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Abstract: The French wholesale market is set to expand in the next few years under
European pressure and national decisions. In this paper, we assess the forecasting ability
of several classes of time series models for electricity wholesale spot prices at a day-ahead
horizon in France. Electricity spot prices display a strong seasonal pattern, particularly in
France given the high share of electric heating in housing during winter time. To deal with
this pattern, we implement a double temporal segmentation of the data. For each trading
period and season, we use a large number of specifications based on market fundamentals:
linear regressions, Markov-switching models, threshold models with a smooth transition.
An extensive evaluation on French data shows that modeling each season independently
leads to better results. Among non-linear models, MS models designed to capture the
sudden and fast-reverting spikes in the price dynamics yield more accurate forecasts.
Finally, pooling forecasts gives more reliable results.
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Introduction

In Europe, the reorganization of electricity markets is an ongoing project, with increasing

market integration and competitive wholesale markets. The central-western European

market (covering Benelux, France and Germany) is at the heart of power trading in

continental Europe and it provides a blueprint for plans to create a single European

electricity market.

The French wholesale market is the third largest in Europe after the German and

British ones, and is about to change drastically. In France, it is more than challenging for

new entrants to produce electricity given the very low cost of production of nuclear power

plants managed by the historic utility. To open up the French market to more competition,

the new national electricity law, passed in December 2010, compels Electricité de France

(EDF), the biggest producer of electric power in Europe and former domestic vertically

integrated public monopoly, to sell a proportion of its nuclear output to its rivals. The

French government also gives alternative suppliers access to hydroelectric generation and

modifies regulated rates for wholesale nuclear power. Moreover, following a European

Commission decision, the regulated rates for electricity will discontinue in 2016 for small

businesses on the retail market. Therefore, the number of electricity contracts offered

by suppliers with market prices will increase. That is why the French wholesale market

should become more liquid with more participants in the near future.

It is highly relevant to study the wholesale electricity prices in France at this stage.

This paper deals more specifically with forecasting French spot prices at a daily horizon.

This is a particularly challenging issue due to the specific properties of electricity prices.

First, since electricity is not storable, it has to be delivered as soon as it is generated.

Excess demand at a given time cannot be compensated by excess supply a few hours

before. This characteristic is responsible for price spikes and strong volatility; it can even

lead to negative prices. Second, spot prices display a strong seasonal pattern at daily,

weekly, and yearly levels. This pattern is particularly important in France due to the high

thermal sensitivity of electricity consumption.

In France, electricity consumption is highly dependent on temperature. This depen-

dence has increased significantly over the past decade. It is now estimated at 2 300MW/◦C

at 7 pm, the peak hour of daily consumption in winter. The thermal sensitivity is much

higher in France than in other European countries. For instance, the German electric-

ity consumption increases only by 500MW/◦C at 7 pm in winter (RTE [2012]). This

phenomenon is partly explained by the high rate of electric heating equipment in French

housing. Electric heating has widely developed in France since the 70s. Since 2005, more
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than 50% of new houses are equipped with electric heating due to the low off-peak tariffs

offered and in 2009, this rate even reached 70%. In 2010, 35% of the total stock of housing

(new and old) was heated with electricity, i.e. about 9.5 million homes (RTE [2012]).

In the literature, there has been considerable work on modeling and forecasting spot

prices. Basically, three groups of methods are used for this purpose: equilibrium or

game theory approach, simulation methods, and times series forecasting methods. The

latter approach uses the past dynamics of prices and eventually some exogenous variables

to forecast electricity prices. For this purpose, linear and non-linear models (Markov-

switching, threshold, time-varying parameter regressions) are used. Many authors rely

only on the past dynamics of prices, while others also include fundamental variables in the

model such as climatic variables, forecasted demand and capacity margin. In addition,

a strand of this literature allows a time-varying conditional volatility using the class of

GARCH models. See Liu and Shi [2013] for a recent survey.

In this paper, we further explore in an extensive way the relevance of time series

models for day-ahead forecasting of power prices in France. In particular, we address

several issues which are still open when modeling and forecasting electricity spot prices.

A first point concerns the treatment of seasonality in the data. This question is particu-

larly important for the French market given the high sensitivity of electricity consumption

to temperature, as explained above. In this paper, we implement a double temporal seg-

mentation of the data, to account for the intra- and inter-day seasonality. Prices display a

distinct pattern depending on the hour of the day. Moreover, their level and volatility are

much higher in fall and in winter. Therefore, the empirical analysis is conducted separately

for each trading hour and for each season. The hourly segmentation is now common in

literature (e.g. Crespo Cuaresma, Hlouskova, Kossmeier and Obersteiner [2004], Misiorek,

Trueck and Weron [2006], Karakatsani and Bunn [2008], Bordignon, Bunn, Lisi and Nan

[2013] in the context of power price forecasting). However, to our knowledge, seasonal

segmentation has not been applied for power price modeling and forecasting. Other more

common approaches to deal with the long-run seasonality are described in Nowotarski,

Tomczyk and Weron [2013b] and include the use of dummy variables, sinusoidal functions

and wavelets.

Moreover, we investigate whether nonlinear models perform better than the linear

ones for price forecasting, and if so, whether latent variable methods are better than

threshold methods. We use regime switching models which are more likely to capture

the sudden and fast reverting spikes in the price dynamics. We consider two widely

used classes of non-linear models: threshold regressive models with a smooth transition
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and Markov-switching models with fixed and time-varying transition probabilities. We

employ various specifications to capture the jumps of prices and a possible modification

of the relationship between prices and explanatory variables in the extreme regimes. In

the threshold and MS models with time-varying probabilities, the transitional variable is

selected for each trading hour and each season according to the results of the linearity

test. A few related papers provide evidence in favor of regime-switching models for power

price forecasting. Karakatsani and Bunn [2008] find that Markov-switching models and

models with time-varying coefficients have a better predictive performance in the British

market, while the threshold class of models outperforms the other specifications for the

forecasting of Californian spot prices in Misiorek et al. [2006]. Kosater and Mosler [2006]

also obtain better long-run forecasts of German prices with Markov-switching models.

Finally, we explore the benefit of combining forecasts over individual predictors. We

compare the performance of individual models, as well as combinations of forecasts with

various weighting schemes. Despite a long tradition in the use of forecast combination

(Bates and Granger [1969] and Newbold and Granger [1974]) and a renewed interest in the

forecasting literature in the last decade, the use of combination of forecasts is recent in the

context of electricity prices and gives positive results in this area too. The existing papers

provide evidence in favor of combinations for several power markets: the UKPX power

exchange (Bordignon et al. [2013]), Nord Pool (Raviv, Bouwman and van Dijk [2012]), the

European Energy Exchange and the Pennsylvania-New Jersey-Maryland Interconnection

(Nowotarski, Raviv, Trueck and Weron [2013a]).1 In this paper, we provide additional

evidence for various weighting schemes and for a new geographical area.

We conduct an out-of-sample evaluation of the forecasting performance of the various

models on a day-ahead basis. We consider forecasts of French wholesale prices over 2012

and assess the performance of the models or of their combinations for each trading hour

and each season. We calculate several forecast evaluation criteria and test for a significant

difference between them with the Diebold and Mariano [1995] test, the Giacomini and

White [2006] test and the test for encompassing of Harvey, Leybourne and Newbold

[1997]. The evaluation is extensive, since we consider 2880 individual models and 2304

model combinations. The results show that the double temporal segmentation improves

the results, except in summer. The gain is stronger if we focus on linear models and

on specifications without fundamental variables. Among the non-linear specifications,

the three-state Markov-switching model leads to more accurate results. However, the

performance of individual models remains unstable across hours and seasons. Hence,

1See also de Menezes, Bunn and Taylor [2000] for a survey and an application to electricity load.
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pooling the results provides more reliable forecasts.

The paper proceeds as follows. In the first section, we present the French electricity

markets with a focus on the wholesale one. The second section describes the data. The

third section presents the estimation and forecast design. The fourth section provides an

assessment of the forecasting performance of the various specifications. The last section

concludes.

1 The market design

1.1 French energy situation

The energy sector in France has changed dramatically since the first oil shock in 1973 and

the government’s decision in March 1974 to increase the nuclear power capacity rapidly.

Following this decision, the use of coal and oil declined markedly, substituted mainly by

the growth in electricity and natural gas consumption. Today, France is the eighth largest

producer of electricity in the world and the second in term of nuclear production.

Contrary to several European countries which benefit from an abundance of raw ma-

terials, France is poor in energy resources. To limit imports of oil and natural gas and

therefore dependence, French electricity consumption has grown twice as fast as the over-

all energy consumption between 1973 and 2012. In this period, electricity consumption

almost tripled despite a minor decline in the years 2009 and 2011 (due to the economic

crisis and weather conditions). Without fossil fuel reserves, the nuclear power program

led to a substitution in electricity generation. The increase in nuclear power generation

(15TWh in 1973 to 405TWh in 2012) is therefore accompanied by a reduction of the use

of classic thermal units. Today, France represents 17% of the nuclear power generation in

the world with 58 reactors.2 EDF, the former vertical integrated public monopoly, controls

80% of the country’s power generating capacity including all atomic reactors, two-thirds

of thermal capacity, 81% of hydroelectric capacity and about a third of renewable output.

The French energy mix points to a large consumption of oil (used especially in trans-

port) and nuclear power. In 2012, 75% of electricity was generated by nuclear power

plants and 12% by hydro plants which are used for base load in the merit order. The

costs of electricity production are among the lowest in Europe. The residential sector is

the country’s largest electricity user, currently representing about two thirds of the total.

Next in importance is the industrial sector.3

2The French nuclear electricity production amounts to 63 130 MW in 2012; the rest is 6 160 MW for
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(a) Final energy consumption (b) Electricity production

Figure 1: French energy situation in 2012

While French consumption is the second largest in Europe after Germany (in terms of

number of consumers and in output), its power trading market is not as dynamic due to

the limited number of market players. It can also be particularly constrained in winter,

since French demand is very sensitive to temperature. In 2012, for example, the level

of electricity consumption reached more than 102 000MW on February 8, the highest

recorded level in France. As mentioned previously, a 1 ◦C drop in the temperature is

estimated to increase the 7 pm electricity demand peak of up to around 2 300MW. When

temperatures are very low, France may not have enough installed capacity. During the

limited number of days in the year that the country does not have enough capacity, it has

to find another way to secure its extreme peak power needs in order to guarantee security

of supply. That usually comes from importing power from the surrounding countries. One

key partner is Germany which has a better reserve margin in winter due to its combined

heat and power plants that are running, so that more capacity is provided during that

season.

1.2 Organization of the French electricity market

Electricity is traded either on the wholesale market or on the retail market. The empirical

analysis will deal with the wholesale exchanges made on the EPEX spot. It currently

represents 17% of the electricity produced and sold in 2012 in France but this share

should increase with the ongoing reorganization of electricity markets in Europe.4

Retail electricity market

coal plants, 5 009MW for natural gas, 6 945MW for fuel and peak load, and 24 301MW for hydro.
3In 2011, the demand was divided up as follows: residential and services 67.3%, industries 28.1%,

transport 2.8% and agriculture 1.7% (source: SOeS).
4See also Vassilopoulos [2010] for a recent discussion on the French wholesale market.
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Retail transactions involve the final sale of power to end-use customers such as residential

houses, commercial properties and manufacturing firms. In 2012, the French retail market

represented 25.8 million sites which accounted for 423TWh of annual consumption.

Clients have the choice between two contracts, either under regulated tariffs (offered

mostly by the incumbent supplier) or at market prices (offered by all suppliers). The

regulated tariffs are set by the Ministries of the Economy and Energy, on a proposal from

the CRE (the French regulatory authority on energy). They differ according to the type

of customer (individual, small business, large companies). In December 2012, the share

of contracts at market prices represented 31% of the total with a share of 66% for large

nonresidential sites.

The NOME Law of 2010 (Nouvelle Organisation du Marché de l’Electricité - The New

Organization of the electricity market) provides that regulated tariffs will disappear in

2016 for small businesses and will only exist for residential customers. 21.8% of electricity

used by businesses is purchased under a contract at market prices with an alternative sup-

plier. Therefore, this share will evolve significantly and the transactions on the wholesale

market will also increase in volume and number.

Wholesale market

On the wholesale market, electricity is traded (bought and sold) before being delivered

to the network to end users (individuals or companies).

The participants are the electricity suppliers most of whom (but not all) own gener-

ating plants (EDF, GDF Suez, SNET, Poweo, Direct Energy, Enercoop. . . ), brokers and

traders. In 2012, 565 TWh were injected into grids: 449 TWh from generating units,

31 TWh from VPP generation (virtual power plant), 56 TWh from ARENH (Regulated

Access to Incumbent Nuclear Electricity), and 28 TWh from imports.

• EDF offers access to 5400MW of its domestic capacity via quarterly auctions (vir-

tual power plants). This capacity can be obtained by producers, suppliers and

traders already active in the domestic market or wishing to enter through the quar-

terly auction mechanism. EDF sells this production capacity in the form of power

purchase contracts specifying both capacity and prices.

• The NOME law established the ARENH system (Regulated Access to Incumbent

Nuclear Electricity). This system entitles suppliers to purchase electricity from EDF

at a regulated price, in volumes determined by the French energy regulator. One

issue with the deregulation of the electricity market in France lies in the fact that
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the incumbent supplier EDF could offer tariffs related to its fleet of inexpensive

generation (dependent on 90% of the cost of nuclear and hydro). It is not the

case for the alternative suppliers who make offers based on the European wholesale

prices. To reduce this difference, the solution chosen is to allow alternative suppliers

to repurchase a share of the EDF nuclear generation at the ARENH rate.5

• France also imports electricity when the cost of electricity is more attractive at a

given time. The electricity interconnections enable importing less expensive electric-

ity at certain times of the day than that produced by the national production units.

This is the case in France at peak times (especially in the evening in winter), when

thermal power plants are used. It is usually more profitable to import electricity at

these times and to export when domestic demand decreases.

These 565TWh injected on the grids in 2012 were withdrawn from grids through: 463TWh

for end user consumption, 31TWh grid losses purchased on markets and 62TWh for ex-

ports.

An important part of the electricity wholesale market activity takes place on power

exchange markets: France Epex Spot for spot products, based in Paris and EEX Power

Derivatives for future products in Leipzig.6 Epex Spot was created in 2008 through the

merger of the power spot activities of the French energy exchanges Powernext and the

German one EEX. The Epex Spot trades contracts for the physical delivery of electricity

in Austria, Germany, France and Switzerland.

The reference price for the spot trade is the price of the day-ahead product on Epex

Spot. Epex spot prices are negotiated the day before the delivery by an auction mecha-

nism. In the morning, buyers and sellers (consumers and power generators) submit theirs

orders (price/quantity combination) for each hour (or block of hours) of the forthcoming

day. The market is closed at 12:00 noon for France and Epex Spot computes the demand

and supply curves and the equilibrium price and volume for each hour of the forthcoming

day. The results are published as soon as they are available from 12:40 pm for France.7

5In April 2011, the government set the ARENH at 40 euros per MWh between July and December
2011 and 42 euros per MWh after January 2012.

6The rest of exchanges takes place over-the-counter (OTC), through direct transactions or through
intermediaries (brokers and trading platforms). The total volume of OTC transactions is not public.

7Epex Spot also operates intraday power markets for Germany, France and Austria. Intra-day con-
tracts on this market are intended to respond to unpredictable temporary physical requirements during
the day (contracts can be traded up to 45 minutes before physical fulfillment). 2012 trading volumes on
Epex Spot accounted for 321TWh in the day-ahead auction against 18TWh on the intraday markets.
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2 Data

We focus on electricity spot prices in euros per megawatt hour (e/MWh) for France from

the European Exchange market (EPEX).

We consider several price drivers as explanatory variables. The variables are published

at a daily or hourly frequency and must be available before the release of spot prices for

day t. Widely accepted market fundamentals include the following indicators of supply,

demand and risk:

• Demand forecast (in MW): The 24 hourly day-ahead forecasts for continental France

are released by RTE (the French transmission grid operator) at 0:00 in t-1.

• Capacity margin (in MW): The forecasted margin is published by RTE at 8 p.m.

in t-1. It represents ‘the volume of capacity available for RTE over and above the

operating schedule capable of being used to cope with generation or consumption

contingencies’. We take the margin of the morning peak available all over the year.

• Volatility of spot prices (in e/MWh): We use the coefficient of variation (standard

deviation/mean) of the hourly prices over the last five days (weekly rolling window).

• Past values of spot prices (in e/MWh): The price of the day before (lag-1) and

of the same day the week before (lag-5) and the weighted average price over the

previous day are particularly relevant.

• Gas price (in e/MWh): We consider the Dutch day-ahead price of Natural Gas

(TTF) which is a reference price in Europe.8 To avoid an endogeneity problem, we

use lag-1 price.

• Forecasted balance of exchange programs with Germany (in MW): RTE provides

figures for the total volume of exports from France and imports into France for each

hour as it is known each day at the end of the afternoon, for the following day.

The power prices, demand, volumes of exchange have an hourly frequency, while the ca-

pacity margin and the gas price are available at a daily frequency. With the exception

of cross-border trade, these variables have already been considered as price drivers in the

literature (see for instance, Karakatsani and Bunn [2008] and Bordignon et al. [2013]).9

8The Title Transfer Facility (TTF) is a virtual trading point for natural gas in the Netherlands, set
up in 2003. It became the biggest gas trading platform in Europe.

9Many authors only include the (forecasted) demand in addition to lagged prices in the forecasting
equation. See for instance Nogales, Contreras and Conejo [2002], Conejo, Contreras, Espinola and Plazas
[2005], Misiorek et al. [2006], Weron and Misiorek [2008].
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In this paper, we also take into account the cross-border exchanges in electricity. As

described in the previous section, the French electricity transmission network is intercon-

nected with neighboring countries. The growth of cross-border trade leads us to account

for these exchanges in our models.10 We focus on the exchanges with the historical partner

Germany. We omit temperature and other climatic variables, already taken into account

in the demand forecast by RTE.

In contrast with many papers, we take into account the particular timing of the release

of the spot prices, as depicted in Figure 2. The market is closed at 12:00 noon and the

spot prices for the 24 hours of the next day are published as from 12:40 pm. Following the

market practice, we only use information available up to noon before the market clearing.

This means that all variables involved in the forecasting must be available before noon

one day before the reference day. This is the case of the forecasted demand released at

0:00 the day before the reference day and the lagged gas price. However, the forecasted

capacity margin and exchange volumes with Germany for the next day are published by

RTE only at the end of the afternoon. For this reason, we use the lagged values of these

two variables in our models. By doing so, we ensure that our results are relevant for

practitioners.11

Figure 2: Daily updating scheme of data releases in Epex Spot

The whole sample spans from January 2, 2008 to December 31, 2012, yielding 1263

10In November 2010, the Central Western Europe Market Coupling (CWE) was launched. CWE is a
cooperation of Transmission System Operators and power exchanges covering the Belgian, Dutch, French
and German electricity markets.

11Given the delay in the publication of the explanatory variables and the early publication of spot
prices, the forecasts performed here are useful over a short window, from 0:00 to noon. Market participants
use this window to optimally elaborate their bidding strategies.

10



daily observations for each trading hour. We consider several ranges of data to forecast

some prices in each season of 2012 (see below). Note that it is particularly challenging

to forecast prices in 2012. A historical peak was reached in February 2012 during an

exceptionally cold wave, while the lowest consumption level observed for five years oc-

curred in August 2012. The prices, demand and margin are taken in logarithm given their

high volatility. Like Karakatsani and Bunn [2008] and Bordignon et al. [2013], we remove

weekends and holidays from the data and consider working days only. We also remove

two days in 2012 (12/26/2012 and 01/02/2012), where prices are negative at 4 am and 5

am.12 We apply several unit root tests to each variable in logarithm. All series are found

stationary at the usual significance levels, except the forecasted demand and the gas price

(the results are available upon request). In the following, we will consider the latter ones

in difference.

3 Modeling and forecasting procedures

3.1 Temporal segmentation

Due to the strong seasonality present both in the intra-day and inter-day dynamics of

electricity prices, especially in France given the high share of electricity in residential

heating, we implement a double temporal segmentation of the data.

As already mentioned in the literature, prices display a distinct pattern depending on

the hour of the day. This variation is mainly a result of the evolution of demand during

the day. According to RTE, the intra-day profile of French consumption is characterized

by four phases: the night trough, which is the minimum consumption of the day, the

morning peak, the afternoon trough and the evening peak. The maximum consumption

is reached at the morning peak at 13:00 in summer and at the evening peak around 19:00

in winter (heavy use of electrical appliances, public transport, lighting, heating . . . ).

As done in Garcia-Martos, Rodriguez and Sanchez [2011], Figure 3(a) shows the box

plot of prices between 2008 and 2012 at each trading hour.13 In line with the demand

profile, peaks in level occur around 1 pm and 7 pm, while prices are lower from 2 am

to 5 am and 3 pm to 6 pm. Prices display a larger volatility between 3 am and 5 am

and between 6 pm and 8 pm. To allow a variation of the coefficients of the forecasting

12Negative price can occur in situations of overcapacity. For technical or economic reasons, some types
of generators, such as nuclear, hydroelectric, or wind power plants, cannot or prefer not to decrease their
production for short periods of time of lower demand. We decided to discard these observations to be
able to use the logarithmic transformation.

13293 extreme values out of the 24792 observed prices have been removed for the readability of the
graph.
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Figure 3: Boxplot of spot prices (2008-2012)

model during the day, we model separately each hour of the day, as often done in the

literature (see, for recent examples in forecasting, Crespo Cuaresma et al. [2004], Misiorek

et al. [2006], Weron and Misiorek [2008], Karakatsani and Bunn [2008], Bordignon et al.

[2013]).14

Spot prices also display a strong seasonal pattern during the year. Their level and

volatility are much higher in fall and winter, as shown by the box plot of power prices

in each season (Figure 3(b)). Indeed, consumption is seasonal and the price per MWh

varies seasonally: summer demand is lower and the MWh is cheaper. It is produced from

nuclear and hydropower. In winter, the demand is higher and the MWh is more expensive.

Therefore, the last power plant ”called” has to be able to quickly meet demand. These

plants can meet this constraint by using fossil fuels at a higher cost. For example in

France, about 30 GW are needed in August during the day while up to 102 GW have

been called in February at 7.00 pm in a cold winter. To also allow a variation of the

coefficients during the year, we model each season independently.

As mentioned above, the hourly segmentation is now common in literature. However,

to the best of our knowledge, seasonal segmentation has not been applied for power price

modeling. Other more common approaches to deal with the long-run seasonality are

described in Nowotarski et al. [2013b]: dummies, sinusoidal functions, wavelets. The

usual approach employing monthly dummy variables (allowing generally a variation of

the intercept only) or sinusoidal functions is less flexible and/or less parsimonious. The

14Alternative approaches include the use of dummies for the trading periods in a unique equation
(Popova [2004]). However this method is far less flexible or parsimonious. Alternatively, multivari-
ate approaches are employed by Huisman, Huurman and Mahieu [2007] with a panel framework or by
Panagiotelis and Smith [2008] taking into account the hourly heterogeneity in a VAR model.
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use of wavelet decomposition for forecasting requires arbitrary choices about the wavelet

family, the vanishing moment in many of them, the number of octaves. Moreover, the

use of fundamental variables is less straightforward with the wavelet decomposition. In

a close context, Taylor [2010] uses seasonal ARMA methods or smoothing approaches to

capture the intraday, intraweek and intrayear seasonality in load data. In this paper, the

intraweek component is omitted, since we have removed the weekends and holidays from

the data.

The variation of the coefficients of a linear regression of the price on the drivers depicted

in Figure 4 across the two dimensions (trading hours and seasons) supports this double

segmentation. Figure 4 shows the estimated coefficients of a linear model relating the spot

prices to the aforementioned fundamental variables. This regression is conducted either

on 2012 data or on seasonal data (i.e. on data-sets consisting only of observations of the

same season). This will be explained further in the next section. We note a significant

variation of the coefficients across hours (variation of the coefficients along each curve)

and seasons (variation between the curves).

3.2 Linear versus non linear models

We consider linear and nonlinear specifications of the relationship between spot prices

and market fundamentals. A summary of all specifications with their code is given in

Table 1a. In the following, p
(h)
t denotes the log-price and x

(h)
t the fundamentals for hour

h, h = 1, . . . , 24 of day t.15

The linear specifications include a basic autoregressive model, an exponential model

and autoregressive regressions with exogenous variables. The first two models do not

include fundamental regressors and will be useful to assess the contribution of exogenous

day-ahead information to forecasting. The autoregressive (AR) model is simply given by:

p
(h)
t = α(h) +

p
∑

i=1

φ
(h)
i p

(h)
t−i + ε

(h)
t , t = 1, . . . , T (1)

where α(h), φ
(h)
i , i = 1, . . . , p and h = 1, . . . , 24, are constant coefficients estimated by least

squares and ε
(h)
t is the error term. The order p is selected with the Akaike Information

Criterion (AIC) for a maximum lag length fixed to 5. In this framework, the optimal

15We have assessed the existence of a break in the forecasting equations due to the implementation of
market coupling in November 2010 (see footnote 9). To this aim, we have performed rolling regressions
from January 2008 to December 2012. The results do not show any major change in the relationship
between spot prices and the price drivers in 2011 and 2012. Therefore, we do not incorporate a structural
change in the forecasting equations in November 2010.
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Figure 4: Coefficients of the drivers in linear models

predictor p̂T (1) = E(pT+1|pT , pT−1, . . .) of the price in T+1 based on the information

available up to time T is given by:

p̂
(h)
T (1) = α(h) +

p
∑

i=1

φ
(h)
i p

(h)
T+1−i (2)

Forecasts from equation (1) perform well as documented in the literature.

To forecast stationary data, another usual solution relies on exponential smoothing

technique. This approach consists in assigning exponentially decreasing weights over time

to the past observations:

s
(h)
t = α(h)p

(h)
t + (1− α(h))s

(h)
t−1 for t > 0 (3)

with s
(h)
0 = p

(h)
0

where s
(h)
t is the smoothed value and α(h) ∈ [0, 1] is the smoothing factor. The parameter

α(h) is estimated by minimizing the mean square error (with e
(h)
t = p

(h)
t − s

(h)
t−1). Then,

the optimal predictor p̂T (1) can be written as follows:

p̂
(h)
T (1) = s

(h)
T (4)

Third, the autoregressive model with exogenous variables (AR-X) is specified as:

p
(h)
t = α(h) + β(h)′x

(h)
t + ε

(h)
t , t = 1, . . . , T (5)

where β(h) is a k×1 vector of constant parameters, x
(h)
t = (p

(h)
t−1, . . . , p

(h)
t−p, z

(h)
t ) is the k×1

vector of regressors consisting of autoregressive terms and fundamentals z
(h)
t in day t and
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ε
(h)
t is the error term. The model is estimated by least squares. In this case, the optimal

predictor p̂T (1) = E(pT+1|zT+1, pT , pT−1, . . .) is given by:

p̂
(h)
T (1) = α(h) + β(h)′x

(h)
T+1 (6)

We also consider nonlinear models in order to capture infrequent and extreme ob-

servations typical of electricity prices (spikes and drops) and the possible change in the

relationship between spot prices and their fundamentals during these abnormal periods.

First, we consider Markov-switching models popularized by Hamilton [1989]. In these

models, the parameters of equation (5) depend on an unobservable discrete variable St:

p
(h)
t = α(h)(S

(h)
t ) + β(h)′(S

(h)
t )x

(h)
t + ε

(h)
t (S

(h)
t ), t = 1, . . . , T (7)

where ε
(h)
t (S

(h)
t ) → NID(0, σ2(S

(h)
t )). The variable S

(h)
t = 1, 2, . . . ,M represents the state

that the process is in at time t. This variable is assumed to follow a first-order Markov

chain defined by the following transition probabilities:

q
(h)
ij = P (S

(h)
t = j|S

(h)
t−1 = i) ∀t (8)

where
∑M

j=1 q
(h)
ij = 1, ∀i, j = 1, 2, . . . ,M . The forecast of the chain S

(h)
t at horizon 1 is

given by ξ̂
(h)
T+1|T = P (h)ξ̂

(h)
T |T , where P (h) is the transition matrix of the Markov chain and

ξ̂
(h)
T |T the vector of smoothed probabilities in T . The optimal predictor p̂T (1) is derived by

weighting each estimated regime with the predicted probabilities of the states in T + 1,

ξ̂
(h)
T+1|T .

Following Diebold, Lee and Weinbach [1994], we extend this specification with time-

varying transition probabilities. In this case, the transition probabilities are not time

invariant. Instead, they depend on an exogenous variable q
(h)
t :

P (S
(h)
t = i|S

(h)
t−1 = i, qt) = Φ(a

(h)
i + b

(h)
i q

(h)
t ) i = 1, 2 (9)

where Φ is the cumulative distribution function of the standard normal distribution,

a
(h)
i and b

(h)
i are unknown parameters for regime St = i and q

(h)
t is an exogenous variable

(possibly included in x
(h)
t ). The forecast of the chain S

(h)
t at horizon 1 is given by ξ̂

(h)
T+1|T =

P
(h)
T+1ξ̂

(h)
T |T , where P

(h)
T+1 is the transition matrix of the Markov chain in T + 1.

In the following, we only consider the case of two and three regimes (M = 2, 3). For

M = 2, we consider three versions of the MS-ARX model with fixed or time-varying

transition probabilities. The first ones allow a variation of the intercept and the variance

only, while the second ones also allow a variation of the autoregressive coefficients. In
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the third ones, all the parameters depend on St. For M = 3, we only consider the first

two constrained specifications with fixed transition probabilities and do not consider the

general form given the proliferation of parameters when the number of regimes increases.

The Markov-switching models are estimated via a numerical maximization of the max-

imum likelihood (we use the function fminunc in Matlab). The likelihood is derived in the

Hamilton filter (1989). For the specifications with time-varying probabilities, the fixed

transition probabilities are replaced by time-varying probabilities in the first step of the

filter and the rest of the estimation procedure is similar. A large set of initial conditions

is used to avoid any dependency of the results on the initialization. When a convergence

problem was encountered in the maximization, the estimation of the model was re-run

with a new set of starting values.

A second class of nonlinear models considered in this paper is the Smooth Thresh-

old AutoRegressive models (Granger and Terasvirta [1993]) augmented with exogenous

variables. The variable p
(h)
t follows a STAR-X model if:

p
(h)
t = α

(h)
0 + β

(h)′

0 x
(h)
t +

(

α
(h)
1 + β

(h)′

1 x
(h)
t

)

G(q
(h)
t ; γ(h), c(h)) + ε

(h)
t (10)

for t = 1, . . . , T . The residual ε
(h)
t is assumed to be i.i.d. (0, σ2

ε). In our case, the mecha-

nism of transition is defined as a logistic function of order 1:

G(q
(h)
t ; γ(h), c(h)) = [1 + exp(−γ(h)(q

(h)
t − c(h)))]−1 , γ(h) > 0 (11)

where c(h) denotes a location parameter and γ(h) determines the slope of the transition

function i.e. the speed of the transition from one regime to the other one. The logistic

function is a continuous function with S shape bounded between 0 to 1. It represents a

smooth transition from an inferior regime (coefficient β
(h)
0 ) to a superior one (coefficient

β
(h)
0 +β

(h)
1 ) with an infinite number of intermediate regimes in between. The estimation of

the parameters in a STR model consists in applying non-linear least squares. The optimal

predictor p̂T (1) is given by:

p̂
(h)
T (1) = α

(h)
0 + β

(h)′

0 x
(h)
T+1 +

(

α
(h)
1 + β

(h)′

1 x
(h)
T+1

)

G(q
(h)
T+1; γ

(h), c(h)) (12)

Again, we consider three versions of this model: the first one with a variation of the

intercept only, the second one with a variation of the intercept and the AR coefficients

and the last one with a variation of the coefficients of all regressors.

With respect to the regressors’ selection, we consider a linear model with explanatory

variables selected with a stepwise procedure among the set of market fundamentals de-

scribed in the previous section. To get a fair comparison and make the convergence of the
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estimation algorithms easier for the nonlinear models, we also consider all the specifica-

tions with the same reduced structure: two autoregressive terms - the weighted average

price of the preceding day16 and the price at the same hour two days before - and demand

in first-difference. At this level, we choose the most significant regressors over all data

ranges and trading hours. The forecasted demand is found to be more influential in our

models since it refers to the day of interest, while the other regressors are lagged because

of their delay of publication.

As suggested by Chen and Bunn [2010], the transitional variable can vary according

to the season and the trading hour. To take this result into account, we select the

transitional variable of the threshold and MS models with time-varying probabilities for

each hour, each season and each treatment of seasonality. The variable is chosen among

the whole set of explanatory variables (lagged price, lagged margin, first-difference forecast

demand, first-difference of lagged gas price, forecasted power exchange with Germany, past

volatility of spot prices). For each regime-switching model with a time-varying transition,

we conduct a linearity test with each potential variable and select the one which provides

the strongest rejection of the null of linearity.

3.3 Individual versus pooled forecasts

In the previous subsection, we have proposed several linear or nonlinear candidate methods

for forecasting electricity prices. However, an alternative solution used by Bordignon et al.

[2013], Raviv et al. [2012] and Nowotarski et al. [2013a] in the context of electricity market

consists in combining forecasts. The objective highlighted by Bordignon et al. [2013] is

to obtain accurate predictions when a wide variety of models exists and no predominant

one can be selected.

We consider several methodologies for combining forecasts. The easiest way to obtain

the combined prediction p̂ct is to consider the mean of the individual predictions p̂
(k)
t of

the k individual models considered (for k = 1, . . . , K):

p̂ct =
1

K

K
∑

k=1

p̂
(k)
t (13)

An alternative approach is to weight the predictions based on a selected criterion:

p̂ct =
K
∑

k=1

ωt,kp̂
(k)
t (14)

16The lagged weighted average price is more significant than the price at the same hour the day before.
The weighted average price is also smoother and it makes the estimation of nonlinear models easier.
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with ωt,k, the weight given at time t to the predictor k, k = 1, . . . , K. Like Bordignon

et al. [2013], we adopt the usual solution proposed by Bates and Granger [1969] which

consists in assigning weights depending on the inverse of means square prediction errors

of the l most recent observations:

ωt,k =
(
∑t−1

τ=t−l e
2
τ,k)

−1

∑K
j=1(

∑t−1
τ=t−l e

2
τ,j)

−1
(15)

where eτ,k = pτ − p̂
(k)
τ , ω1,k = 1/K. Accordingly, 0 ≤ ωt,k ≤ 1,

∑K
k=1 ωt,k = 1. The

adaptive weights are larger if the individual models yield more accurate forecasts. The

third solution is the Aggregated Forecast Through Exponential Re-weighting, AFTER

(Yang [2004]; Zou and Yang [2004]). The weights are obtained recursively according to:

ωt,k =
v̂
−1/2
t−1,k exp[−

e2
t−1,k

2v̂t−1,k
]ωt−1,k

∑K
i=1 v̂

−1/2
t−1,i exp[−

e2t−1,i

2v̂t−1,i
]ωt−1,i

(16)

where et−1,k = pt−1 − p̂
(k)
t−1, ω1,k = 1/K. Accordingly, 0 ≤ ωt,k ≤ 1,

∑K
k=1 ωt,k = 1 and

v̂t−1,k = 1
t−1

∑t−1
τ=1 e

2
τ,k is the estimation of the prediction variance.

A last solution adopted in this paper relies on the predictive likelihood model average

(PLMA) proposed by Kapetanios, Labhard and Price [2006]. The weights are assigned

depending on AIC information criteria built on a sample of the l previous forecast errors:

ωt,k =
exp(−1/2Ψt,k)

∑K
j=1 exp(−1/2Ψt,j)

(17)

for k = 1, . . . , K where Ψt,k = AICt,k − minjAICt,j , 0 ≤ ωt,k ≤ 1 and
∑K

k=1 ωt,k = 1.

The AIC criterion is not calculated on the basis of the estimated log likelihood (which

is derived in-sample from observed data). Instead, this criterion is based on a predictive

likelihood derived from out-of-sample forecast errors. This construction has the advantage

to combine a measure of forecast accuracy and a penalty term for model complexity. A

summary of all possible combinations with their code is given in Table 1b.

4 Day-ahead forecasting

4.1 Empirical design

We compare the various approaches described above for modeling French spot prices

through their forecasting performance.

The evaluation is conducted in real conditions, i.e., out of the estimation period. We

remove the last observations of our sample. We estimate the 15 specifications over a
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rolling window and run a day-ahead forecast of the variable p
(h)
t for each trading hour

h = 1, . . . , 24. We repeat these calculations up to the last observation of the out-of-sample

period. The out-of-sample period consists of the last 35 observations of each season in

2012. The estimation set includes the preceding weekdays either of the entire past year, or

of the same season (hereafter referred to as non seasonal and seasonal ranges respectively).

To have a comparable number of observations (around 255 weekdays) across simulations,

the seasonal range consists of four seasons. The alternative data-sets used to forecast the

last observations of each season are described in Figure 5.

The choice of the specifications is done in real-time. In the case of the AR process,

the lag length is chosen with the AIC criterion at each iteration of the out-of-sample

exercise. Similarly, the choice of the regressors in the linear model with the stepwise

procedure is done at each iteration on the basis of the available information at the time

of the forecast. The threshold variable in the STR models and the variable entering

the transition probabilities in the MS models are selected on the sample excluding the

forecasting period at the beginning of the iterations.17 As suggested by Chen and Bunn

[2010], the optimal transitional variables vary a lot depending on the time period, the

season as well as the specification. The forecasted balance of power exchange, the demand

forecast and the past volatility of spot prices are chosen more often.18 At each period of

the evaluation period, we use a large set of initial values to avoid any dependency of the

results on the initial values for the estimation of the MS and STR models19.

To mimic the practice of forecasters, we use an automatic insanity filter (Stock and

Watson [1999]). This filter removes unrealistic forecasts and replaces them with some

reasonable values. Given the existence of spikes in the price series, this filter must be

used with parsimony. We only discard values found outside a wide interval given by the

historical range of prices (over all hours) enlarged by plus/minus the average standard

deviation of hourly prices. This rule requires discarding 0.45% of forecasts only. These

insane forecasts are replaced by the last observed price at the same hour (naive forecast).

The out-of-sample evaluation is conducted for each model or combination of models in

17The linearity tests are not performed at each recursion because it is too time consuming. However,
we exclude the 35 forecasted observations to have a real time experience.

18For sake of parsimony, the results are not reported in the paper but they are available upon request.
19For MS models, the initial vector of parameters was reinitialized every five observations of the

evaluation period. For STR models, we apply a dense grid search to get good starting values for (γ, c)
at the first iteration only. We use the values of the threshold variable qt between the first and the third
quartile for the location parameter and 50 positive values (close to zero) for the smoothness parameter.
Given the values of (γ, c), the estimation of the regressors coefficients proceeds by ordinary least squares.
Finally, we select the values of the parameters minimizing the residual sum of squares and keep them as
starting values for the rest of the iterations.
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Figure 5: Experimental design - Estimation and forecasting windows

each season and trading hour. We consider a total of 2880 individual models and obtain

a set of 35 forecasts with each of them. Pooled forecasts are also obtained by combining

these individual forecasts with the four combination methods described in the previous

section. In the adaptive rules, the weights are computed from the last l = 10 more recent

observations. In the case of the last weighting scheme, the AIC criteria are computed

with the number of parameters estimated recursively for each hour and each season.20 At

this level, we also distinguish combinations from linear and non-linear specifications. A

total of 2304 combinations is obtained.

Several comparisons are done with these results: First, we contrast the forecasting

accuracy of regime switching models (MS and STR) to linear specifications (AR, expo-

nential and AR-X). Second, the benefit of combining forecasts to achieve more accurate

predictions is studied by comparing the individual forecasts of the 15 models versus pooled

forecasts. To this end, we compare the forecasts of the models estimated over an entire

year or on data belonging to the same season, as described above. Finally, we assess the

gain due to the double temporal segmentation of the data.

The forecast accuracy of each model or combination of models is measured with the

usual root mean square error (RMSE), mean absolute error (MAE) and mean absolute

percent error (MAPE). Using these criteria, we provide a ranking of the models according

to their RMSE/MAE and report an average rank over the 24 trading hours for each season

and the full year. This evaluation is qualitative since it relies on averages of rankings.

To take into account quantitatively the forecast accuracy of each model, we also compute

20The number of parameters in the AR and LSTEP models vary at each iteration and it is fixed in
the other specifications.
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MAPE for each model over all hours for each season and the whole year and rank the

models according to the results (see Nowotarski et al. [2013b] for a similar approach).

To compare the predictive ability of the competing approaches, we implement several

tests. First, to assess if there is a significant difference between the MSE or MAE criteria,

we perform the test of Diebold and Mariano [1995] with the correction of Harvey et

al. [1997] in small samples and the unconditional test of Giacomini and White [2006].

The latter has the advantage of being implementable even if the models are nested (for

example, this is the case of linear and regime-switching models) and it captures the

effects of estimation uncertainty on the relative forecast performance. We also conduct

the encompassing test of Harvey et al. [1997]. If the null hypothesis of this test is rejected,

the competing predictor contains useful information not present in the model.

4.2 Out-of-sample results

The evaluation criteria and the rankings of the models are provided in Tables 2-4. The

results of the tests appear in Table 5.

To have a detailed view by trading hour and season, Tables 2a-2d provide the evalu-

ation criteria of individual models for peak (H9, H14 and H20) and off-peak (H3) hours.

MSE and MAE display higher values at 3 am, which is probably due to the strong volatil-

ity of prices between 3 and 5 in the morning (in winter, the worst results are obtained at 9

am). Regarding the results per season, winter is the most difficult period to forecast. The

largest MSE and MAEs are found in winter (and in fall between 3 am and 5 am), while

the smallest values appear in summer. In winter, the proportion of correct direction is

also rather low, whereas specifications give more accurate signals about the sign of price

variations in the other seasons.

To compare the performance of individual models, Table 3 gives the number of times

over the 24 hours of each season that a given model provides the best forecast in terms

of MSE, MAE and MAPE. Table 4 provides the average rank per season for each model

and the global rank over the entire year. We provide a qualitative ranking based on the

RMSE and MAE criteria and a quantitative ranking relying on the aggregate MAPE of

the models. Table 5 reports the results of the tests by class of models. We provide the

percentage of times that each approach gives lower MSE or MAE and the percentage

of times that these criteria are significantly lower according to the Diebold-Mariano and

Giacomini-White tests. The last block of results gives the percentage of rejection of the

null hypothesis for the encompassing test of Harvey et al. [1997]. The results of the tests

are given at a 10% significance level. Several results are worth commenting on.
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The comparison of the models in Table 3 shows that the inclusion of fundamental

variables such as the forecasted demand to the specification improves the forecast accuracy

of the models: Models using only the past dynamics of prices display better forecasts in

only 14% of cases in terms of MSE (in 19% of cases in terms of MAE or MAPE). This

result is consistent with the findings by Misiorek et al. [2006] for the California power

exchange, Karakatsani and Bunn [2008] and Bordignon et al. [2013] for the UK market

and Conejo et al. [2005] for the PJM interconnection. The good performance of LSTEP

also shows that the restriction of the set of fundamentals to the forecasted demand can

be detrimental, since LSTEP outperforms the other individual models in 23% of cases

in terms of MSE (and 18-19% of cases in terms of MAE or MAPE). Therefore, it could

be interesting to enlarge the comparison of the various specifications with a larger set of

regressors.

With respect to the comparison of linear and non-linear models21, Tables 3 and 4

show the good performance of Markov-switching models, especially the three-state model

MS3 1 allowing a variation of the intercept and the variance. This model often leads

to the best MSE, MAE and MAPE in Table 3 and it ranks first among the individual

specifications in Table 4 over all seasons with the three criteria. The good performance

of MS3 1 seems due to its ability to catch the spikes and drops (or less extreme values)

of power prices. To illustrate this point, Figure 6 depicts the smoothed probabilities

of the three regimes obtained on the whole period for a couple of trading hours in each

season. By contrast, the three threshold specifications rarely outperform the other models

in Table 3 and appear among the worse specifications in Table 4.

For this reason, the results of the tests reported in Table 5 are not clear-cut when

considering all non-linear models against the linear ones. The results are more supportive

of non-linear models when we focus on MS models, especially the specification MS3 1

with three regimes. This model outperforms the linear specification in terms of MSE or

MAE in 54.9 to 79.9% of cases (except in winter on the seasonal range). The results of the

Diebold-Mariano and the Giacomini-White tests are consistent with these findings with

a more frequent rejection of the null hypothesis in favor of a better forecast accuracy of

MS3 1 than the linear specifications. The null hypothesis that the linear models contain

all the information provided by the nonlinear specifications is also more frequently rejected

with the encompassing test of Harvey et al. [1997] in the particular case of MS3 1.

Despite the good performance of MS3 1, it is clear from the results in Table 3 that no

21To get a fair comparison, the specification LSTEP (which contains more regressors than the non-
linear models) is excluded in the comparison of the linear and non-linear models.
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individual model (including MS3 1) exhibits a superior performance for all trading hours

and seasons. This instability is favorable to combinations, as shown by the results in Ta-

bles 4-5. Table 4 provides the average rank of each model or combination of models. The

results are striking. The pooled forecasts always appear among the first best competitors.

This result holds over all seasons, all seasonal treatments and for all the three criteria.

The combinations over linear models and over all models rank first. As far as the weight-

ing rule is concerned, the Bates and Granger weights and the simple average are more

successful, while more sophisticated rules give larger RMSE. This result is consistent with

the previous literature on the subject (see Bordignon et al. [2013] and Nowotarski et al.

[2013a] in the context of power price forecasting). The results of the tests in Table 5 also

give evidence in favour of combination. The pooled forecasts yield lower RMSE and MAE

in 61.9% to 74.6% of cases and the difference is statistically significant in a significant

proportion of cases according to the Diebold-Mariano and Giacomini-White tests. The

encompassing test rejects the null hypothesis that the individual forecasts contain all the

information in the combined forecasts in a large proportion of cases, especially in summer

and in fall.

Finally, the results in Table 5 support estimations on data belonging to the same

season rather than to an entire year. Indeed, most seasonal models yield better forecasts

than non-seasonal ones, except in summer. More accurate forecasts are obtained with a

model or a combination of models estimated on a seasonal range in almost 70 to 80%

of cases in winter and in spring and in 55% of cases in fall. The difference is significant

in a part of the cases according to the Diebold-Mariano and Giacomini-White tests. In

spring and in fall, the encompassing test shows a high rejection of the null hypothesis that

the seasonal models do not contain information in addition to the information already

included in the non-seasonal models. The results are more disappointing in summer with

only 30.4% of cases favorable to the seasonal segmentation and a low rejection rate with

the Diebold-Mariano and Giacomini-White tests for a lower or equal forecast accuracy of

the non-seasonal models.22 However, the magnitude of forecast errors is much smaller in

both cases than in the other seasons (see Tables 2).

Interestingly, the gain of the seasonal segmentation is more evident if we restrict the

comparison to models without fundamental regressors (the autoregressive and exponential

models, AR and EXPO). In this case, the seasonal range leads to lower MSE or MAE

22This result is probably due to a drop in prices in summer 2009 included in the seasonal dataset.
This phenomenon reflects the fall in industrial activity during the 2008-09 recession in France. This is
less visible in other seasons where electricity demand is mainly driven by the residential sector (heating
effect).
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than the non-seasonal specifications in 74% of cases over all seasons (versus 58% when we

consider all specifications). The improvement is particularly strong in winter and in fall

(95.8% versus 69.1% and 70.8% versus 54.5%). Similarly, the gain of the seasonal range is

stronger when we focus on the linear specifications (with or without fundamentals). The

linear non-seasonal models are beaten by the seasonal ones in 67.7% of cases. Again, the

difference is larger in the colder seasons (89.6% in winter and 64.6% in fall). This means

that a part of the seasonality is captured by the fundamental variables and by the change

of regimes. Overall, our simple treatment of the long-run seasonality present in electricity

prices appears to improve forecast accuracy, especially when we use simple specifications

for the price forecasting.

Conclusion

The ongoing reorganization of the French electricity market will lead to an increasing

volume of trade on the wholesale market. This being the case, developing forecasting

tools of electricity spot prices is a key issue for academics and practitioners alike.

In this paper, we have investigated the forecasting ability of several classes of time

series models for day-ahead spot prices in France. We have estimated these models with

a double temporal segmentation of the data. Our out-of-sample evaluation indicates that

this novel approach improves the forecasting ability of the models. Among the non-

linear models, a three-state Markov-switching model designed to capture the sudden and

fast-reverting spikes in the price dynamics yields better forecasts. However, the forecast

accuracy of combinations of models is more stable across all the hours and seasons.

There are a number of potential extensions to this paper. In particular, it could be

interesting to explore how revised weather forecasts available in the morning before the

auction could add extra value beyond the midnight release of demand forecasts. Given

the importance of the demand as a regime driver and the high thermal sensitivity of the

French consumption, this appears as a promising way to improve forecasts.
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Table 1a: Individual models

Model Code

Autoregressive model AR
Exponential model EXPO
AR model augmented with forecasted demand AR-X
Linear regression with regressors selected with a stepwise procedure LSTEP
MS model, 2 regimes, FTP, variation of intercept and variance MS 1
MS model, 2 regimes, FTP, variation of intercept, AR coefficients and variance MS 2
MS model, 2 regimes, FTP, variation of all coefficients MS 3
MS model, 2 regimes, TVTP, variation of intercept and variance MSV 1
MS model, 2 regimes, TVTP, variation of intercept, AR coefficients and variance MSV 2
MS model, 2 regimes, TVTP, variation of all coefficients MSV 3
MS model, 3 regimes, FTP, variation of intercept and variance MS3 1
MS model, 3 regimes, FTP, variation of intercept, AR coefficients and variance MS3 2
STR model, variation of intercept STR 1
STR model, variation of intercept and AR coefficients STR 2
STR model, variation of all coefficients STR 3

Table 1b: Combination of models

Model combinations Code

Combination by average, all models C1
Combination by average, linear models C1 L
Combination by average, non linear models C1 NL
Combination with Bates and Granger weights, all models C2
Combination with Bates and Granger weights, linear models C2 L
Combination with Bates and Granger weights, non linear models C2 NL
Combination with AFTER weights, all models C3
Combination with AFTER weights, linear models C3 L
Combination with AFTER weights, non linear models C3 NL
Combination with PLMA weights, all models C4
Combination with PLMA weights, linear models C4 L
Combination with PLMA weights, non linear models C4 NL
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Table 2a: Forecast evaluation - Winter
SEASONAL NON SEASONAL

RMSE MAE RMSE MAE

3 9 14 20 3 9 14 20 3 9 14 20 3 9 14 20

AR 0.192 0.499 0.153 0.224 0.144 0.253 0.101 0.152 0.214 0.519 0.165 0.244 0.168 0.305 0.103 0.169

EXPO 0.179 0.456 0.162 0.231 0.139 0.241 0.107 0.165 0.213 0.464 0.180 0.243 0.171 0.280 0.119 0.170

AR-X 0.253 0.458 0.183 0.261 0.178 0.224 0.106 0.169 0.521 0.465 0.166 0.260 0.351 0.218 0.115 0.168

LSTEP 0.183 0.530 0.202 0.239 0.142 0.256 0.111 0.164 0.329 0.503 0.170 0.253 0.222 0.258 0.117 0.181

MS 1 0.197 0.435 0.180 0.255 0.131 0.222 0.111 0.167 0.213 0.428 0.175 0.247 0.179 0.206 0.120 0.167

MS 2 0.233 0.458 0.192 0.289 0.144 0.225 0.109 0.195 0.423 0.538 0.170 0.326 0.271 0.246 0.123 0.195

MS 3 0.254 0.429 0.188 0.277 0.175 0.215 0.109 0.177 0.520 0.535 0.172 0.263 0.347 0.244 0.121 0.171

MSV 1 0.213 0.436 0.175 0.250 0.143 0.221 0.104 0.170 0.270 0.429 0.172 0.256 0.224 0.210 0.121 0.171

MSV 2 0.261 0.455 0.149 0.264 0.161 0.219 0.096 0.173 0.521 0.499 0.167 0.238 0.351 0.241 0.117 0.151

MSV 3 0.253 0.550 0.184 0.268 0.177 0.254 0.110 0.176 0.521 0.470 0.166 0.281 0.351 0.224 0.116 0.173

MS3 1 0.212 0.532 0.166 0.269 0.133 0.268 0.106 0.172 0.199 0.468 0.169 0.206 0.165 0.214 0.124 0.139

MS3 2 0.253 0.462 0.196 0.281 0.179 0.229 0.114 0.188 0.341 0.517 0.202 0.337 0.216 0.266 0.146 0.193

STR 1 0.237 0.463 0.179 0.272 0.151 0.222 0.107 0.168 0.378 0.482 0.194 0.246 0.248 0.227 0.119 0.162

STR 2 0.288 0.518 0.172 0.278 0.177 0.232 0.110 0.172 0.555 0.419 0.158 0.304 0.272 0.200 0.104 0.182

STR 3 0.300 0.563 0.220 0.285 0.181 0.232 0.123 0.174 0.575 0.417 0.161 0.259 0.274 0.197 0.104 0.180

C1 0.209 0.472 0.172 0.254 0.140 0.230 0.104 0.166 0.320 0.449 0.161 0.245 0.217 0.219 0.110 0.163

C1 L 0.209 0.476 0.174 0.254 0.141 0.230 0.104 0.166 0.270 0.449 0.161 0.246 0.188 0.216 0.109 0.166

C1 NL 0.240 0.477 0.193 0.252 0.151 0.237 0.114 0.173 0.248 0.465 0.177 0.237 0.202 0.225 0.117 0.165

C2 0.189 0.471 0.168 0.244 0.132 0.229 0.102 0.161 0.246 0.455 0.159 0.244 0.175 0.232 0.109 0.165

C2 L 0.161 0.478 0.161 0.229 0.122 0.235 0.099 0.156 0.211 0.476 0.162 0.242 0.163 0.261 0.110 0.167

C2 NL 0.170 0.478 0.167 0.229 0.126 0.234 0.101 0.157 0.191 0.475 0.163 0.243 0.153 0.258 0.110 0.168

C3 0.196 0.466 0.194 0.232 0.142 0.243 0.115 0.164 0.226 0.469 0.181 0.257 0.169 0.230 0.118 0.178

C3 L 0.164 0.473 0.161 0.227 0.124 0.234 0.099 0.156 0.185 0.476 0.163 0.242 0.149 0.261 0.110 0.167

C3 NL 0.237 0.471 0.179 0.267 0.153 0.228 0.107 0.171 0.366 0.443 0.165 0.248 0.242 0.208 0.112 0.162

C4 0.233 0.477 0.179 0.267 0.150 0.229 0.107 0.171 0.313 0.444 0.164 0.250 0.222 0.206 0.110 0.165

C4 L 0.242 0.520 0.183 0.269 0.149 0.243 0.107 0.172 0.251 0.465 0.170 0.236 0.207 0.224 0.112 0.163

C4 NL 0.234 0.473 0.179 0.267 0.150 0.227 0.107 0.170 0.336 0.443 0.164 0.250 0.230 0.209 0.109 0.163

Notes: This table reports the RMSE and MAE criteria for hours 3, 9, 14 and 20. The left panel provides the forecast-evaluation
criteria for the seasonal models and the right panel the results for the non seasonal specifications.

Table 2b: Forecast evaluation - Spring
SEASONAL NON SEASONAL

RMSE MAE RMSE MAE—

3 9 14 20 3 9 14 20 3 9 14 20 3 9 14 20

AR 0.250 0.150 0.154 0.121 0.170 0.115 0.119 0.094 0.245 0.146 0.164 0.128 0.171 0.114 0.125 0.097

EXPO 0.244 0.157 0.153 0.123 0.173 0.122 0.118 0.097 0.248 0.149 0.158 0.125 0.177 0.118 0.123 0.099

AR-X 0.181 0.111 0.127 0.119 0.129 0.095 0.096 0.101 0.192 0.140 0.145 0.123 0.149 0.111 0.106 0.098

LSTEP 0.192 0.117 0.130 0.113 0.131 0.097 0.102 0.092 0.167 0.136 0.153 0.109 0.121 0.114 0.107 0.089

MS 1 0.169 0.112 0.129 0.115 0.113 0.096 0.099 0.098 0.202 0.138 0.145 0.117 0.147 0.106 0.107 0.092

MS 2 0.157 0.111 0.127 0.120 0.101 0.095 0.097 0.102 0.204 0.132 0.147 0.122 0.153 0.106 0.107 0.097

MS 3 0.168 0.111 0.128 0.118 0.108 0.096 0.096 0.101 0.189 0.135 0.150 0.123 0.138 0.107 0.110 0.098

MSV 1 0.158 0.111 0.129 0.121 0.107 0.096 0.098 0.102 0.186 0.136 0.145 0.118 0.133 0.105 0.109 0.096

MSV 2 0.165 0.110 0.127 0.120 0.117 0.095 0.097 0.100 0.193 0.153 0.147 0.121 0.145 0.119 0.107 0.098

MSV 3 0.161 0.111 0.130 0.121 0.105 0.096 0.097 0.101 0.183 0.138 0.150 0.126 0.133 0.110 0.105 0.100

MS3 1 0.178 0.107 0.125 0.110 0.117 0.090 0.103 0.087 0.200 0.141 0.134 0.107 0.140 0.112 0.100 0.084

MS3 2 0.222 0.110 0.127 0.160 0.138 0.093 0.094 0.114 0.181 0.139 0.161 0.122 0.130 0.112 0.117 0.093

STR 1 0.173 0.110 0.127 0.121 0.123 0.096 0.097 0.103 0.203 0.139 0.149 0.107 0.160 0.109 0.103 0.089

STR 2 0.169 0.116 0.125 0.129 0.123 0.097 0.097 0.109 0.222 0.166 0.147 0.106 0.178 0.129 0.119 0.090

STR 3 0.170 0.121 0.129 0.124 0.122 0.102 0.099 0.107 0.222 0.179 0.144 0.118 0.178 0.139 0.117 0.097

C1 0.162 0.113 0.127 0.111 0.109 0.095 0.097 0.092 0.177 0.138 0.144 0.111 0.131 0.109 0.105 0.087

C1 L 0.160 0.113 0.127 0.111 0.107 0.096 0.098 0.092 0.177 0.138 0.144 0.110 0.130 0.109 0.105 0.087

C1 NL 0.167 0.112 0.127 0.115 0.110 0.096 0.098 0.095 0.188 0.138 0.143 0.111 0.128 0.110 0.106 0.093

C2 0.165 0.117 0.129 0.110 0.112 0.097 0.098 0.090 0.181 0.137 0.145 0.109 0.135 0.108 0.107 0.086

C2 L 0.188 0.128 0.135 0.110 0.131 0.103 0.105 0.088 0.196 0.135 0.151 0.112 0.145 0.106 0.113 0.088

C2 NL 0.180 0.124 0.135 0.109 0.128 0.101 0.104 0.087 0.188 0.137 0.151 0.110 0.142 0.108 0.113 0.087

C3 0.201 0.119 0.130 0.116 0.134 0.099 0.101 0.095 0.192 0.138 0.149 0.115 0.134 0.112 0.109 0.092

C3 L 0.186 0.129 0.137 0.110 0.132 0.104 0.105 0.088 0.198 0.137 0.152 0.112 0.147 0.108 0.114 0.088

C3 NL 0.158 0.111 0.126 0.114 0.106 0.095 0.097 0.096 0.174 0.141 0.143 0.114 0.127 0.112 0.104 0.090

C4 0.157 0.111 0.126 0.115 0.104 0.095 0.097 0.096 0.175 0.141 0.143 0.113 0.126 0.111 0.104 0.090

C4 L 0.162 0.111 0.127 0.115 0.107 0.095 0.098 0.096 0.192 0.139 0.142 0.111 0.133 0.110 0.105 0.091

C4 NL 0.157 0.111 0.126 0.114 0.105 0.096 0.097 0.096 0.175 0.141 0.143 0.113 0.126 0.112 0.104 0.090

Notes: See Table (2a).
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Table 2c: Forecast evaluation - Summer
SEASONAL NON SEASONAL

RMSE MAE RMSE MAE

3 9 14 20 3 9 14 20 3 9 14 20 3 9 14 20

AR 0.236 0.068 0.067 0.076 0.202 0.058 0.050 0.058 0.200 0.076 0.066 0.073 0.137 0.059 0.049 0.058

EXPO 0.200 0.067 0.067 0.075 0.148 0.055 0.053 0.059 0.206 0.069 0.067 0.076 0.148 0.056 0.053 0.061

AR-X 0.266 0.059 0.088 0.069 0.238 0.044 0.072 0.056 0.175 0.091 0.065 0.074 0.145 0.074 0.053 0.059

LSTEP 0.182 0.061 0.070 0.072 0.147 0.051 0.053 0.059 0.175 0.106 0.074 0.077 0.134 0.087 0.062 0.062

MS 1 0.240 0.063 0.092 0.064 0.219 0.047 0.075 0.049 0.177 0.085 0.066 0.067 0.137 0.067 0.053 0.055

MS 2 0.237 0.064 0.090 0.070 0.215 0.048 0.073 0.056 0.182 0.086 0.064 0.070 0.141 0.068 0.051 0.058

MS 3 0.266 0.060 0.087 0.067 0.238 0.045 0.071 0.053 0.175 0.125 0.065 0.074 0.145 0.108 0.051 0.059

MSV 1 0.227 0.057 0.096 0.065 0.204 0.044 0.078 0.053 0.172 0.096 0.067 0.067 0.134 0.079 0.055 0.055

MSV 2 0.258 0.062 0.089 0.075 0.218 0.049 0.073 0.060 0.178 0.088 0.064 0.079 0.139 0.071 0.052 0.064

MSV 3 0.266 0.058 0.089 0.069 0.238 0.043 0.073 0.056 0.175 0.112 0.067 0.074 0.145 0.094 0.054 0.059

MS3 1 0.226 0.064 0.072 0.069 0.199 0.049 0.057 0.051 0.175 0.084 0.071 0.063 0.127 0.067 0.055 0.050

MS3 2 0.264 0.063 0.090 0.072 0.237 0.054 0.073 0.058 0.172 0.102 0.073 0.067 0.138 0.085 0.058 0.057

STR 1 0.272 0.065 0.076 0.094 0.234 0.051 0.062 0.066 0.174 0.103 0.075 0.094 0.150 0.084 0.062 0.075

STR 2 0.271 0.064 0.077 0.076 0.240 0.046 0.062 0.060 0.173 0.101 0.073 0.096 0.143 0.086 0.058 0.073

STR 3 0.255 0.076 0.079 0.075 0.202 0.051 0.064 0.060 0.176 0.101 0.079 0.095 0.147 0.086 0.064 0.071

C1 0.222 0.057 0.077 0.068 0.200 0.043 0.062 0.054 0.170 0.087 0.064 0.070 0.136 0.069 0.051 0.058

C1 L 0.217 0.058 0.074 0.067 0.193 0.043 0.059 0.054 0.171 0.083 0.064 0.068 0.138 0.065 0.051 0.056

C1 NL 0.208 0.060 0.072 0.067 0.168 0.046 0.054 0.054 0.175 0.074 0.067 0.069 0.141 0.060 0.052 0.058

C2 0.206 0.057 0.071 0.068 0.184 0.043 0.056 0.054 0.171 0.078 0.063 0.068 0.136 0.060 0.050 0.056

C2 L 0.185 0.058 0.066 0.069 0.162 0.047 0.050 0.055 0.176 0.076 0.063 0.068 0.131 0.058 0.049 0.056

C2 NL 0.178 0.058 0.066 0.069 0.151 0.046 0.050 0.055 0.172 0.074 0.063 0.069 0.133 0.058 0.049 0.055

C3 0.192 0.060 0.070 0.071 0.151 0.046 0.052 0.056 0.178 0.072 0.067 0.074 0.142 0.058 0.052 0.061

C3 L 0.183 0.058 0.066 0.069 0.158 0.047 0.050 0.055 0.176 0.073 0.063 0.068 0.132 0.057 0.049 0.055

C3 NL 0.241 0.059 0.083 0.069 0.218 0.043 0.068 0.055 0.170 0.094 0.066 0.072 0.138 0.078 0.053 0.059

C4 0.243 0.059 0.082 0.068 0.218 0.043 0.067 0.055 0.171 0.092 0.065 0.072 0.140 0.076 0.052 0.058

C4 L 0.241 0.061 0.076 0.067 0.213 0.046 0.061 0.053 0.174 0.087 0.066 0.068 0.141 0.070 0.052 0.055

C4 NL 0.244 0.059 0.082 0.069 0.218 0.043 0.067 0.055 0.171 0.093 0.065 0.074 0.140 0.077 0.052 0.060

Notes: See Table (2a).

Table 2d: Forecast evaluation - Fall
SEASONAL NON SEASONAL

RMSE MAE RMSE MAE

3 9 14 20 3 9 14 20 3 9 14 20 3 9 14 20

AR 0.303 0.072 0.073 0.093 0.193 0.049 0.058 0.071 0.308 0.080 0.071 0.104 0.196 0.059 0.054 0.079

EXPO 0.310 0.076 0.071 0.090 0.200 0.055 0.055 0.070 0.329 0.081 0.070 0.096 0.209 0.060 0.055 0.077

AR-X 0.250 0.064 0.064 0.083 0.185 0.052 0.049 0.066 0.263 0.080 0.061 0.091 0.167 0.063 0.052 0.067

LSTEP 0.251 0.091 0.064 0.078 0.173 0.065 0.052 0.062 0.240 0.108 0.081 0.085 0.158 0.083 0.068 0.068

MS 1 0.266 0.069 0.062 0.091 0.178 0.055 0.049 0.068 0.263 0.070 0.063 0.108 0.163 0.054 0.055 0.092

MS 2 0.263 0.067 0.064 0.092 0.167 0.054 0.049 0.073 0.271 0.072 0.063 0.094 0.171 0.055 0.053 0.073

MS 3 0.286 0.064 0.064 0.113 0.186 0.051 0.050 0.083 0.263 0.085 0.061 0.102 0.167 0.066 0.051 0.084

MSV 1 0.279 0.071 0.071 0.092 0.173 0.051 0.053 0.067 0.252 0.074 0.064 0.113 0.164 0.057 0.053 0.098

MSV 2 0.255 0.068 0.063 0.090 0.156 0.056 0.050 0.068 0.260 0.073 0.061 0.089 0.171 0.055 0.049 0.070

MSV 3 0.237 0.063 0.063 0.146 0.166 0.053 0.047 0.104 0.263 0.093 0.063 0.106 0.167 0.073 0.053 0.086

MS3 1 0.266 0.068 0.063 0.092 0.184 0.053 0.050 0.069 0.249 0.072 0.060 0.093 0.152 0.053 0.051 0.076

MS3 2 0.266 0.065 0.064 0.100 0.172 0.052 0.049 0.079 0.263 0.082 0.068 0.106 0.165 0.059 0.055 0.086

STR 1 0.297 0.081 0.071 0.093 0.217 0.058 0.058 0.070 0.282 0.088 0.084 0.083 0.195 0.069 0.071 0.064

STR 2 0.240 0.113 0.067 0.100 0.169 0.077 0.053 0.078 0.431 0.108 0.087 0.084 0.269 0.088 0.075 0.065

STR 3 0.276 0.106 0.071 0.088 0.207 0.073 0.055 0.064 0.449 0.123 0.087 0.087 0.294 0.093 0.074 0.065

C1 0.254 0.068 0.063 0.086 0.159 0.052 0.050 0.066 0.263 0.079 0.065 0.088 0.158 0.060 0.055 0.069

C1 L 0.255 0.067 0.063 0.085 0.157 0.051 0.050 0.066 0.260 0.076 0.064 0.087 0.160 0.057 0.054 0.068

C1 NL 0.264 0.067 0.064 0.086 0.163 0.052 0.051 0.067 0.261 0.074 0.063 0.087 0.160 0.054 0.054 0.067

C2 0.259 0.068 0.063 0.083 0.158 0.050 0.050 0.064 0.266 0.077 0.065 0.086 0.157 0.056 0.054 0.066

C2 L 0.263 0.070 0.063 0.079 0.166 0.048 0.050 0.061 0.271 0.080 0.066 0.087 0.156 0.056 0.053 0.066

C2 NL 0.268 0.069 0.063 0.078 0.163 0.048 0.050 0.061 0.268 0.078 0.066 0.086 0.158 0.056 0.053 0.067

C3 0.278 0.069 0.064 0.081 0.174 0.049 0.052 0.065 0.266 0.079 0.065 0.087 0.167 0.060 0.054 0.067

C3 L 0.269 0.070 0.064 0.080 0.166 0.048 0.050 0.061 0.276 0.078 0.066 0.087 0.159 0.056 0.053 0.067

C3 NL 0.252 0.069 0.064 0.090 0.159 0.054 0.051 0.069 0.263 0.081 0.066 0.090 0.163 0.062 0.056 0.071

C4 0.253 0.067 0.064 0.090 0.159 0.053 0.051 0.069 0.260 0.077 0.064 0.089 0.163 0.059 0.055 0.070

C4 L 0.259 0.066 0.064 0.090 0.159 0.053 0.051 0.068 0.260 0.074 0.063 0.087 0.160 0.055 0.054 0.068

C4 NL 0.254 0.070 0.065 0.089 0.161 0.054 0.051 0.069 0.261 0.079 0.067 0.088 0.162 0.061 0.057 0.070

Notes: See Table (2a).
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Table 3: Best models in terms of RMSE, MAE and MAPE

in terms of RMSE in terms of MAE in terms of MAPE

Winter Spring Summer Fall All Winter Spring Summer Fall All Winter Spring Summer Fall All
Model SA NS SA NS SA NS SA NS all SA NS SA NS SA NS SA NS all SA NS SA NS SA NS SA NS all

Autoreg 14 5 1 0 5 1 0 1 27 13 5 1 0 7 4 3 3 36 13 7 1 0 6 4 3 3 37

AR 9 4 0 0 3 0 0 0 16 9 5 0 0 4 3 2 1 24 9 7 0 0 4 3 2 1 26
expo 5 1 1 0 2 1 0 1 11 4 0 1 0 3 1 1 2 12 4 0 1 0 2 1 1 2 11

Linear 0 4 5 8 7 5 10 7 46 0 2 4 5 7 9 7 4 38 0 1 4 5 8 9 7 5 39

AR-X 0 1 0 0 0 0 0 0 1 0 1 0 0 0 2 0 0 3 0 1 0 0 0 2 0 0 3
LSTEP 0 3 5 8 7 5 10 7 45 0 1 4 5 7 7 7 4 35 0 0 4 5 8 7 7 5 36

MS 8 10 13 11 9 15 11 15 92 7 13 15 15 9 10 11 15 95 8 13 15 15 9 10 11 14 95

MS 1 2 2 1 1 2 1 1 3 13 4 3 0 2 2 0 1 2 14 4 3 0 2 2 0 1 2 14
MS 2 0 0 4 1 1 1 0 1 8 0 1 3 0 1 0 1 2 8 0 1 3 1 1 0 1 2 9
MS 3 1 0 0 0 1 1 4 0 7 1 0 1 1 1 0 2 0 6 1 0 1 1 1 0 2 0 6

MSV 1 1 1 0 4 2 3 1 2 14 0 1 1 3 2 0 1 0 8 1 1 1 2 2 0 1 0 8
MSV 2 1 0 0 1 0 2 0 2 6 1 0 2 1 0 2 2 2 10 2 0 2 1 0 3 2 2 12
MSV 3 1 3 2 0 0 1 2 1 10 0 3 2 0 1 0 1 0 7 0 3 2 0 1 0 1 0 7
MS3 1 0 4 5 4 3 4 3 6 29 0 5 5 7 1 6 3 8 35 0 5 5 7 1 6 3 8 35
MS3 2 2 0 1 0 0 2 0 0 5 1 0 1 1 1 2 0 1 7 0 0 1 1 1 1 0 0 4

STR 2 5 5 5 3 3 3 1 27 4 4 4 4 1 1 3 2 23 3 3 4 4 1 1 3 2 21

STR 1 0 0 4 0 2 1 2 1 10 3 0 3 0 1 1 2 2 12 3 0 3 0 1 1 2 2 12
STR 2 2 3 1 3 1 1 1 0 12 1 2 1 0 0 0 0 0 4 0 1 1 0 0 0 0 0 2
STR 3 0 2 0 2 0 1 0 0 5 0 2 0 4 0 0 1 0 7 0 2 0 4 0 0 1 0 7

Total 24 24 24 24 24 24 24 24 192 24 24 24 24 24 24 24 24 192 24 24 24 24 24 24 24 24 192

Notes: This table provides the number of times over the 24 hours of each season that each specification yields the lowest RMSE (first block of columns), MAE (second
block) and MAPE (last block). The columns SA contain the results for the seasonal range and the columns NS the results for the non-seasonal specifications.
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Table 4: Rank of individual and pooled forecasts in terms of RMSE, MAE and MAPE

Rank with RMSE Rank with of MAE Rank with of MAPE

Winter Spring Summer Fall All Winter Spring Summer Fall All Winter Spring Summer Fall All
Model SA NS SA NS SA NS SA NS all SA NS SA NS SA NS SA NS all SA NS SA NS SA NS SA NS all

AR 6 8 27 27 15 24 27 24 26 8 7 27 27 14 18 25 23 22 8 7 27 27 14 18 26 23 22
EXPO 3 6 26 26 12 27 26 25 23 7 15 26 26 9 24 24 24 23 7 15 26 26 10 24 24 24 24
AR-X 17 23 14 23 25 17 9 18 18 19 20 13 24 25 20 17 20 20 19 18 12 24 25 19 16 20 19

LSTEP 13 17 13 9 9 18 2 12 13 13 19 15 10 10 17 9 18 14 11 18 15 10 9 17 9 18 14
MS 1 10 14 23 21 18 16 17 8 16 10 18 23 15 18 16 20 10 16 10 16 23 17 18 16 20 11 16
MS 2 25 24 14 20 24 20 20 11 20 23 24 14 17 21 19 21 13 18 23 24 14 18 20 20 21 13 18
MS 3 23 27 9 22 20 19 11 22 19 24 26 6 23 22 21 12 22 19 24 26 6 23 21 21 13 22 20

MSV 1 11 18 20 11 14 9 21 13 15 11 23 20 12 13 9 18 19 15 13 22 21 11 13 9 18 19 15
MSV 2 18 22 9 18 27 15 19 6 17 15 25 9 21 26 15 19 13 17 15 25 8 20 26 15 19 14 17
MSV 3 22 20 11 24 26 22 18 20 21 25 21 8 22 27 23 16 21 21 25 21 9 22 27 23 16 21 21
MS3 1 12 9 12 10 11 11 16 2 9 11 10 12 9 12 7 15 3 10 14 10 13 9 12 7 15 2 10
MS3 2 20 26 18 25 22 21 24 16 22 22 27 17 25 24 22 26 16 25 22 27 18 25 24 22 25 16 25
STR 1 21 25 16 17 21 25 23 23 24 21 17 16 15 19 27 22 25 24 21 20 16 14 19 27 23 25 23
STR 2 26 19 19 16 19 23 22 26 25 26 16 21 19 23 26 23 26 26 26 16 20 19 23 25 22 26 26
STR 3 27 21 25 15 22 26 25 27 27 27 22 24 18 20 25 27 27 27 26 23 24 16 22 26 27 27 27

C1 7 5 5 1 7 3 4 9 3 6 6 3 2 7 5 6 7 3 6 6 4 2 8 4 5 7 3
C1 L 9 7 3 4 5 1 1 4 2 5 3 2 4 5 2 4 2 2 5 2 2 5 5 3 3 3 2

C1 NL 14 13 7 3 6 5 7 1 6 14 9 11 3 7 8 7 1 7 12 8 11 3 7 8 7 1 7
C2 5 3 8 7 4 2 3 7 1 4 1 10 8 3 1 1 5 1 3 1 10 8 3 1 1 4 1

C2 L 2 2 21 13 1 7 6 19 5 2 4 22 11 4 4 3 12 5 2 4 22 12 4 5 4 12 5
C2 NL 4 4 17 12 2 4 5 17 4 3 5 17 13 1 3 2 6 4 4 5 17 13 1 2 2 6 4

C3 8 15 22 14 8 14 10 10 14 9 14 19 14 6 11 8 11 11 9 13 19 15 6 11 8 9 11
C3 L 1 1 24 19 3 10 14 21 7 1 2 25 20 2 6 5 9 6 1 3 25 21 2 6 6 10 6

C3 NL 15 10 2 5 15 8 15 14 11 17 12 4 5 16 13 14 17 12 17 12 3 4 16 13 14 17 12
C4 16 11 1 8 13 5 8 5 8 16 8 1 6 15 10 11 8 9 16 9 1 6 15 10 11 8 9

C4 L 23 15 6 2 10 13 12 3 10 20 11 7 1 11 12 10 4 8 19 11 7 1 11 12 10 4 8
C4 NL 19 12 3 6 17 12 13 15 12 18 13 5 7 17 14 13 15 13 18 14 5 7 17 14 12 15 13

This table reports the rank of each model in terms of RMSE, MAE and MAPE at each season and over the entire year. The columns SA contain the results for
the seasonal range and the columns NS the results for the non-seasonal sample. For instance, C3 L displays the lowest RMSE in winter (seasonal range). The last
columns of each panel rank the models according to their average rank over the 4 seasons and the two seasonal treatments.
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Table 5: Comparison of non-linear, pooled, seasonal models (in %)

Winter Spring Summer Fall
SA NS SA NS SA NS SA NS

Comparison of the loss functions (MSE and MAE)
Non-linear beats linear 31.8 36.1 72.6 67.7 42.0 58.5 55.4 57.3
MS3 1 beats linear 41.7 54.9 77.8 77.8 55.6 77.8 69.4 79.9
Combined beats individual 67.3 70.4 61.9 70.9 74.6 73.7 71.9 66.6
Seasonal beats non seasonal 69.1 77.6 30.4 54.5
Seasonal beats non seasonal (AR & EXPO) 95.8 77.1 52.1 70.8
Seasonal linear beats non seasonal (linear models) 89.6 80.9 36.1 64.6

Significance of difference with D-M test
Non-linear beats linear 9.2 11.7 41.2 29.2 15.6 21.2 20.6 29.7
MS3 1 beats linear 14.6 13.9 52.1 47.2 27.1 27.1 20.8 52.8
Combined beats individual 25.2 26.9 27.1 36.4 43.9 38.9 35.2 37.5
Seasonal beats non seasonal 32.4 42.7 13.4 24.5
Seasonal beats non seasonal (AR & EXPO) 50.0 51.0 20.8 41.7
Seasonal linear beats non seasonal (linear models) 46.9 50.4 16.7 33.0

Significance of difference with G-W test
Non-linear beats linear 3.7 6.9 30.8 16.7 8.1 10.2 7.5 19.1
MS3 1 beats linear 7.6 5.6 38.9 30.6 13.9 15.3 3.5 33.3
Combined beats individual 11.8 16.5 16.3 19.4 32.5 26.2 21.2 29.4
Seasonal beats non seasonal 21.2 24.6 8.6 15.4
Seasonal beats non seasonal (AR & EXPO) 38.5 26.0 4.2 14.6
Seasonal linear beats non seasonal (linear models) 34.7 30.6 7.3 16.3

Encompassing test
H0: linear encompasses non-linear 34.7 40.0 71.6 68.2 61.2 64.4 57.2 61.9
H0: linear encompasses MS3 1 38.9 47.2 73.6 76.4 76.4 75.0 65.3 79.2
H0: individual encompasses combined 29.3 39.7 43.3 56.3 66.8 59.4 54.4 52.5
H0: NS encompasses SA 34.1 66.5 31.3 60.7
H0: NS encompasses SA (AR & EXPO) 52.1 56.3 33.3 50.0
H0: NS linear encompasses SA (linear models) 45.8 66.0 27.8 54.9

Notes: The first block reports the percentage of times over the 24 hours that (a) yields a lower loss than (b) with MSE or
MAE loss functions. For example, non-linear models beat the linear specifications in 72.6% of cases in spring (seasonal range).
The second block provides the results of the one-sided Diebold and Mariano test for the null hypothesis that (a) has the same
forecast accuracy than (b) (with MSE or MAE loss functions). Each entry represents the percentage of times that (a) is signifi-
cantly better than (b). The third block gives the results of the Giacomini and White test. Each entry represents the percentage
of times that (a) is significantly better than (b) (with MSE or MAE loss functions). The last block provides the results of the
encompassing test of Harvey, Leybourne and Newbold for the null hypothesis that (a) encompasses (b). Each entry represents
the percentage of rejection of the null hypothesis. The results of the test are reported at a 10% significance level.
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Figure 6: MS3 1 model - Smoothed probabilities
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