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In this paper we focus on the turbulent transport of a scalar through a channel. The scalar flux,
and the corresponding scalar concentration gradient along the channel allow to define a Nusselt
number and a Grashof number. While the relation between the large scale velocity field and the input
energy rate show a perfect inertial (turbulent) behavior, three different regimes can be distinguished,
with different scalings between Nusselt and Grashof numbers.

I. INTRODUCTION

In the past decade, scalar free convection in a tiltable
channel appeared as an interesting model flow for evi-
dencing the base mechanisms of convection [1–11]. Dif-
ferent regimes have been evidenced depending on the an-
gle ψ between the channel axis and the vertical one, the
Prandtl (or Schmidt) number ν/κ, or the amplitude of
density differences. ν is the kinematic viscosity of the
fluid, and κ, the diffusion coefficient of the active scalar.

The typical geometry is schematized in figure 1. A
channel connects two chambers. The chambers have dif-
ferent temperatures, in the case of heat transport, dif-
ferent scalar concentrations in the other cases. For the
sake of clarity, we shall concentrate on heat transport,
speaking of temperature instead of scalar concentration,
of heat flux instead of scalar flux, but all what follows
can be easily translated in the other language.

The Boussinesq equations write:

∂tvi + vj∂jvi = −∂ip
ρ
− giαϑ+ ν∂j∂jvi (1)

∂tϑ+ vj∂jϑ = κ∂j∂jϑ (2)

∂jvj = 0 (3)

g is the gravitation acceleration, p the pressure and ρ
the density of the fluid. ϑ is the temperature, but could
as well be the scalar concentration. The origin of ϑ is
such that its mean value on the channel is zero. α is the
coefficient of thermal expansion.

We are interested in the turbulent case, where the
mean diffusive heat flux is negligible compared to the
convective one. Multiplying equation 1 by vi and aver-
aging, it is easy to show that the kinetic energy input
rate per unit mass, ε, is simply related to the heat flux
Qi [12]:

ε = −giα 〈ϑvi〉 = −giα
Qi
Cp

(4)
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FIG. 1. A sketch of the typical cell showing the definition of
the coordinates, and of the inclination angle ψ.

where Cp is the heat capacity per unit volume. ε can also
be expressed as:

ε = ν 〈∂ivj∂ivj〉 (5)

which gives a useful evaluation for the typical velocity
gradients: √

〈∂ivj∂ivj〉 =
( ε
ν

)1/2
(6)

The characteristics of the inertial regimes is that the
velocity, at constant inclination angle, scale with [6, 7]:

Ut =

(
Qdgα

Cp

)1/3

(7)
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where d is the channel diameter.
In the same regimes, as can be seen from equation

1, temperature fluctuations scale with U2
t . In spite of

this great unity in the scaling behavior, three different
regimes have been observed, concerning the relation be-
tween the temperature (or scalar concentration) gradient:

β = −d 〈ϑ〉
dz

(8)

along the channel, and the heat flux Q, thus between the
Nusselt number:

Nu =
Q

Cpκβ
(9)

and the Grashof number:

Gr =
gαβd4

ν2
(10)

At large Grashof number, every one [5, 7, 10, 11] agree
with:

Nu

Pr
∝ Gr1/2 (11)

At lower Grashof number, Riedinger et al. [8] evi-
denced a regime:

Nu ∝ Gr2 (12)

without precision on the Prandtl number (Pr) depen-
dence. Recently, Pawar and Arakeri [15] observed a new
regime:

Nu

Pr
∝ Gr0.3 (13)

The goal of this paper is to explain these regimes, and
to precise their Pr dependence. We shall show that the
Gr0.3 regime can be intermediate between the two other
ones, and disappears for Pr < 1. We shall call this regime
the Batchelor regime (for reasons which appear below).
In a similar way, the Soft Turbulence regime (Gr2) should
disappear for Pr >> 1. Following Riedinger et al [8], we
shall call the Nu ∝ Gr1/2 regime the Hard Turbulence
one. We develop our arguments in the following section.

II. EVALUATION OF β

Our evaluation of β will be based on two different ex-
pressions for the entropy production per unit volume Ṡ.
On the one hand, with a macroscopic point of view,

Ṡ = −Qi∂iT
T 2

' Qβ

T 2
(14)

where the absolute temperature T = To + 〈ϑ〉, and To is
the mean temperature of the channel. On the other hand,

this entropy production can be related to the microscopic
dissipative temperature gradients:

Ṡ = Cpκ
〈∂iϑ∂iϑ〉
T 2

(15)

This gives a formal expression for β:

β = Cpκ
〈∂iϑ∂iϑ〉

Q
(16)

Calling θ = ϑ − 〈ϑ〉 the temperature fluctuation, and
neglecting the average gradients compared to the instan-
taneous ones, 〈∂iϑ∂iϑ〉 can be evaluated as the mean
squared fluctuation at the temperature dissipative scale〈
θ2
〉
D

, divided by this dissipative scale ηθ squared:

〈∂iθ∂iθ〉 '
〈
θ2
〉
D

η2θ
(17)

The evaluation of
〈
θ2
〉
D

and ηθ will differ, depending
if the Prandtl number is larger or smaller than 1.

A. Small Prandtl

Let us first assume that the Reynolds number is suf-
ficient to have a Kolmogorov velocity inertial range, be-
tween the velocity correlation scale ` and the velocity
dissipation scale η. At small Prandtl number, the tem-
perature dissipative scale is larger than the velocity one:
ηθ > η. ηθ is such that the typical stirring frequency at
this scale equals the dissipation frequency:

v(ηθ)

ηθ
' Ut(ηθ/`)

1/3

ηθ
' κ

η2θ
(18)

This qualitatively means that, at scales lower than ηθ,
due to the rapidity of diffusion, stirring is unable to en-
hance the temperature gradients. The temperature dis-
sipative scale ηθ can then be expressed as:

ηθ ' `
(
κ

Ut`

)3/4

(19)

In a Kolmogorov 41 approach, the temperature fluctu-
ation at the scale ηθ writes [13]:

〈
θ2
〉
D
'
〈
θ2
〉 (ηθ

`

)2/3
(20)

According to equation 1, the mean squared tempera-
ture fluctuation

〈
θ2
〉

in an inertial regime, is of order:

〈
θ2
〉
' U4

t

(gα`)2
(21)
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Using equation 17, we have thus the following estimate
for 〈∂iθ∂iθ〉

〈∂iθ∂iθ〉 '
U4
t

(gα`)2

(ηθ
`

)2/3 1

η2θ

=
U4
t

(gα`2)2

(ηθ
`

)−4/3
(22)

=
U4
t

(gα`2)2
Ut`

κ
=

U5
t

κ(gα)2`3
(23)

and for β, using equations 7,16:

β ' κdgα

U3
t

U5
t

κ(gα)2`3
=

U2
t d

gα`3
(24)

The Nusselt number Nu is given by:

Nu

Pr
=

Q

Cpνβ
=

U3
t

dgανβ
(25)

We now can write, using equation 24:

Nu

Pr
'
(
βgα`3

d

)3/2
1

dgανβ

=

(
`

d

)9/2(
gαβd4

ν2

)1/2

= AGr1/2 (26)

where A = (`/d)9/2 is a constant. We thus find, as ex-
pected the Hard Turbulence regime (Small Prandtl Hard
Turbulence SPHT).

At lower Reynolds number, the temperature dissipa-
tive scale ηθ join ` [13]. We simply have to make ηθ = `
in equation 22:

〈∂iθ∂iθ〉 '
U4
t

(gα`2)2
(27)

Then:

β ' κdgα

U3
t

U4
t

(gα`2)2
=
κUtd

gα`4
(28)

and:

Nu

Pr
'
(
βgα`4

dκ

)3
1

dgανβ

=

(
`

d

)12(
gαβd4

ν2

)2 (ν
κ

)3
= BPr3Gr2 (29)

where B = (`/d)12 is a constant. This is the Soft Tur-
bulence scaling (Small Prandtl Soft Turbulence SPST).
Note however that it does not coincide here with the ab-
sence of inertial range: as ηθ > η, we yet have ` > η.

The two scalings above can be presented as:

Nu = A(GrPr2)1/2 and Nu = B(GrPr2)2 (30)

which shows that in a diagram Nu versus GrPr2 all the
different (small) Prandtl numbers merge on a single curve
(at constant inclination angle ψ).

B. Hight Prandtl

When the Prandtl number is large, the high Reynolds
number situation is different. Indeed, the Kolmogorov
inertial range is followed by a Batchelor range of scales
[14] in which the temperature fluctuations remain ap-
proximately constant. The temperature dissipative scale
ηθ is now smaller than the velocity one η:

v(ηθ)

ηθ
=
v(η)

η
'
( ε
ν

)1/2
=

(
U3
t

dν

)1/2

' κ

η2θ
(31)

On the other hand:

〈
θ2
〉
D
'
〈
θ2
〉 (η

`

)2/3
' U4

t

(gα`)2

(
ν3d

U3
t `

4

)1/6

(32)

Using equations 16, 17, 31, and 32, we have:

β ' gαd

U3
t

(
U3
t

dν

)1/2
U

7/2
t ν1/2d1/6

(gα`)2`2/3

=
U2
t

gαd2

(
d

`

)8/3

(33)

and using equation 25:

Nu

Pr
=

U3
t

dgανβ

' 1

dgανβ

(
gαβd2

)3/2( `
d

)4

= CGr1/2 (34)

where C = (`/d)4 is fixed at constant inclination angle
ψ. This is the Hard Turbulence regime (High Prandtl
Hard Turbulence HPHT).

At lower Reynolds number, η reaches `, there is no Kol-
mogorov inertial range, but the velocity gradients con-
tinue to smooth down, and the temperature dissipative
scale ηθ continues its growth as:

κ

η2θ
'
(
U3
t

dν

)1/2

(35)

In the absence of inertial range,
〈
θ2
〉
D
'
〈
θ2
〉

and,
using equations 16, 17:

β ' gαd

U3
t

U4
t

(gα`)2

(
U3
t

dν

)1/2

=
U

5/2
t

gαν1/2d3/2

(
d

`

)2

(36)

As in the previous cases, we can extract the expression
of Ut versus β:

Ut '
(
gαβν1/2d3/2

)2/5( `
d

)4/5

(37)
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and use it in the expression of Nu/Pr:

Nu

Pr
=

U3
t

dgανβ

'
(
gαβd4

ν2

)1/5(
`

d

)12/5

= EGr1/5 (38)

where E = (`/d)12/5 is fixed at constant inclination an-
gle ψ. While the resulting exponent (0.2) differs from
the Pawar et al. [15] one (0.3), these regimes nicely cor-
respond in other aspects. Indeed, plotting Nu/Pr versus
Gr, all Prandtl number merge on a single curve, as ob-
served by Pawar et al.. Moreover, as this regime occurs
between a Gr1/2 and a Gr2 (see below) regimes, it ap-
pears as an inflexion point, whose slope hardly reaches
the asymptotic one. We shall call this regime the Batch-
elor regime (High Prandtl Batchelor Regime HPBR).

Finally, if the Prandtl number is not too high, in such
a way that ηθ reaches ` [13] while the flow is always in
a turbulent inertial regime, then ηθ cannot grow further.
Then:

〈∂iθ∂iθ〉 '
〈
θ2
〉

`2
(39)

and, using equation 16:

β ' gαd

U3
t

U4
t

(gα`)2
κ

`2

=
Utκ

gαd4

(
d

`

)4

(40)

Then, using equation 25:

Nu

Pr
=

U3
t

dgανβ

'
(
gαβd4

κ2

)2
κ

ν

(
`

d

)12

= B′Gr2Pr3 (41)

where B′ = (`/d)12 is a constant at constant inclination
angle ψ. This is the Moderate Prandtl Soft Turbulence
scaling, which can also be written Nu = B′(GrPr2)2,
and is identical to the Small Prandtl Soft Turbulence
(B′ = B).

III. DISCUSSION AND CONCLUSION

Let us thus resume the succession of inertial regimes,
starting from the highest Grashof numbers and going
down. When the Prandtl number is low, the Hard Tur-
bulence regime (SPHT) corresponds to the relation:

Nu = A(GrPr2)1/2 (42)

103 104 105 106 107 108 109

Gr

101

102

G
r−

1
/
5
N
u
/P
r

(8.3± 3)Gr0.3

(0.75± 0.1)Gr1/2

25Gr1/5

FIG. 2. Open and full circles, squares, stars and crosses are
data from Pawar and Arakeri [15], corresponding to high or
moderate Prandtl numbers in a circular cross section verti-
cal channel. With this compensated plot, the visible plateau
in the open circle and crosses data is the Batchelor regime.
The high Gr regime is the Hard Turbulence one. The lowest
Grashof open circle points probably shows the Soft Turbu-
lence regime (moderate Prandtl). Also shown are data (gray
triangles up) from reference [16], in reasonable agreement de-
spite the square cross section of the channel. Green triangle
down correspond to an inclined channel (5 degrees, reference
[8]), and show the same succession of regimes, while with
other values for the constants A, B, and E.

At lower Grashof number, but sufficient to have an
inertial regime, we have the Soft Turbulence regime
(SPST), where:

Nu = B(GrPr2)2 (43)

The transition corresponds to the temperature dissipa-
tive scale reaching the large correlation scale [13]. On a
Nu versus GrPr2 diagram, all the (small) Prandtl num-
ber merge on the same curve.

When the Prandtl number is large, the highest Grashof
numbers again correspond to the Hard Turbulence regime
(HPHT):

Nu

Pr
= CGr1/2 (44)

At lower Grashof number, but sufficient to have an in-
ertial regime, we have here the Batchelor regime (HPBR):

Nu

Pr
= EGr1/5 (45)

The transition corresponds to the velocity dissipative
scale reaching the large correlation scale, thus to the Kol-
mogorov inertial range vanishing. On a (Nu/Pr) versus
Gr diagram, all the (high) Prandtl number merge on the
same curve.

At even lower Grashof number, but always sufficient to
have an inertial regime (thus for moderate Prandtl num-
bers), we find back the Soft Turbulence regime, equation
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43. Again, the transition corresponds to the temperature
dissipative scale reaching the large correlation scale [13].

We find thus all the observed regimes [8, 15], if we
identify the predicted exponent for the Batchelor regime

(0.2) to the observed one [15] (0.3). Moreover, these
regimes nicely underline the existence of the Kolmogorov
or Batchelor ranges of scales, and their clearcut transi-
tions.
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