P

T )
(S (2)

T

2
)2]

=
1
8

d∑
i, j∈{1,...,d}

αiα jE[ϕ(2)(S P
T )S (2)

i,T S (2)
j,T ](42)
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Then (11) leads to the identity:

1
4

S (2)
i,T S (2)

j,T =
(
S P

T
)2
( ∫ T

0

∫ t

0
dZi,sdZi,t

)
×

( ∫ T

0

∫ t

0
dZ j,sdZ j,t

)
(43)

with dZk,t defined in (11). We decompose the last product of integrals using the Itô’s Lemma:( ∫ T

0

∫ t

0
dZi,sdZi,t

)
×

( ∫ T

0

∫ t

0
dZ j,sdZ j,t

)
=

∫ T

0

( ∫ t

0

∫ s

0
dZ j,udZ j,s

)
×

( ∫ t

0
dZi,s

)
dZi,t +

∫ T

0

( ∫ t

0

∫ s

0
dZi,udZi,s

)
×

( ∫ t

0
dZ j,s

)
dZ j,t

+

∫ T

0

( ∫ t

0
dZi,s

)
×

( ∫ t

0
dZ j,s

)
〈σi(t) − σ̄(t) | σ j(t) − σ̄(t)〉dt(44)

We begin with the last term in the r.h.s. of (44). An application of the Itô’s Lemma yields for this
term: ∫ T

0

( ∫ t

0
dZi,s

)
×

( ∫ t

0
dZ j,s

)
〈σi(t) − σ̄(t) | σ j(t) − σ̄(t)〉dt

=

∫ T

0

( ∫ t

0

∫ s

0
dZi,sdZ j,u

)
〈σi(t) − σ̄(t) | σ j(t) − σ̄(t)〉dt

+

∫ T

0

( ∫ t

0

∫ s

0
dZ j,sdZi,u

)
〈σi(t) − σ̄(t) | σ j(t) − σ̄(t)〉dt

+

∫ T

0

( ∫ t

0
〈σi(s) − σ̄(s) | σ j(s) − σ̄(s)〉ds

)
〈σi(t) − σ̄(t) | σ j(t) − σ̄(t)〉dt

Then write ϕ(2)(S P
T
)(

S P
T
)2

= {L2 − L}ϕ
(
S P

T
)

to obtain the contribution, introducing the notation
ωi3,i4,(i1,i2) = ω

(
〈σi3 − σ̄ | σ̄〉, 〈σi4 − σ̄ | σ̄〉, 〈σi1 − σ̄ | σi2 − σ̄〉

)T
0 :

E
[{
− L + 3L2 − 3L3 +L4}ϕ(S P

T
)]
×

[
ωi, j,(i, j) + ω j,i,(i, j)

]
+ G

ϕ
2 ω

(
〈σi − σ̄ | σ j − σ̄〉, 〈σi − σ̄ | σ j − σ̄〉

)T
0

=
[
G
ϕ
2 + 3Gϕ3 + G

ϕ
4
]
×

[
ωi, j,(i, j) + ω j,i,(i, j)

]
+ G

ϕ
2 ω

(
〈σi − σ̄ | σ j − σ̄〉, 〈σi − σ̄ | σ j − σ̄〉

)T
0(45)

Then for the first term in the r.h.s. of (44), apply the Itô’s Lemma twice to obtain:∫ T

0

( ∫ t

0

∫ s

0
dZ j,udZ j,s

)
×

( ∫ t

0
dZi,s

)
dZi,t

=

∫ T

0

{ ∫ t

0

( ∫ s

0
dZ j,u

)
×

( ∫ s

0
dZi,u

)
dZ j,s +

∫ t

0

∫ s

0

∫ u

0
dZ j,rdZ j,udZi,s

+

∫ t

0

( ∫ s

0
dZ j,u

)
〈σi(s) − σ̄(s) | σ j(s) − σ̄(s)〉ds

}
dZi,t

=

∫ T

0

{ ∫ t

0

∫ s

0

∫ u

0
dZi,rdZ j,udZ j,s +

∫ t

0

∫ s

0

∫ u

0
dZ j,rdZi,udZ j,s +

∫ t

0

∫ s

0

∫ u

0
dZ j,rZ j,udZi,s

+

∫ t

0

( ∫ s

0
〈σi,u − σ̄(u) | σ j(u) − σ̄(u)〉du

)
dZ j,s +

∫ t

0

( ∫ s

0
dZ j,u

)
〈σi(s) − σ̄(s) | σ j(s) − σ̄(s)〉ds

}
dZi,t.
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This leads to the contribution, introducing the notations ωi1,i2,i3,i4 = ω
(
〈σi1−σ̄ | σ̄〉, 〈σi2−σ̄ | σ̄〉, 〈σi3−

σ̄ | σ̄〉, 〈σi4 − σ̄ | σ̄〉
)T
0 , ω(i1,i2),i3,i4 = ω

(
〈σi1 − σ̄ | σi2 − σ̄〉, 〈σi3 − σ̄ | σ̄〉, 〈σi4 − σ̄ | σ̄〉

)T
0 and

ωi3,(i1,i2),i4 = ω
(
〈σi3 − σ̄ | σ̄〉, 〈σi1 − σ̄ | σi2 − σ̄〉, 〈σi4 − σ̄ | σ̄〉

)T
0 :

E
[{
− L + 5L2 − 10L3 + 10L4 − 5L5 +L6}ϕ(S P

T
)]
×

[
ωi, j, j,i + ω j,i, j,i + ω j, j,i,i

]
+ E

[{
− L + 3L2 − 3L3 +L4}ϕ(S P

T
)]
×

[
ω(i, j), j,i + ω j,(i, j),i

]
=
[
G
ϕ
2 + 15Gϕ3 + 25Gϕ4 + 10Gϕ5 + G

ϕ
6
]
×

[
ωi, j, j,i + ω j,i, j,i + ω j, j,i,i

]
+

[
G
ϕ
2 + 3Gϕ3 + G

ϕ
4
]
×

[
ω(i, j), j,i + ω j,(i, j),i

]
(46)

Similarly the contribution of the second term in the r.h.s. of (44) is, inverting the indexes i and j:

(47)
[
G
ϕ
2 + 15Gϕ3 + 25Gϕ4 + 10Gϕ5 + G

ϕ
6
]
×

[
ω j,i,i, j + ωi, j,i, j + ωi,i, j, j

]
+

[
G
ϕ
2 + 3Gϕ3 + G

ϕ
4
]
×

[
ω( j,i),i, j + ωi,( j,i), j

]
Then use the mathematical reductions:

ωi, j,(i, j) + ω j,i,(i, j) + ω(i, j), j,i + ω j,(i, j),i + ω( j,i),i, j + ωi,( j,i), j =CiC jCi, j,

ωi, j, j,i + ω j,i, j,i + ω j, j,i,i + ω j,i,i, j + ωi, j,i, j + ωi,i, j, j =
1
4

C2
i C2

j ,

and gather all the contributions (45)-(46)-(47) of (44) and use (43)-(42) to achieve the proof.

A.3. Malliavin integration by parts formula and proof of Proposition 12. We consider the
Malliavin calculus w.r.t the (q + 1)-dimensional BM (W,W⊥), the Malliavin derivatives associated to
W (respectively W⊥) being denoted by D (respectively D⊥) whereas D denotes the Malliavin operator
w.r.t. the full BM (W,W⊥). We refer to [22] for the related theory and notations for the n-th Malliavin
derivatives Dn, the Sobolev spaces Dn,p and the associated norms || · ||k,p in which we extend estimates
provided in Lemma 10.

Lemma 17. Under (Hσ), for any η ∈ [0, 1], i ∈ {1, . . . , d}, k ≥ 1 and t ∈ [0,T ], S η
i,t ∈ D

∞,∞,

S η,(k)
i,t ∈ D∞,∞ and S η,(k)

t ∈ D∞,∞. In addition we have the following estimates for any p ≥ 1:

(48)

||DrS
η
i,t||p + ||DrS

η
t ||p ≤c|σ|∞, ||D2

r,sS
η
i,t||p + ||D2

r,sS
η
t ||p ≤c|σ|

2
∞,

||D3
r,s,uS η

i,t||p + ||D3
r,s,uS η

t ||p ≤c|σ|
3
∞,

||DrS
η,(k)
i,t ||p ≤cM

k
σ̄,iT

(k−1)+
2 , ||DrS

η,(k)
t ||p ≤cµ[Mk

σ̄,.]T
(k−1)+

2 ,

||D2
r,sS

η,(k)
i,t ||p ≤cM

k
σ̄,iT

(k−2)+
2 , ||D2

r,sS
η,(k)
t ||p ≤cµ[Mk

σ̄,.]T
(k−2)+

2 ,

||D3
r,s,uS η,(k)

i,t ||p ≤cM
k
σ̄,iT

(k−3)+
2 , ||D3

r,s,uS η,(k)
t ||p ≤cµ[Mk

σ̄,.]T
(k−3)+

2 ,

||DrR
S ,k
t ||p ≤cµ[(Mσ̄,.)k+1]T

k
2 , ||D2

r,sR
S ,k
t ||p ≤cµ[(Mσ̄,.)k+1]T

(k−1)+
2 ,

||D3
r,s,uRS ,k

t ||p ≤cµ[(Mσ̄,.)k+1]T
(k−2)+

2 ,

uniformly in r, s, t, u ∈ [0,T ], i ∈ {1, . . . , d}, and η ∈ [0, 1].
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Proof. Inclusions in D∞,∞ are standard to justify under our assumptions. Assume w.l.o.g. that
p ≥ 2. We only detail results for ||DrS

η
i,t||p and ||DrS

η,(k)
i,t ||p. The other estimates, presenting no extra

difficulty, are left to the reader. For S η
i,t, one has DrS

η
i,t = 1r≤tS

η
i,t
(
σ
η
i (r)

)∗ and the estimate is obvious.

For S η,(k)
i,t , a straightforward induction shows that ||Dr

∫ t
0 . . .

∫ t1
0 dZηi,t0 . . . dZηi,tk−1

||p ≤c M
k
σ̄,iT

(k−1)+
2 . Then

using the representation (9), it comes ∀r, t ∈ [0,T ], ∀i ∈ {1, . . . , d} and for any k ≥ 1 the next calculus:

DrS
η,(k)
i,t =k!1r≤t[S

η,(k)
i,t

(
σ
η
i (r)

)∗
+ S η

i,tDr

∫ t

0
. . .

∫ t1

0
dZηi,t0 . . . dZηi,tk−1

].

The proof is easily achieved using the previous estimate and Lemma 10.

We now state the crucial result related to integration by parts formula which is proved in Appendix A.4.

Proposition 18 (Integration by parts formulas). Assume (Hσ) and suppose that h ∈ H1
P

(R). For
λ ∈ [0, 1], we define the random variable Fλ

δ =
(
S P

T + λRS ,1
T

)
× exp(δW⊥T/2). Let j ∈ {2, 3}, for any

Y ∈ D j−1,∞, there exist random variables Yλ
2 and Yλ

3 ∈ ∩p≥1Lp such that for any j ∈ {2, 3}:

E[h( j)
δ/
√

2
(Fλ

δ )Y] = E[h(1)
δ/
√

2
(Fλ

δ )Yλ
j ],

where for any p ≥ 1 and any j ∈ {2, 3} the following estimates hold::

sup
λ∈[0,1]

||Yλ
j ||p ≤c ||Y || j−1,p+ 1

2
(VP

T )−
( j−1)

2 .(49)

To achieve the proof of Proposition 12, consider Error3,h explicitly written in (26). The first term is
easily handled using (29) with k = 3. For the second term of (26), use (31), apply for any i, j ∈
{1, . . . , d} the above Proposition 18 with Y = RS ,2

T (RS ,2
T + S (2)

T ) and use Lemmas 10 and 17 to get the
following estimate:

E
[
h(2)
δ (S P

T )RS ,2
T (RS ,2

T + S (2)
T )

]
= E

[
h(2)
δ/
√

2
(F0

δ )Y
]

= E
[
h(1)
δ/
√

2
(F0

δ )Y0
2
]

=O
(
Ch(1) ||Y ||1,2(VP

T )−
1
2
)

= O
(
Ch(1)µ[(Mσ̄,.)4]T 2)

The last term of (26) is handled similarly; apply the Proposition 18 with Y =
(
RS ,1

T
)3, j = 3 and use

estimates of Lemmas 10 and 17. To summarize, the proof of Theorem 5 is now complete provided
that we establish Proposition 18, which is done in the following subsection.

A.4. Proof of Proposition 18. Owing to (Hσ), S P
T is a non degenerate random variable, with

Malliavin covariance matrix equal to (S P
T )2VP

T > 0, but Fλ := S P
T +λRS ,1

T may be degenerate for λ > 0.
Fortunately, Fλ

δ = Fλ × eδW
⊥
T/2 as defined in Proposition 18 is in D∞,∞9 and is non degenerate since

its Malliavin covariance matrix γFλ
δ

is strictly positive with
(
γFλ

δ

)−1
∈ ∩p≥1Lp. We namely have the

inequality:

γFλ
δ

=

∫ T

0
|DtFλ

δ |
2dt +

∫ T

0
|D⊥t Fλ

δ |
2dt ≥

∫ T

0
|D⊥t Fλ

δ |
2dt =

(
Fλ
δ )2δ2 T

2
> 0,(50)

9actually D3,∞ is sufficient.
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and the lower bound, bounding from below the arithmetic mean by the geometric mean:

Fλ
δ = e

δW⊥T
2
(
(1 − λ)S P

T +

d∑
i=1

λαiS i,T
)
≥ e

δW⊥T
2 (S P

T )(1−λ)
d∏

i=1

(S i,T )λαi ,

which is a GBM. Then in view of (48)-(32), the next bound readily comes for j ∈ {1, 2} and any p ≥ 1:

||DFλ
δ || j,p ≤c|σ|∞

√
T .(51)

Then [22, Proposition 1.5.6 and Proposition 2.1.4] proves the existence of Yλ
2 and Yλ

3 such that for
any j ∈ {2, 3} and any p ≥ 1, the following estimates hold:

||Yλ
j ||p ≤c||Y ||i−1,p+ 1

2
||DFλ

δ ||
i−1
i−1,2p(2p+1)||γ

−1
Fλ
δ

||i−1
i−1,2p(2p+1)(52)

≤c||Y ||i−1,p+ 1
2
(|σ|∞

√
T )i−1||γ−1

Fλ
δ

||i−1
i−1,2p(2p+1).

We now provide accurate estimates of
(
γFλ

δ

)−1. First observe that for the covariance matrix of Fλ:

γFλ =

∫ T

0
|DtS P

T |
2dt + λ2

∫ T

0
|DtR

S ,1
T |

2dt + 2λ
∫ T

0
〈DtS P

T | DtR
S ,1
T 〉dt

=(S P
T )2VP

T + λ2
∫ T

0
|DtR

S ,1
T |

2dt + 2λS P
T

∫ T

0
〈σ̄(t) | DtR

S ,1
T 〉dt,

leading to the bound, using estimates (48) and (Hσ):

sup
λ∈[0,1]

∣∣∣∣∣∣γFλ − (S P
T )2VP

T

∣∣∣∣∣∣
p ≤c |σ|∞µ[(Mσ̄,.)2]T

3
2 ,(53)

for any p ≥ 1. This intermediate result allows to prove the next lemma.

Lemma 19. Assume (Hσ). Then (γFλ
δ
)−1 ∈ D2,∞ and we have the next estimates for any p ≥ 1:

sup
λ∈[0,1]

||(γFη
δ
)−1||p ≤c(VP

T )−1,(54)

sup
t∈[0,T ],λ∈[0,1]

∣∣∣∣∣∣Dt(γFλ
δ
)−1

∣∣∣∣∣∣
p ≤c|σ|∞(VP

T )−1,(55)

sup
s,t∈[0,T ],λ∈[0,1]

||D
2
s,t(γFλ

δ
)−1||p ≤c|σ|

2
∞(VP

T )−1.(56)

Proof. First notice the useful inequality:

γFλ
δ

=e
2δW T

2

∫ T

0
|DtFλ|2dt +

∫ T

0
|D⊥t Fλ

δ |
2 > e

2δW T
2

∫ T

0
|DtFλ|2dt = e

2δW T
2 γFλ .(57)

For (54), use (57), Hölder and Markov inequalities to get for any p ≥ 1 and q ≥ 1 :

E
[
(γFλ

δ
)−p

]
= E

[
(γFλ

δ
)−p1γFλ≤

1
2 (S P

T )2VP
T

]
+ E

[
(γFλ

δ
)−p1γFλ>(S P

T )2 1
2V

P
T

]
≤

∣∣∣∣∣∣(γFλ
δ
)−1

∣∣∣∣∣∣p
2p

√√
P
( (S P

T )2VP
T − γFλ

1
2 (S P

T )2VP
T

≥ 1
)

+
(1
2
VP

T
)−p∣∣∣∣∣∣e−2δW T

2 (S P
T )−2

∣∣∣∣∣∣p
p

≤c
(
δ2T )−p

∣∣∣∣∣∣γFλ − (S P
T )2VP

T

∣∣∣∣∣∣ q
2
2q

∣∣∣∣∣∣2(S P
T )−2(VP

T )−1
∣∣∣∣∣∣ q

2
2q +

(
VP

T
)−p

≤c
(
VP

T
)−p

[
(δ2T )−p

∣∣∣∣∣∣γFλ − (S P
T )2VP

T

∣∣∣∣∣∣ q
2
2q

(
VP

T
)p− q

2 + 1
]
.
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Then choose q = 12p and use (32)-(53) to obtain the final bound:

||(γFλ
δ
)−1||p ≤c

(
VP

T
)−1[(µ[(Mσ̄,.)4]T 2)−2(|σ|∞µ[(Mσ̄,.)2]T

3
2 )6(T |σ|2∞)−5 + 1

]
≤c

(
VP

T
)−1.

Similar computations yields supt∈[0,T ],λ∈[0,1] ||DtγFλ
δ
||p ≤c |σ|

3
∞T and using [22, Lemma 2.1.6], one has

Dt(γFλ
δ
)−1 = − 1

γ2
Fλ
δ

(
DtγFλ

δ
,D⊥t γFλ

δ

)
. This leads to the announced result, using (54):

sup
t∈[0,T ],λ∈[0,1]

||Dt(γFλ
δ
)−1||p ≤c |σ|

3
∞T (VP

T )−2 ≤c |σ|∞(VP
T )−1.

Proof of (56) is very similar and is left to the reader.

Now plug (54)-(55)-(56) in (52) to complete the proof of Proposition 18.

Appendix B. Complements on Basket Call options and Benchmark approximations.

B.1. Greeks. First we compute the sensitivities G w.r.t. the spot defined by Gn := ∂n
εnCallBS(1 +

ε,VP
T ,K)|ε=0 :

G1 =N(d1), G2 =
N ′(d1)√
VP

T

, G3 = −
N ′(d1)√
VP

T

(
1 +

H1(d1)√
VP

T

)
,

G4 =
N ′(d1)√
VP

T

(
2 + 3

H1(d1)√
VP

T

+
H2(d1)
VP

T

)
, G5 = −

N ′(d1)√
VP

T

(
6 + 11

H1(d1)√
VP

T

+ 6
H2(d1)
VP

T

+
H3(d1)(
VP

T
) 3

2

)
,

G6 =
N ′(d1)√
VP

T

(
24 + 50

H1(d1)√
VP

T

+ 35
H2(d1)
VP

T

+ 10
H3(d1)(
VP

T
) 3

2

+
H4(d1)(
VP

T
)2

)
,

where for any n ∈ N, Hn represents the n-th Hermite polynomial defined by, for any x ∈ R :

Hn(x) = (−1)nex2/2∂n
xn(e−x2/2).

Thus one has the following identities:

G2 =
N
′

(d1)√
VP

T

, G2 + G3 = − N
′

(d1)
H1(d1)
VP

T

,

G2 + 3G3 + G4 =N
′

(d1)
H2(d1)(
VP

T
) 3

2

, Gh
2 + 15Gh

3 + 25Gh
4 + 10Gh

5 + Gh
6 =N

′

(d1)
H4(d1)(
VP

T
) 5

2

.

Then we provide the first and second sensitivities w.r.t. the volatility parameter σ̄(0,T ) =

√
1
TV

P
T :

VegaBS(1, σ̄(0,T )2T,K
)

=∂σ̄(0,T )CallBS(1, σ̄(0,T )2T,K
)

=
√

TN ′(d1),

VommaBS(1, σ̄(0,T )2T,K
)

=∂σ̄(0,T )VegaBS(1, σ̄(0,T )2T,K) =
VegaBS(1, σ̄(0,T )2T,K

)
σ̄(0,T )

d1d2

=
VegaBS(1, σ̄(0,T )2T,K

)
σ̄(0,T )

[
ln2(K)

σ̄2(0,T )2T
−
σ̄2(0,T )T

4
].
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B.2. Benchmark Price Approximations. In this Subsection, we make explicit the price ap-
proximation formulas provided in [14]-[12]-[17]-[20]-[18]-[25] using our notations to allow easy
comparisons. In addition, when relevant, we propose modifications of some formulas combining the
methodologies of the authors and our martingale point of view.

� D’Aspremont approximation formula. The second order approximation of E
[
(S T − K)+

]
pro-

vided in [14, Propositions 10 and 12 p.13 and p.15] is given by :

App2(DAF) =CallBS(1,VP
T ,K)

(58)

+

d∑
i=1

αi

∫ T

0

〈ξi(t) | σ̄(t)〉√
VP

T

e2
∫ t

0 〈ξi(s)|σ̄(s)〉ds
N ′

(− ln(K) + 1
2V

P
T +

∫ t
0 〈ξi(s) | σ̄(s)〉ds√
VP

T

)
dt,

introducing the residual volatilities of the assets w.r.t. the Proxy volatility :

ξi(t) := σi(t) − σ̄(t).(59)

The corrective term is a sum of temporal integrals of Gaussian functions and is a little bit less
tractable than our second order formula whose corrective term is a linear combination of Gaussian
functions computed at the maturity T . There is a priori no closed formula and one needs to compute
numerically the integrals.

� Modification of the D’Aspremont approximation formula. Actually, according to us, it seems
that the Thesis [13] and the paper [14] contain an error which we reported to the author, but not
verified by the latter. We propose here a modification of the formula provided in [14] by following
the approach developed by author. The idea is to work directly on the dynamic of the basket and to
consider the stochastic weights α̂i:

dS t =S t

d∑
i=1

α̂i(t)〈σi(t) | dWt〉, α̂i(t) =
αiS i,t

S t
, α̂i(0) =αi,

The dynamic of the stochastic weights is given by an application of the Itô formula :

dα̂i(t) =
αiS i,t

S t
〈σi(t) | dWt〉 −

αiS i,t

S t

d∑
j=1

α̂ j(t)〈σ j(t) | dWt〉

+
αiS i,t

S t

d∑
j,k=1

α̂ j(t)α̂k(t)〈σ j(t) | σk(t)〉dt −
αiS i,t

S t

d∑
j=1

α̂ j(t)〈σi(t) | σ j(t)〉dt

=α̂i(t)〈σi(t) −
d∑

j=1

α̂ j(t)σ j(t) | dWt −

d∑
j=1

α̂ j(t)σ j(t)dt〉

=α̂i(t)〈ξi(t) −
d∑

j=1

α̂ j(t)ξ j(t) | dWt − σ̄(t)dt −
d∑

j=1

α̂ j(t)ξ j(t)dt〉,
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with the residual volatilities ξi(t) defined in (59) and using the fact that
∑d

j=1 α̂ j(t) = 1. In the paper
[14, Equation (18) page 13] and in the Thesis [13, top of the page ix], the dynamic of the stochastic
weights is however indicated as:

dα̂i(t) =α̂i(t)〈ξi(t) −
d∑

j=1

α̂ j(t)ξ j(t) | dWt+σ̄(t)dt+
d∑

j=1

α̂ j(t)ξ j(t)dt〉

Then the idea is to parametrize the basket and the stochastic weights dynamics using, similarly to our
approach, a linear interpolation between the volatility of the assets and the Proxy volatility σ̄, replacing
the vector of small magnitude

∑d
j=1 α̂ j(t)ξ j(t) (because

∑d
j=1 α jξ j(t) is null) by ε

∑d
j=1 α̂ j(t)ξ j(t):{

dS ε
t = S ε

t 〈σ̄(t) − ε
∑d

i=1 α̂
ε
i (t)ξi(t) | dWt〉,

dα̂εi (t) = α̂εi (t)〈ξi(t) − ε
∑d

j=1 α̂
ε
j(t)ξ j(t) | dWt − σ̄(t)dt − ε

∑d
j=1 α̂

ε
j(t)ξ j(t)dt〉,(60)

The next step is to perform an expansion of the pricing equation around ε = 0 using a PDE approach :

Pε(t, S ε
t , α̂

ε(t)) = E
[
(S ε

T − K)+|(t, S ε
t , α̂

ε(t))
]

= P0 + P(1)ε + O(ε2).

P0 is given by the Black-Scholes price whereas, starting from the dynamic (60) and following the
proof of [14, Lemma 11], we find that P(1) solves :

−
∑d

i=1〈ξi(t) | σ̄(t)〉yix2∂2
x2P0 = ∂tP(1) + |σ̄(t)|2 x2

2 ∂
2
x2P(1) +

∑d
i=1〈ξi(t) | σ̄(t)〉xyi∂

2
xyi

P(1)

+
∑d

i=1 |ξi(t)|2
y2

i
2 ∂

2
y2

i
P(1) −

∑d
i=1〈ξi(t) | σ̄(t)〉yi∂yiP

(1),

P(1) = 0, for t = T.

The difference with [14] is the minus sign on the last term of the r.h.s. . Then following the proof of
[14, Lemma 12], the Feynman-Kac representations give :

P(1)(0, S 0, α) =

∫ T

0
E
[ d∑

i=1

〈ξi(t) | σ̄(t)〉α̂P
i (t)S P

t

N ′
( ln(

S P
t

K )+ 1
2V

P
t,T√

VP
t,T

)
√
VP

t,T

]
dt

withVP
t,T =

∫ T
t |σ̄(s)|2ds and the Proxy diffusions α̂P

j and S P, solutions of (60) with ε = 0. In partic-
ular, observe that the product α̂P

i S P is a log-normal martingale with volatility σ̄ + ξi. The Cameron-
Martin formula and elementary calculus on Gaussian functions give that the corrective terms writes:

P(1)(0, S 0, α) =

d∑
i=1

αi

∫ T

0

〈ξi(t) | σ̄(t)〉√
VP

T

N ′
(− ln(K) + 1

2V
P
T +

∫ t
0 〈ξi(s) | σ̄(s)〉ds√
VP

T

)
dt

It is simpler that the corrective term in (58) and in addition one can compute explicitly the integral to
get the final approximation formula:

App2(MDAF) =CallBS(1,VP
T ,K) +

d∑
i=1

αi
[
N

(
d1 +

Ci√
VP

T

)
− N(d1)

]
,(61)
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with the coefficients Ci defined in Theorem 5. Notice that a Taylor expansion yields the next
approximation, using the fact that

∑d
i=1 αiCi = 0:

d∑
i=1

αi
[
N

(
d1 +

Ci√
VP

T

)
− N(d1)

]

=
1
2

d∑
i=1

αiN
(2)(d1)

C2
i

VP
T

+

d∑
i=1

αi
C3

i

(VP
T )

3
2

∫ 1

0
N (3)

(
d1 + λ

Ci√
VP

T

) (1 − λ)2

2
dλ

= −
1
2
N
′

(d1)
H1(d1)
VP

T

d∑
i=1

αiC2
i + O

(
µ[(Mσ̄,.)3]T

3
2
)
.

Hence up to an error of order O
(
µ[(Mσ̄,.)3]T

3
2
)
, the approximation (61) coincides with our second

order approximation formula (35). This illustrates the duality between the stochastic analysis approach
and the PDE techniques.

� Carmona and Durrleman approximation formulas. The paper [12, Propositions 3 and 6 p.5
and p.7] provides lower and upper bounds of E

[
(S T − K)+

]
. Though the formulas are not strictly

analytical but solutions of maximization/minimization problems, the functions to be optimized are in-
terestingly very close to the one-dimensional Black-Scholes formula. One denotes by Σ the covariance
matrix of the assets and by Σk

i = Σii + Σkk − 2Σik for any i ∈ {1, . . . , d}, k ∈ {0, . . . , d} where the index
k = 0 is related to the variance/covariances involving the strike which are set to 0. The bounds are
solutions of:

App(CDF)inf =sup
y∈R

sup
u′Σu=1

{ d∑
i=1

αiN
(
y + (Σu)i

√
T
)
− KN(y)

}
,(62)

App(CDF)sup = min
k∈{0,...,d}

{ d∑
i=1

αiN
(
dk +

√
Σk

i T
)
− KN

(
dk −

√
ΣkkT

)}
,(63)

with dk solution of:
d∑

i=1

αiN
′(dk +

√
Σk

i T
)
− KN ′

(
dk −

√
ΣkkT

)
= 0.

Consider the i.i.d. case with equal weights. A symmetry argument leads to u = 1/(σ
√

d)(1, . . . , 1)∗

(with σ the common volatility coefficient of the assets) and the solution of the optimization problem
is y = − ln(K)/(σ̄

√
T ) − 1

2 σ̄
√

T with the proxy volatility σ̄ = σ/
√

d. Hence App(CDF)inf is simply
given by the Black-Scholes price CallBS(1,VP

T ,K) and coincides with our second order formula show-
ing in particular that this is a lower bound in the i.i.d. case. On the other hand for the upper bound,

one has the identity
∑d

i=1 αiN
(
d0 +

√
Σk

i T
)
− KN(d0) = CallBS(1, σ2T,K).

� Gobet and Miri approximation formula. We recall the notation
S GM

T = e
∫ T

0 〈σ̄(s)|dWs〉−
1
2
∑d

i=1

∫ T
0 αi |σi(s)|2ds for the geometric mean proxy used in [17]. The link with our
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proxy S P is given by the following equation:

S GM
T =S P

T eλ, with λ = −
1
2

∫ T

0

( d∑
j=1

α j|σ j(t)|2 −
∣∣∣ d∑

j=1

α jσ j(t)
∣∣∣2)dt = −

1
4

∑
i, j∈{1,...,d}

αiα jĈi, j ≤ 0,(64)

Ĉi, j =

∫ T

0
|σi(t) − σ j(t)|2dt, i, j ∈ {1, . . . , d}

Using the change of variables described in Remark 1 to take into account the drift term eλ, the second
order approximation of E

[
(S T − K)+

]
provided in [17, Theorem 2.2 p.12] reads as, in the particular

case of log-normal processes:

App2(GMF) =CallBS(eλ,VP
T ,K)

+eλN(d̂1)
d∑

i=1

αi
[1
8

( ∫ T

0

( d∑
j=1

α j|σ j(t)|2 − |σi(t)|2
)
dt

)2
+

1
2

∫ T

0
|σ̄(t) − σi(t)|2dt

]
+eλ
N
′

(d̂1)√
VP

T

{
1
2

d∑
i=1

αiCi

∫ T

0

( d∑
j=1

α j|σ j(t)|2 − |σi(t)|2
)
dt −

1
2
(
1 +

H1(d̂1)√
VP

T

) d∑
i=1

αiC2
i

}
,(65)

with the coefficients Ci defined in Theorem 5 and d̂1 = (λ − ln(K))/
√
VP

T + 1
2

√
VP

T . The formula
is a little bit more complicated than our corresponding second order approximation (35).

� Landon approximation formula. In the particular case of basket options, the second order
approximation of E

[
(S T − K)+

]
provided in [20, Theorem 8.4.2 p.160] can be written:

App2(LF) =

d∑
i=1

αiPi − KP0, Pi = N(d̃i) + λ
N ′(d̃i)√
VP

T

, i ∈ {0, . . . , d}

(66)

d̃i =
− ln(K) − 1

2V
P
T +

∫ T
0 〈σ̄(t) | σi(t)〉dt√
VP

T

, i ∈ {1, . . . , d}, d̃0 = d2 =
− ln(K) − 1

2V
P
T√

VP
T

,

where λ is defined in (64). This expansion reads as a multi-dimensional generalisation of the Black-
Scholes formula with approximated probabilities of exercise. In the i.i.d. case with equal weights,
the approximation is simply given by CallBS(1,VP

T ,K) = N(d1) − KN(d2) and coincides with our
second order formula. We namely have d̃i = d1, ∀i ∈ {0, . . . , d} and the well known identity N ′(d1) −
KN ′(d2) = 0. Finally notice that the term λ (appearing also in the approximation provided in [17])
is certainly due to the fact that the parametrization S̃ η

t =
∑d

i=1 αie
∫ t

0 〈σ
η
i (s)|dWs〉−

1
2

∫ t
0

(
η|σi(s)|2+(1−η)|σ̄(s)|2

)
ds

used in [20] does not maintain the martingale property, what could lead to numerical arbitrage.
� Modification of the Landon approximation formula. We propose here a modification of the

approximation provided in [20] using our martingale parametrization. Following the approach devel-
oped in [20], we linearise the payoff, use changes of probability measure and perform approximations
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of probabilities of exercise regions. In the following heuristic calculus, Pi for i ∈ {1, . . . , d} is the prob-
ability defined by the Radon-Nikodym derivative dPi

dP |FT = S i,T under which S̃ i
k,. := S k,.

S i,.
is a log-normal

martingale with volatility σk(.) − σi(.), for any k ∈ {1, . . . , d}. One has to compute, setting S̃ i
. := S .

S i,.
:

E
[
(S T − K)+

]
=

d∑
i=1

αiPi
(

ln(S̃ i
T ) > ln

( K
S i,T

))
− KP

(
ln(S T ) > ln(K)

)
For h ∈ C2

P
(R), denoting by EPi the expectation under Pi, S̃ i,P

T the log-normal Proxy with volatility
σ̄ − σi and S̃ i,(1)

. the first order correction process ∀i ∈ {1, . . . , d}, we use the approximation :

EPi

[
h
(

ln(S̃ i
T
)]
≈ EPi

[
h
(

ln(S̃ i,P
T

)]
+ EPi

[
h
(

ln(S̃ i,P
T

) S̃ i,(1)
T

S̃ i,P
T

]
= EPi

[
h
(

ln(S̃ i,P
T

)]
,

using the fact that S̃ i,(1)
T = 0. Similarly we use the approximation E

[
ln

(
h
(
S T

))]
≈ E

[
ln

(
h
(
S P

T
))]

and
we transpose the approach to the non-smooth indicator functions to get the next formula :

App2(MLF) =

d∑
i=1

αiPi
(

ln(S̃ i,P
T

)
> ln

( K
S i,T

))
− KP

(
ln(S P

T ) > ln(K)
)

=

d∑
i=1

αiN(d̃i) − KN(d2).

As a result, one obtains a simpler formula. Finally notice (see (61)) that this formula exactly coincides
with our modification of the D’Aspremont formula, remarking that d̃i = d1 +

Ci√
VP

T

. We use the

following unified notation for the resulting approximation :

App2(MDALF) =

d∑
i=1

αiN
(
d1 +

Ci√
VP

T

)
− KN(d2).(67)

� Ju approximation formula. In [18], the weighted average of log-normal variables with time
homogeneous volatilities is approximated by a scalar log-normal random variable with a matching of
the two first moments at the maturity T . The approximation is improved with a Taylor expansion of
the ratio of the characteristic function of the basket to that of the proxy around zero volatility and takes
the form of a third order formula :

App3(JU) =N(y1) − KN(y2)(68)

+K[
z1

σ̃
√

T
N ′(y2) + z2

y2

σ̃2T
N ′(y2) + z3

H2(y2)

σ̃3T
3
2

N ′(y2)]

with the proxy volatility σ̃ allowing the variance matching:

σ̃ =

√
1
T

ln
( ∑

i, j∈{1,...,d}

αiα jeT 〈σi |σ j〉
)
,(69)
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and the coefficients:

y1 =
− ln(K) + 1

2 σ̃
2T

σ̃
√

T
, y2 =

− ln(K) − 1
2 σ̃

2T

σ̃
√

T
,

z1 =d2 − d3 + d4, z2 = d3 − d4, z3 = d4,

d1 =0.5(6a2
1 + a2 − 4b1 + 2b2) − 1/6[120a3

1 − a3 + 6(24c1 − 6c2 + 2c3 − c4)],

d2 =0.5(10a2
1 + a2 − 6b1 + 2b2) − [128a3

1/3 − a3/6 + 2a1b1 − a1b2 + 50c1 − 11c2 + 3c3 − c4],

d3 =2a2
1 − b1 − 1/3[88a3

1 + 3a1(5b1 − 2b2) + 3(35c1 − 6c2 + c3)],

d4 = − 20a3
1/3 + a1(−4b1 + b2) − 10c1 + c2,

c1 = − a1b1, c2 = 1/144(9U6 + 4U7), c3 = 1/48(4U4 + U5), c4 = a1a2 − 2/3a3
1 − 1/6a3,

b1 =0.25U3, b2 = a2
1 − 0.5a2, a1 = −0.5U′2, a2 = 2a2

1 − 0.5U′′2 , a3 = 6a1a2 − 4a3
1 − 0.5U(3)

2 ,

U′2 =
∑

i, j∈{1,...,d}

αiα j〈σi | σ j〉T, U′′2 =
∑

i, j∈{1,...,d}

αiα j〈σi | σ j〉
2T 2, U(3)

2 =
∑

i, j∈{1,...,d}

αiα j〈σi | σ j〉
3T 3,

U3 =2
∑

i, j,k∈{1,...,d}

αiα jαk〈σi | σk〉〈σ j | σk〉T 2, U4 = 6
∑

i, j,k∈{1,...,d}

αiα jαk〈σi | σk〉〈σ j | σk〉
2T 3,

U5 =8
∑

i, j,k∈{1,...,d}

αiα jαk〈σi | σ j〉〈σi | σk〉〈σ j | σk〉T 3,

U6 =8
∑

i, j,k,l∈{1,...,d}

αiα jαkαl〈σi | σl〉〈σ j | σk〉〈σk | σl〉T 3 + 2U′2U′′2 ,

U7 =6
∑

i, j,k,l∈{1,...,d}

αiα jαkαl〈σi | σl〉〈σ j | σl〉〈σk | σl〉T 3.

The main term of the formula is the log-normal approximation given in [21]. In the
one-dimensional case, the reader can verify that the identity a2 = a3 = d1 = d2 = d3 = d4 = z1 =

z2 = z3 = 0 holds and hence the approximation is exact. Notice that the formula is a little bit more
complicated than our third order formula.

� Shiraya and Takahashi approximation formula. We introduce the notations Y = 1 − K,

d̂ = Y/
√
VP

T , C̃i =
∫ T

0 〈σi(t) | σ̄(t)〉dt and C̃i, j =
∫ T

0 〈σi(t) | σ j(t)〉dt for any i, j ∈ {1, . . . , d}. Then the

third order approximation of E
[
(S T − K)+

]
provided in [25, Theorem 3.1 p.7] is given by:

App3(STM) = YN(d̂) +

√
VP

TN
′(d̂)︸                      ︷︷                      ︸

Bachelier price

+
N
′

(d̂)√
VP

T

{
−

1
2

H1(d̂)√
VP

T

d∑
i=1

αiC̃2
i +

H2(d̂)
VP

T

[1
6

d∑
i=1

αiC̃3
i +

1
2

∑
i, j∈{1,...,d}

αiα jC̃iC̃ jC̃i, j
]

+
1
4

∑
i, j∈{1,...,d}

αiα jC̃2
i, j +

1
8

H4(d̂)(
VP

T
)2

( d∑
i=1

αiC̃2
i

)2
}
.
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This reads as an expansion around the Bachelier (Gaussian) model. Observe that the corrective
terms are the same than our third order formula (36) replacing Ci, Ci, j and d1 by C̃i, C̃i, j and d̂ respec-
tively. This enlightens the link between the Black-Scholes model and the Bachelier model. However,
one can notice that the approximation is inexact in the one-dimensional case.

B.3. Benchmark implied volatility shapes ATM for short maturity. In this Subsection, we
make explicit the implied volatility shape ATM for short maturity provided in [23]-[16]-[2] using our
notations to allow easy comparisons.

� Piterbarg formula. In [23], the dynamic of the basket (with time-homogeneous volatilities for
the assets) is approximated with the following SDE:

dS t = φ(S t)dWS
t

where WS
t is a scalar BM and φ a R-valued function with the following properties:

φ(S 0) =φ(1) = p :=

√√√ d∑
i=1

αiα j〈σi | σ j〉 = |σ̄|

φ′(S 0) =φ′(1) = q :=
1
p

d∑
i=1

αi
(1

p

d∑
j=1

α j〈σi | σ j〉
)2

=
1
|σ̄|3

d∑
i=1

αi〈σi | σ̄〉
2 = |σ̄| +

1
|σ̄|3

d∑
i=1

αiC′i (0)2,

with C′i (0) = 〈σi − σ̄ | σ̄〉. Hence introducing the local volatility function ψ(S ) =
φ(S )

S such that
ψ′(1) = φ′(1) − φ(1), we retrieve our formulas presented in Corollary 15 using the well-known rules
that ATM for short maturity, the local volatility equals the implied volatility and its slope is twice the
slope of the implied volatility (see for instance [9]).

� Durrleman formula. [16, Theorem 3.1] says that the level of the implied volatility ATM for
short maturity equals the current value of the spot volatility, that is |

∑d
i=1 αi

S i,0
S 0
σi(0)| = |σ̄(0)| what

coincides with our results. Regarding the skew ATM for short maturity, we follow [16, Section 5] and
adopt a stochastic volatility point of view by writing, for a scalar BM WS associated to the Basket:

dS t =|σ(t)|dWS
t , WS

t =
1
|σ(t)|

〈σt | dWt〉, σt =

d∑
i=1

α̂i(t)σi(t), α̂i(t) =
αiS i,t

S t
.

Next the skew for ATM/short maturity is given by v0/(4|σ(0)|2) = v0/(4|σ̄(0)|2) where the stochas-
tic process vt steps in the following decomposition of the dynamic of the variance process |σ(t)|2:

d|σ(t)|2 = δtdt + vtdWS
t + v⊥t dWS ,⊥,

for an extra BM WS ,⊥ independent of WS . An application of the Itô formula and a straightforward
calculus of correlation leads to (we don’t write the full decomposition for the sake of brevity) :

d|σ(t)|2 =
∑

i, j∈{1,...,d}

α̂i(t)α̂ j(t)〈σi(t) | σ j(t)〉
(dα̂i(t)
α̂i(t)

+
dα̂ j(t)
α̂ j(t)

+ . . . dt
)
,

dα̂i(t)
α̂i(t)

=〈σi(t) − σ(t) | dWt − σ(t)dt〉 =
1
|σ(t)|

〈σi(t) − σ(t) | σ(t)〉dWS
t + . . . dWS ,⊥

t + . . . dt
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Hence the following identity comes using the definition of σ(t):

vt =
2
|σ(t)|

d∑
i=1

α̂i(t)〈σi(t) | σ(t)〉〈σi(t) − σ(t) | σ(t)〉 =
2
|σ(t)|

d∑
i=1

α̂i(t)〈σi(t) − σ(t) | σ(t)〉2

and we finally obtain v0/(4|σ̄(0)|2) = 1/(2|σ̄(0)|3)
∑d

i=1 αi〈σi(0) − σ̄(0) | σ̄(0)〉2 what is exactly our
formula.

� Alos and León formula. [2] provides approximations of E[(eXT − KT )+] for a stock price
eXT and a positive random strike KT . To recover our setting (with a put option instead of a call
option), we set XT := k for the deterministic log-strike and KT := S T for the basket with volatility
σ(t) =

∑d
i=1

S i,t
S t
αiσi(t). [2, Remark 6] gives that σI(T, k)|(T=0,k=0) ≈ |σ(0)| = |σ̄(0)| whereas [2,

Theorem 14] provides for the skew using the notations x = ln(S 0) for the log-spot and D for the
Malliavin derivative operator :

∂kσ
I(T, k)|(T=0,k=0) = −∂xσ

I(T, k)|(T=0,x=0)

=
1

2|σ(0)|2
〈σ(t) | (Dt|σ(t)|)∗〉|(t=0) =

1
4|σ(0)|3

〈σ(t) | (Dt|σ(t)|2)∗〉|(t=0)

=
1

2|σ(0)|3
〈
σ(t)

∣∣∣∣ 1
S 2

t

∑
i, j∈{1,...,d}

αiα jS i,tS j,t〈σi(t) | σ j(t)〉
[
σi(t) −

1
S t

d∑
k=1

αkS k,tσk(t)
]〉∣∣∣∣

(t=0)

=
1

2|σ(0)|3
∑

i

αi〈σi(0) | σ(0)〉〈σ(0) | σi(0) − σ(0)〉

=
1

2|σ(0)|3
∑

i

αi〈σ(0) | σi(0) − σ(0)〉2 =
1

2|σ̄(0)|3

d∑
i=1

αi〈σi(0) − σ̄(0) | σ̄(0)〉2.

This is our formula.
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