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SUFFICIENT CONDITIONS FOR THE DIRICHLET PROPERTY
HUAYI CHEN AND ATSUSHI MORIWAKI

ABsTRACT. The effectivity up to RR-linear equivalence (Dirichlet property) of
pseudoeffective adelic IR-Cartier divisors is a subtle problem in arithmetic geom-
etry. In this article, we propose sufficient conditions for the Dirichlet property
by using the dynamic system in the classic Arakelov geometry setting. We also
give a numerical criterion of the Dirichlet property for adelic IR-Cartier divisors
on curves over a trivially valued field.

1. INTRODUCTION

Let K be a number field and X be a normal, projective and geometrically
integral scheme over Spec K. Recall that an adelic R-Cartier divisor on X is by
definition a couple D = (D, g), where D is an R-Cartier divisor on X and g =
(80)veMy is a family of Green functions indexed by the set Mk of all places of K.

Note that the adelic R-Cartier divisors on X form a vector space ﬁlR(X ) over R
and one has a natural R-linear homomorphism from Rat(X)y := Rat(X)* ®z R
to Divgr(X), where Rat(X) denotes the field of rational functions on X. Two
adelic R-Cartier divisors are said to be R-linearly equivalent if their difference is
R-principal, that is, lies in the image of the canonical map Rat(X)g — Divg (X).
Several positivity conditions in algebraic geometry (in particular bigness and
pseudo-effectivity of IR-Cartier divisors) have the counterpart in the setting of
adelic R-Cartier divisors. We refer the readers to [14] for more details.

In [13], Moriwaki has compared the pseudo-effectivity and the effectivity up to
R-linear equivalence in the setting of adelic IR-Cartier divisors in introducing the
so-called Dirichlet property. We say that an adelic R-Cartier divisor satisfies the
Dirichlet property if it is IR-linearly equivalent to an effective adelic R-Cartier di-
visor. It can be shown that the Dirichlet property implies the pseudo-effectivity.
It is then quite natural to ask if all pseudo-effective R-Cartier divisors satisfy
the Dirichlet property, and if it is not the case, how to determine the Dirichlet
property of pseudo-effective divisors.

It is worth to mention that the first question above has a confirmative answer if
X = SpecK. It can be deduced from the Dirichlet unit theorem for number fields,
from which comes the terminology of Dirichlet property, see [13] for more de-
tails. Moreover, it has been shown in the same reference that a pseudo-effective
adelic R-Cartier divisor (D, g) with D principal also satisfies the Dirichlet prop-
erty. However, in higher dimensional case the first question above has a negative
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answer. We refer the readers to [10] for counterexamples and obstructions to the
Dirichlet property.

The problem of Dirichlet property can be stated in the classic algebraic ge-
ometry setting and other arithmetic settings such as arithmetic varieties over a
function field or a field with trivial valuation. The purpose of this article is to
provide some sufficient conditions for the Dirichlet property in divers situations,
with highlights on the role of finiteness conditions. We first focus on the num-
ber field case, using the dynamic system on arithmetic varieties. Let X be a
normal, projective and geometrically integral scheme over a number field K. Let
f + X — X be a surjective endomorphism over K. Let D be an effective and am-
ple R-Cartier divisor on X. We assume that there are d € R and ¢ € Rat(X)g
such that f*(D) = dD + (¢). By [10, Section 3], there is a unique family
¢ = {go}vem, of D-Green functions of C’-type with f*(D,g) = d(D,g) + (/go\)
The pair D = (D, g) is called the canonical compactification of D. Note that D is
nef in the arithmetical sense (for details, see [10, Lemma 4.1]). We establish the
following sufficient condition for the Dirichlet property.

Theorem 1.1. Suppose that there exists a finite dimensional vector subspace of Rat(X)y
which contains ¢ and is stable by f*. Then D satisfies the Dirichlet property. In
particular, if f*(D) = dD, then D satisfies the Dirichlet property.

We can for instance apply the above theorem to the case where X = P} =
Proj(K[To, Ty, ..., Tu]), D = {Tp = 0} and f is a polynomial map, that is,

f P\ {To = 0}) € Pg\ {Tp = 0}.
If f is not an automorphism, then f*(D) = dD for some d € Z,. Therefore,
the above theorem implies the effectivity of D. For example, if f is given by
f(To: Ty) = (T§ : T? + cT3) (c € K) on P, then D is effective. Even if the Julia
set J(fy) of fu (v € M) is complicated, |1]g, = 1 on J(fy) by [10, Lemma 2.1 and
Remark 2.3]. More concrete examples of adelic R-Cartier divisors verifying the
sufficient condition will be discussed in Example 3.9.

We then consider the Dirichlet property in the setting of arithmetic varieties
over a trivially valued field. We consider an integral projective scheme X over
a field K. We equip K with the trivial absolute value |-| (namely |a| = 1 for
any a € K*). Denote by X" the Berkovich space associated with X. If D is an
R-Cartier divisor on X, by D-Green function of C'-type, or Green function of D, we
refer to a continuous function on the complementary of the analytification of the
support of D, which is locally of the form ¢ — log|f|, where ¢ is a continuous
function on X" and f is an element of Rat(X)y which defines D locally. The
pair D = (D, g) is called an adelic R-Cartier divisor on X. The analogue of the
arithmetic volume function can be defined in this setting, and the bigness and
pseudo-effectivity of adelic IR-Cartier divisors are defined in a similar way as in
the classic arithmetic framework. It is then a natural question to determine suf-
ficient conditions for a pseudo-effective adelic R-Cartier divisor to be R-linearly
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equivalent to an effective one. Even for this simple setting where only the triv-
ial valuation is considered in the adelic structure, this problem still seems to be
very subtle. However, in the case where X is a regular curve over Spec K such
that dimg (Pic(X) ® Q) = 1, we have a complete answer to this problem. In fact,
when X is a regular curve over Spec K, the Berkovich space X" can be illustrated
by an infinite tree of depth 1

1o

X

where the root vertex 7y corresponds to the generic point and the trivial absolute
value on the field Rat(X), and the leaves are parametrised by the set XD of
closed point in X (together with the trivial absolute value on the corresponding
residue field). We denote by i : X — X" the map sending the generic point 5
of X to 170 and each closed point x to the corresponding leaf in the tree. Each
branch [1, x] with x € XU is parametrised by t : [79,x] — [0,4+]. Any
¢ € [no, x| corresponds to the generic point of X and the field Rat(X) equipped
with the absolute value ||z such that

|.|§ — e_t(g)ordx(') on Rat(X) X

where ordy(-) is the discrete valuation on Rat(X) with valuation ring Ox .
Moreover, t(x) = +oo. The space X" is equipped with the Berkovich topology,
whose restriction on each branch [rg, x| corresponding to the usual topology on
[0, +o0] via the parametrisation ¢(-), and any open neighbourhood of 7 contains
all but finitely many branches.

Given a continuous function ¢ on X2\ i(X(1)), we define a family of invariants

VxEX(l), = inf @ERU —oot.
)= g SRV
We establish the following result (see Theorems 5.9, 5.10, and Remark 5.11).

Theorem 1.2. Let X be a regular projective curve over Spec K such that dimg (Pic(X) ®
Q) = 1. Let D = (D, g) be an adelic R-Cartier divisor on X such that D is big. Then
for all but a finite number of x € XV, one has 11,(g) < 0. Moreover, with the notation

rot(g) ==Y, Hx(g)[x(x) : K],
xeX(®

where k(x) denotes the residue field of x, the following statements hold.

(1) The adelic R-Cartier divisor D is pseudo-effective if and only if por(g) > 0.
(2) The adelic R-Cartier divisor D satisfies the Dirichlet property if and only if ux(g) >
0 for all but a finite number of x € XU and tiot(g) = 0.
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Let f : P — PL be an endomorphism and D be an R-Cartier divisor on
P such that deg(D) > 0 and f*(D) = dD + (¢) for some d € R.; and
@ € Rat(X)g. Let ¢ be a unique D-Green function of C’-type with f*(g) =
dg —log|¢@|. As a corollary of the above theorem, we can conclude that D =
(D, g) satisfies the Dirichlet property (cf. Corollary 5.13, Proposition 2.22, and
Corollary 5.15). This is an essentially different point from the classic setting.

Surprisingly, we observe again a finiteness condition in the comparison of
the pseudo-effectivity and the Dirichlet property. These results suggest that the
functional obstructions to the Dirichlet property introduced in [10] may not be
the only obstruction.

The rest of the article is organised as follows. We first introduce the notation
and conventions that will be used throughout the article. In the second section
we recall some basic constructions on Berkovich spaces such as Green functions
of (R-)Cartier divisors and prove preliminary results which are useful for the
proof of the main theorems. In the third section, we prove Theorem 1.1 and
provide several concrete applications of the theorem. In the fourth section, we
introduce the framework of Arakelov geometry over a trivially valued field and
discuss several positivity conditions such as bigness and pseudo-effectivity in
this framework. Finally in the fifth section we discuss the Dirichlet property in
the setting of Arakelov geometry over a trivially valued field.

Conventions and terminology. Throughout this subsection, let K be either Q
or R.

1. Let (G, ) be a multiplicative abelian group. The tensor product G ®z K is
denoted by Gk. For ¢,...,¢, € Gk and A = (ay,...,a,) € K, we set (])A =
11+ ¢f in Gk for sake of simplicity.

2. Let X be a Noetherian integral scheme and .#x be the sheaf of rational func-
tions on X. We define Div(X) and Divi (X) to be

Div(X) := H)(X, .#y /O%) and Divk(X) := H'(X, #5 /0%) ® K,

whose elements are called Cartier divisors and K-Cartier divisors on X, respec-
tively. Let Rat(X) be the field consisting of all rational functions on X and
PDiv(X) be the subgroup of Div(X) consisting principal divisors on X, that is,
PDiv(X) := {(¢) | ¢ € Rat(X)*}. We call any element of Rat(X)y a K-rational
function on X. Note that the natural homomorphism Div(X) — Divi(X) is not
necessarily injective (see Remark 2.8). A IK-Cartier divisor D on X is locally given
by f € Rat(X)g, which is called a local equation of D. For a K-rational function ¢
on X, we can define a K-Cartier divisor (¢) on X by considering the local equa-
tion ¢ everywhere. The K-Cartier divisor (¢) is called a K-principal divisor of ¢.
We denote the vector subspace of Divi (X) consisting of K-principal divisors on
X by PDivk(X). Note that PDivg (X) = PDiv(X) ®z K. Moreover, Pic(X) =
Div(X)/ PDiv(X) and Pick (X) := Pic(X) ®z K = Divi(X)/ PDivi (X).
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A Cartier divisor is said to be effective if every local equation can be taken as
a regular function. Furthermore, a K-divisor D on X is said to be K-effective,
denoted by D >k O, if there are effective Cartier divisors Dj,...,D, on X
and ay,...,a, € Kyg such that D = a1D1 + --- 4+ a,D,. For a Q-Cartier divi-
sor D, by applying (2) in Claim 2.16.1 to the case where V = Rat(X)g, x =
a local equation of D and x; = a local equation of D; (i = 1,...,r), we can see
that D >q 0 if and only if D >R 0. However, a Cartier divisor which is effec-
tive as a K-Cartier divisor is not necessarily effective as a Cartier divisor (see
Remark 2.8). For simplicity, a K-effective K-Cartier divisor is often said to be
effective and the notation D > 0 is denoted by D > 0.

Let D be a K-Cartier divisor on X and, for each x € X, let f; (€ Rat(X)g) be
a local equation of D at x. We define Suppy (D) to be

Suppy (D) = {x € X | fx & (Ox )k}

Note that the above definition does not depend on the choice of f, because
if fi is another local equation of D at x, then fy/fy € (Ox )k. Moreover,
Suppy (D) is closed by [14, Proposition 1.2.1]. In addition, for a Q-Cartier divisor
D, Suppq (D) = Suppy(D) by (1) in Claim 2.16.1. If D is a Cartier divisor, then
we can take f, belonging to Rat(X)”*, so that we can define another Supp, (D)
to be

Suppy(D) i= {x € X | fi & O%,}.
Obviously Suppy (D) C Supp, (D), but Suppy (D) # Supp, (D) in general (for
details, see [14, Subsection 1.2] or Remark 2.8). For sake of simplicity, we often

denote Suppy (D) by Supp(D). Furthermore, for a IK-Cartier divisor D on X,
we define H°(X, D) to be

HY(X,D) := {¢ € Rat(X)* | D+ (¢) =k 0} U {0}.

We assume that D is a Cartier divisor on X. Let Ox(D) be an invertible sheaf
associated with D. Then we have a canonical injective homomorphism

H(X,0x(D)) — H°(X, D).
Note that it is not necessarily surjective (for details, see Remark 2.8).

3. Let X be an integral projective scheme over a field K and D be either a Cartier
divisor or a Q-Cartier divisor or an IR-Cartier divisor on X. We say D is semiample
if one of the following conditions is satisfied according to the class of D:

e Cartier divisor: there is a positive integer n such that Ox(nD) is generated
by global sections.

e Q-Cartier divisor: there is a positive integer m such that mD can be rep-
resented by a semiample Cartier divisor, that is, there is a semiample Cartier
divisor A on X such that mD is the image of A via the natural homomorphism
Div(X) — Divg(X).
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e R-Cartier divisor: there are semiample Cartier divisors Aj,..., A, and non-
negative real numbers ay,...,a, such that D = a1 Ay + - - - + a, A

Note that every RR-principal divisor is semiample because every principal divisor
is semiample.

4. Let K be a number field, that is, K is a finite extension field over Q. Let Ok
be the ring of integers in K. We set M := Spec(Ok) \ {(0)}, which is referred
as the set of finite places of K. Moreover, the set of all embeddings K — C is
denoted by K(C). By abuse of notation, K(C) is referred to as the set of infinite
places of K and it is often denoted by M. We set My := M{" U M$. Note that
Mk is slightly different from the notation in [10]. Let X be a normal, projective
and geometrically integral scheme over Spec K. For each v € Mg, K, X, and X3"
are defined as follows (see also §2.1):

e Casev=ypec M.

Ky := the completion of K at v,
Xo 1= X Xgpec(k) Spec(Ko),
X3 := the analytification of X in the sense of Berkovich.

e Casev =0 € My :

Ky := K®% C with respect to v : K — C,

Xy =X xgpec(K) Spec(C) with respecttov: K — C,

Xan .= X,(C).

5. Let K be a number field and X be a normal, projective and geometrically
integral scheme over SpecK. A pair D = (D, g) of an R-Cartier divisor D on X
and a collection

g = {gp}peMK U {gU}UeM%O

of D-Green functions of C-type is called an adelic arithmetic R-Cartier divisor of
C-type on X if the following conditions are satisfied:

(1) Foreachyp € Mf}n, gp is a D-Green function of C%-type on Xg". In addition,
there are a non-empty open set U of Spec(Ok), a model Zy; of X over U
and an R-Cartier divisor Z;; on 2Z1; such that 7y N X = D and g, is a
D-Green function induced by the model (2, Zy) for all p € U N M.

(2) For each 0 € M, s is a D-Green function of C’-type on X3". Moreover,
the function {gs}, M is an Fe-invariant, that is, for all o € My, s ©
Foo = g0, where Fy : X3 — X is an anti-holomorphic map induced by
the complex conjugation.
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The space of all adelic arithmetic R-Cartier divisors of C’-type on X is denoted

by ﬁR(X)._For an adelic arithmetic R-Cartier divisor D of C’-type on X, we
define I'(X, D)y to be

(X, D)% := {s € Rat(X)} | D+ (s) > 0}.
We say D satisfies the Dirichlet property if I'(X,D)g # @.

2. GREEN FUNCTIONS ON BERKOVICH ANALYTIC SPACES

Let K be a field and |-| be a complete absolute value of K. The absolute value
|-| might be trivial (so that |a| = 1 for any a € K\ {0}). Let X be an integral
projective scheme over Spec K and X" be the analytification of X in the sense of
Berkovich. In this section, we consider a Green function on X?" associated with
an R-Cartier divisor.

2.1. Reminder on Berkovich spaces. Let X be a scheme over Spec K. As a set,
X identifies with the colimit of the functor Fx, from the category Ex of fields
extensions of K and K-linear field homomorphisms, to the category Set of sets,
which sends any extension K’/K to the set of K-morphisms from SpecK’ to X.
The Berkovich space (see [1]) X" associated with X can also be defined in a
similar way. We denote by VEg the category of valued extensions of K and K-
linear homomorphisms preserving absolute values. More precisely, any objet of
VE is of the form (K, ||"), where K’ is an extension of K and |-|" is an absolute
value on K’ extending |-|. We let @ : VEx — Eg be the forgetful functor sending
(K, |-|") to K'. As a set the Berkovich space X" is then defined as the colimit
of the composed functor Fx o @. By the universal property of colimit one has
a natural map j : X* — X, called the specification map. This construction is
functorial: for any morphism of K-schemes ¢ : X — Y, the universal property of
colimit determines a map ™ : X" — Y.

Let ¢ be a point of X*" and x(&) be the residue field of j(¢) € X, called the
residue field of §. If y : Spec K’ — X is a K-morphism, where (K’, |-|) is a valued
extension of (K, ||), which represents the point { € X*", then the morphism
factorises through the canonical K-morphism Specx (i) — X and the restriction
of ||, on (&) does not depend on the representative y of the class ;. We denote
by |-|¢ this absolute value. We emphasis that two different points § and ¢’ of X*"
may have the same residue field. However, in this case ||z and ||x are different.

On the Berkovich space X™" there is a natural topology which is the most
coarse topology making the specification map j : X®" — X continuous, where we
consider the Zariski topology on X. This topology is called the Zariski topology
on X", Berkovich has introduced a finer topology as follows, called Berkovich
topology nowadays. Let f be a regular function on a Zariski open subset U of
X. Recall that f corresponds to a morphism from U to A}. Therefore, for any
¢ € U™, the morphism f determines an element f(¢) in x(¢). We denote by
|f1(¢) the absolue value |f(¢)|s. The Berkovich topology on X" is defined as
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the most coarse topology on X" which makes the specification map j and all
functions of the form |f| continuous, where f runs over all regular functions
on Zariski open subsets of X (see [1, §3.4] for more details). If f : X — Y is
a morphism of K-schemes, then the map ™ : X" — Y@ is continuous with
respect to the Berkovich topology.

2.2. Green function. Let X be an integral projective scheme over Spec K. We
denote by C°(X3") the set of continuous functions on a non-empty Zariski open
subset of X", modulo the following equivalence relation

f ~ g <= f and g coincide on a non-empty Zariski open subset.

Note that the addition and the multiplication of functions induce a structure of
RR-algebra on C°(X?"). Moreover, for any non-empty Zariski open subset U of
X, we have a natural homomorphism of R-algebras from C°(U") to CO(xan).
Since U?" is dense in X?" (see [1, Corollary 3.4.5]), this homomorphism is injec-
tive. Therefore, by abuse of notation we may consider any function in C%(U")
as an element in C?(X®"). We say that an element of C°(X?") extends to a contin-
uous function on U™ if it belongs to the image of the canonical homomorphism
co(uan) — CO(x).

Example 2.1. Let X be an integral projective scheme over SpecK. If f is a non-
zero rational function on X, then it coincides with an invertible regular function
on some non-empty Zariski open subset U of X. Therefore log | f| determines an
element of CO(X™), which does not depend on the choice of U. The map from
Rat(X)* to CO(X®") sending f € Rat(X)* to log |f| is a group homomorphism,
and hence induces an R-linear map Rat(X)g — CY(X) which we still denote by
log ||

Definition 2.2. Let D be a Cartier divisor on X. We call D-Green function of
CO-type (or simply Green function of D) any element g € C°(X?") such that, for
any element f € Rat(X)* which defines the Cartier divisor D locally on a non-
empty Zariski open subset U of X, the element g + log | f| of C°(X®") extends to
a continuous function on U*".

Similarly if K = Q or R and if D is a K-Cartier divisor on X, we call D-
Green function of CO-type or Green function of D any element ¢ € C°(X®") such
that, for any element f € Rat(X)yg which defines the K-Cartier divisor D locally
on a non-empty Zariski open subset U of X, the element g + log | f| of CO(xan)
extends to a continuous function on U".

For K-Cartier divisors D and D’ and 4,4’ € K, it is easy to see that if ¢ and ¢’
are Green functions of D and D’, respectively, then ag + a’¢’ is a Green function
of aD +a'D. In particular, if ¢ is a Green function of the trivial Cartier divisor
or the trivial K-Cartier divisor, then it extends to a continuous function on X3,
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Let {gx }°°_; be a sequence of D-Green functions of C’-type and g be a D-Green
function of C%-type. Let 0, be the unique continuous extension of g — g, on X",
We say that the sequence {g, }9_; converges uniformly to g if limy, e ||6 ||sup = O.

Example 2.3. Let f be an element in Rat(X)y and (f) be the R-Cartier divisor
on X defined by f. Then the element — log |f| € C°(X?) is a Green function of
(f)-

Remark 2.4. Green functions are closely related to continuous metrics on line
bundles. Let L be an invertible Ox-module. By continuous metric on L, we refer
to a family ¢ = (|-|¢(x))xexan, where for each x € X*", |-|4(x) is a norm on
L ®o, k(x), which defines a morphism of sheaves (of sets) from L to j.(C%a),
with C%.. being the sheaf of continuous real functions on X®". If L is an invertible
Ox-module equipped with a continuous metric ¢, for any non-zero rational
section s of L, the function —log |s|s, which is well defined on a Zariski open
subset of X*", determines a Green function of the Cartier divisor associated with
s. Conversely, given a Cartier divisor D on X equipped with a Green function
of CV-type g, the section —D of .#y; /Oy defines an invertible sub-Ox-module
of .#x, denoted by Ox(D), where .#x is the sheaf of rational functions on
X. The element —D € T(X,.#y /Ox) also determines a rational section of
Ox (D) denoted by sp. If f is a non-zero rational function of X which defines
the divisor D on a non-empty Zariski open subset U, then the element f~!sp
is a rational section of Ox (D) which determines a regular section s;; of Ox (D)
on U trivialising the invertible sheaf on U. By definition g + log|f| extends to
a continuous function on U®". For any x € U, we let |-|¢(x) be the norm on
L ®p, x(x) such that

[su(x)|g(x) = exp(—(g +log |f])(x)).
It does not depend on the choice of (U, f). Moreover, the family of norms
(|-lg(x))xexan defines a continuous metric on Ox (D), denoted by ¢,.

Proposition 2.5. For any R-Cartier divisor D on X, there is a Green function of D.

Proof. First we assume that D is an ample Cartier divisor. Let m be a positive
integer such that mD is very ample. Let s, ...,sy be a basis of H*(Ox(mD))
and ¢ : X — PN = Proj(K|[Tp, ..., Tn]) be the morphism given by
x = (sp(x) :...:sn(x)).

We set z; = T; /Ty fori = 1,...,N and gy = logmax{1,|z1],...,|zx|}. Then itis
easy to see that g is a Green function of Hy := {Ty = 0}. Thus ¢*(go) is a Green
function of ¢*(Hyp). We choose 0 € Rat(X)* such that mD = ¢*(Hp) + (0). Then
(1/m)(¢*(go0) —log|0]) is a Green function of D.

Next we assume that D is a Cartier divisor. Then there are ample Cartier

divisors A and B with D = A — B. Let g4 and gp be Green functions of A and
B, respectively. Then g4 — gp is a Green function of D.
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In general, there are Cartier divisors D;,...,D;, and ay,...,a, € R with D =
D1+ ---+a,;D;. Let gp. be a Green function of D;. Then a1¢p, + - - - +a,gp, is
a Green function of D. O]

Proposition 2.6. Let D be an effective R-Cartier divisor on X (see Conventions and
terminology 2) and g be a Green function of D. Then the element e~3 of CY(X) extends
to a non-negative continuous function on X*™. In particular, there is a constant C such
that g > C on X",

Proof. Let f be a local equation of D on a Zariski open subset U of X. Note
that the element g + log | f| of CO(Xa) extends to a continuous function on U™,
Hence e 8 = |f| - e~ (8*1981f]) extends to a continuous function on U?", which is
non-negative. By gluing continuous functions we obtain that e™$ extends to a
continuous function on X®". For the last assertion, note that X" is compact, so
that there is a constant C such that e 8 < e € on X", as required. O]

Remark 2.7. Let D be an effective R-Cartier divisor and g be a Green function
of D. The above proposition shows that the element e™¢ extends to a continuous
function on X?". By abuse of notation, we use the expression ¢ to denote the
map —log(e™¢) : X® — R U {400}, where we consider e™§ as a continuous
function from X" to [0, +oo].

@Remark 2.8. Let K be either Q or R. In the case where X is normal, for a
Cartier divisor D on X, the effectivity of D as a Cartier divisor is equivalent
to the effectivity of D as a K-Cartier divisor by algebraic Hartogs’ property !,
However, if X is not normal, then a Cartier divisor which is effective as a K-
Cartier divisor is not necessarily effective as a Cartier divisor. For example, we
set X := Proj(K[To, Ty, To) /(ToTz — T3), U; := {T; # 0} N X (i = 0,1,2) and x :=
T1/To,y := To/Ty on Up. Then Uy = X\ {(0:0:1)}ans Uy = X\ {(1:0:0)},
so that X = Uy U U,. Note that y/x € O)X(’g for all € UpNU,. Let D be a
Cartier divisor on X given by

D— {(y/x) on Uy,
(1) on U,.

As y/x is not regular at (1: 0: 0), D is not effective as a Cartier divisor. On the

other hand, since
oD — (x) on Uy,
(1) on Uy,
D is effective as a IK-Cartier divisor. As a consequence, 1 ¢ H°(X, Ox(D)) and
1 € H%(X, D), that is, H*(X, Ox(D)) — H"(X, D) is not surjective.

Iif ¢ is a rational function on a normal algebraic variety V over a field and ¢ is regular at
every codimension 1 point of V, then ¢ is regular on V.
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From now on, we assume that char(K) = 2. We set U, := Up \ {(1:1:1)}.
Note that X = UyUUp and 1+ y/x € (’))X(g for all { € UjN Uy, so that we set

D (14+y/x) on Uy,
(1) on U,.
),

Since y/x is not regular at (1: 0: 0), we have D’ # 0. Moreover, as (1 +vy/x)? =
1+ x, we have
oD — (14+x) on U,
(1) on Uy,

and hence 2D’ = 0 because 1 + x € C’))X(,g for all { € U|. Therefore, the natural

homomorphism Div(X) — Divk(X) is not injective. Furthermore Suppy (D) =
@, but Supp,,(D') = {(1:0:0)}.

2.3. Plurisubharmonic Green functions. Let K be a field equipped with a non-
archimedean complete absolute value |-| and X be an integral projective scheme
over Spec K. For each ¢ € X?", the residue field of the associated scheme point
of ¢ is denoted by x(&). Let () be the completion of x(¢) with respect to the
absolute value ||z (see §2.1). Let L be an invertible sheaf on X. Let V = (V, |||
be a finite-dimensional vector space equipped with an ultrametric norm ||-||. We
assume that there is a surjective homomorphism 77 : V ®@x Ox — L. For each
¢ e ¢) be the norm of V @k #(¢) obtained by the scaler extension of
-1l Whlch is by def1n1t10n the operator norm on V ® x(¢) = Homg(VY,%())
(cf. [9, §1.3.4]). The quotient norm of L(¢) := L ®p, #(¢) induced by ||-[|¢(#) and

the surjective homomorphism V ®k #(¢) — L(&) is denoted by H%l °(Z). Note
that {||%1 Ot({;’)}ge xan yields a continuous metric on L (cf. [9, Corollary 3.4]).

Definition 2.9. We assume that L is semiample. A continuous metric 1 =
{||n(x) }xexan on L is said to be semipositive if there are a sequence {ey },en of
positive integers and a sequence {V,},en of normed finite-dimensional vector
spaces over K such that there is a surjective homomorphism V,, @ Ox — L%
for each n and the sequence

ARG
en 8 T pen ()
nelN

converges to 0 uniformly on X?". In other words, if we choose a non-zero rational
section s of L, then the sequence

1 uot
1 1ogsen| <5>}
{e” Vin nelN

of div(s)-Green functions converges to log |s|; (&) uniformly (cf. Definition 2.2).

We recall a characterisation of semipositive metrics as follows.
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Proposition 2.10 ([9, Corollary 3.11]). Let L be a semiample invertible sheaf on X and
h be a continuous metric on L. Then h is semipositive if and only if, for any € > 0, there
is a positive integer n such that, for any & € X, we can find s € H(X, L")z \ {0}
with |s||pm 2z < €"¢[s|pn (E).

Proposition 2.11. Let L and L' be semiample invertible sheaves on X and h and h' be
continuous metrics on L and L', respectively.

(1) If h and I are semipositive, then the metrich @ h' on L ® L' is also semipositive.

(2) Let f : Y — X be a morphism of projective integral schemes over Spec K. If
h = {|"|n(x) }xexan is semipositive, then f*(L) is semiample and (f*")*(h) =
{]-|n(fom (y)),%(y) }yeyan is a semipositive metric on f*(L), where |- (fa“(y)),g(y)
denotes the normon f*(L) ®o, &(y) = L(x) ®g(x) k(y) induced by |-|1,(f*"(y))
by extension of scalars.

(3) Let {hy}5>_; be a sequence of semipositive metrics of L. If

|1 }oo
lo n
{ g ||h n=1

converges to 0 uniformly, then h is semipositive.
(4) The following are equivalent:

(4.1) h is semipositive.

(4.2) h'" is semipositive for all n > 1.

(4.3) h'" is semipositive for some n > 1.

Proof. (1) As h and I’ are semipositive, by Proposition 2.10, for any € > 0, there
are positive integers n and n’ such that, for all £ € X*", we can find

s € HYX,L")¢)\ {0} and s' € HO(X,L" )z \ {0}
with
sl 2z) < €"lslin(8) and  [I"]]) oz < €8] (£)-

Then s"'s" € HO(X, (L® L')™ )4(s \ {0} and

!

n n
Dy e < (Isllineey) ™ (15" )
<[5l ()" (15 (2))"

nn6|sn /Tl|

7"

=e

(hh! )’ (€)-
Therefore, by Proposition 2.10 again, 1 ® I’ is semipositive.

(2) The semiampleness of f*(L) is obvious. By Proposition 2.10, for any € >
0, there is a positive integer n such that, for any { € Y?", we can find s €
HO(X, L") #(rn(g)) \ 10} with [|s]|pm g(fan(zy) < €"€[smn (f2"(C)). Then, as s is not
zero at the scheme point of f2({),

Fipaniey (8) € HUQY, £ (L))r(pan()) \ {03,
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where f;(fa“(é)) : HO(X,L),Q(fan(g)) — HO(Y,f*(L))k(fan(g)) is the natural homo-
morphism. Thus, if we set

s' = fe(rn(0))(8) @r(rn()) Lr(g) € HO(Y/f*(L))k(g) \ {0},
Then

57l gy @) = s ney) ()l gomy iy om0
< I8l g(fon(gy) < €8l (f7(D))
= "8 (pany= ) (0),
so that the assertion follows from Proposition 2.10.

(3) For € > 0, there is a positive integer ny such that

|- |n
e €< ||ZO <ef on X

Moreover, as hy, is semipositive, there is a positive integer 11 such that, for any
& e X™, we can find s € HY(X, L™ )z (e \ {0} with |||, n (@) S e"€|s|, n (), and
710/ no

hence
Isllim ey < € lsllym ey < €Il (€) < € lsli (€),
so that & is semipositive by Proposition 2.10.

(4) “(4.1) = (4.2)” is a consequence of (1). “(4.2) = (4.3)” is obvious. We
can easily check “(4.3) = (4.1)” by using Proposition 2.10. ]

Definition 2.12. Let D be a semiample Q-Cartier divisor on X and g be a D-
Green function of CO-type. We say that g is of plurisubharmonic type (or plurisub-
harmonic) if there is a positive integer n such that nD is a Cartier divisor and ||,
is a semipositive metric of Ox(nD). Note that, by (4) in Proposition 2.11, the
last condition does not depend on the choice of n. Moreover, if nD is a Cartier
divisor for some positive integer 1, then |-|,¢ is semipositive.

Proposition 2.13 (Q-version). Let D and D' be semiample Q-Cartier divisors on X,
and let g and g’ be plurisubharmonic Green functions of D and D', respectively. Then
we have the following:

(1) For ¢ € Rat(X)q, —log|¢| is a (¢)-Green function of plurisubharmonic type.

(2) Forall a,a’ € Qsq, ag +a'g’ is also of plurisubharmonic type.

(3) Let f : Y — X be a morphism of projective integral schemes over K such that
f(Y) € Supp(D). Then f*(D) is semiample and (f™)*(g) is an f*(D)-Green
function of plurisubharmonic type.

(4) Let {gn}nen be a sequence of D-Green functions of plurisubharmonic type. If
{gn }nen converges a D-Green function g uniformly (cf. Definition 2.2), then g
is also of plurisubharmonic type.
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Proof. (1) Clearly we may assume that ¢ € Rat(X)*. We set D = (¢) and g =
—log|¢|. As Ox(D) = Ox¢~!, the homomorphism Ox — Ox(D) given by
1 — ¢! yields an isomorphism. If we give the trivial metric |-| to Oy, then the
above isomorphism gives rise to an isometry (O, |-|) ~ (Ox(D), |-|¢). Thus the
assertion follows.

(2), (3) and (4) follows from (1), (2), (3) in Proposition 2.11. ]

Definition 2.14. Let D be an IR-Cartier divisor on X. We assume that D is semi-
ample, that is, there are semiample Cartier divisors Aj,..., A, and ay,...,a, €
R+ such that D = a1A; + --- + a,A; (cf. Conventions and terminology 3).
We say a D-Green function ¢ of CO-type is said to be of plurisubharmonic type
(or plurisubharmonic) if there is a sequence {¢, },en of D-Green functions of
C-type with the following conditions:

(1) Let 6, be the continuous extension of ¢ — g, on X*". Then lim, ;e ||0 ||sup =
0.
(2) For each n, there are semiample Q-Cartier divisors A,1,..., Anr, on X,
plurisubharmonic Green function g,1,...,ur, of An1,..., Aur,, respec-
tively and positive real numbers a,1,...,a,,, such that D = a,1 A, +
R anrnAnr,, and 8n = am&n1 + - + Anr,&nry-
We refer the readers to [11, §3] for more details about plurisubhamonic functions
and semi-positive metrics.

The R-version of Proposition 2.13 can be checked by using the Q-version.

Proposition 2.15 (R-version). Let D and D' be semiample R-Cartier divisors on X,
and let g and g’ be plurisubharmonic Green functions of D and D', respectively. Then
we have the following:

(1) For ¢ € Rat(X)g, —log |¢| is a (¢)-Green function of plurisubharmonic type.

(2) Forall a,a’ € R, ag +a'g’ is also of plurisubharmonic type.

(3) Let f : Y — X be a surjective morphism of projective integral schemes over K
such that f(Y) < Supp(D). Then f*(D) is semiample and (f*")*(g) is an
f*(D)-Green function of plurisubharmonic type.

(4) Let {gn} be a sequence of D-Green functions of plurisubharmonic type. If {g,}
converges a D-Green function g uniformly (cf. Definition 2.2), then g is also of
plurisubharmonic type.

Finally let us see the following proposition:

Proposition 2.16. Let D be a semiample Q-Cartier divisor on X and g be a D-Green
function of CO-type. The Green function g is of plurisubharmonic type as a Q-Cartier
divisor if and only if g is of plurisubharmonic type as an R-Cartier divisor.

Proof. Itis sufficient to show that if g is plurisubharmonic as an IR-Cartier divisor,
then g is plurisubharmonic as a Q-Cartier divisor. By (4) in Proposition 2.13, we
may assume that ¢ is obtained by the following way: there are semiample Q-
Cartier divisors Aj, ..., A on X and plurisubharmonic Green functions hy, ..., h,
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of Ay,..., Ay, respectively such that
D=onA1+ - -+aA and g=ah1+---+ah
for some ay,...,a, € R>o. Here we claim the following:

Claim 2.16.1. Let V be a vector space over Q. Then we have the following:

(i) Wr NV =W for any a vector subspace W of V.

(ii) Let x,x1,...,x, € V such that x = ayx1 + - - - + a,x, for some ay,...,a, € R.
Then, for any € > 0, there are a, ..., a, € Q such that x = ajx1 + - - + a,x,
and |a} — a;| < € for all i.

Proof. (i) is obvious because V/W — (V/W)R is injective and (V/W)r =
Vi / Wr.

(ii)) We set W := Qx; + - - - + Qx;. Then, by (i), there are by,...,b, € Q such
that x = byx; + - - - + byx,. Let us consider a homomorphism ¥ : Q" — V given
by ¢(t1,...,tr) = tix1 + - - - + t,x,. We denote the scalar extension R" — VR by
YR, thatis, Yr(ay, ..., ar) = a1x1 + - - - + arx,. We set

0= (ﬂl,...,ﬂr) — (blz---/br) S Ker(l[)]R).

As Ker(yr) = Ker(y)Rr, Ker(¢) is dense in Ker(¢r), so that there is 6’ € Ker()
such that |6 — ¢'| < €, where for y = (y1,...,yr) € R, |y| := max{|y1|, ..., |y|}.
Therefore, if we set

(ay,...,a.) = (by,...,by) + 7,

thenx =ajxy+---+ax (a},...,a, € Q) and |a; —a}| <eforalli=1,...,r. O

By applying the above claim to the case where V = Divg(X), x = D and
xi = A; (i = 1,...,r), there are sequences {a,1}5 ,..., {an}5_, of positive
rational numbers such that

ai:,}g{}o”ni (i=1,...,7r) and D =a,,1A1+ -+ an A,

We set g, := a,hy + -+ + awhy. Then g, is a D-Green function of plurisub-
harmonic type by (2) in Proposition 2.13. Let 0, be a continuous function
on X" with ¢ — ¢, = 6,. It is sufficient to see that lim, e [|0n|/sup = O by
virtue of (4) in Proposition 2.13. If we set by,; := a; — a,;, then lim,_, b,; = 0,
b,1A1 + - -+ by Ay = 0 and the continuous extension of b,1hy + - - - + by by is
6. Let Eq, ..., Es be a basis of the vector subspace QA; + - - - + QA,; of Divg(X).
We choose «;q,...,0;; € Q with A; = Z;le a;;E;. Then, as

S r
0= budi=1) ( bm'ﬂéij> Ej,
' i=1

i j=1

we have Y| byiwjj = 0 for allm > 1 and j = 1,...,s. For each j, let ¢; be an
E;-Green function of C-type. Then, for each i, there is a continuous function v;
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on X3 such that h; — ijl ajje; = v;. Note that

r S r r
=Y buvit ), (Z bm’“z’j) ej =) buvi.
i=1 j=1 \i=1 i=1
Thus [[0n[[sup < Xi—1 |buil||Vil|sup, and hence the assertion follows. O

2.4. Canonical Green functions with respect to endomorphisms. Given a po-
larised dynamic system on a projective variety over Spec K one can attach to the
polarisation divisor a canonical Green function, which is closely related to the
canonical local height function. We refer the readers to [16] for the original work
of Néron in the Abelian variety case, and to [3, 18] for general dynamic systems
in the setting of canonical local height and canonical metric respectively. See [12]
for the non-archimedean case. In the following, we recall the construction of the
canonical Green functions of R-Cartier divisors.

Let f : X — X be a surjective endomorphism of X over K. Let D be an IR-
Cartier divisor on X. We assume that there are a real number d and ¢ € Rat(X)y
such that d > 1 and f*(D) = dD + (¢). We fix a Green function gy of D. There
exists a unique continuous function A on X" such that

(f™)*(g0) = dgo — log |@| + A,

where for any element ¢ € C%(X?") represented by a continuous function # :
U — R, with U being a non-empty Zariski open subset of X, the expression
(fa™)*(g) denotes the element in C°(X2") represented by the function / o fo" :
F~HU)™ — R. We set

(2.1) Z 1+1 ((F™H*(A) (n=1).

Lemma 2.17. The sequence {hy},>1 of continuous functions on X*® converges to a
continuous function h on X" uniformly.

Proof. If n > m, then

= 1 an \ 1\ * ||A||sup gl 1
[hn — B |sup < .Z WH((/r ') Mllswp = i1, .
1=
S dm—|—1 dl _1)
Thus the lemma follows. O

Proposition 2.18. There is a unique Green function of D with (f*)*(g) = dg —
log || on X2
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Proof. Let us begin with the uniqueness of g. Let ¢’ be another Green function
of D with (f*")*(g") = dg’ —log|¢[ on X™. Then (f*")*(¢’' —g) = d(g' —g) on
X", Note that there is a continuous function 6 on X" with 6 = ¢’ — g, so that
( j;‘“)* (8) = d(0). Here we consider the sup norm ||-||sup of continuous functions.
Then

H9||sup = ||(fan)*(9)”sup = ||d9Hsup = dHGHsupr
and hence [|0||sup = 0. Therefore, 6 = 0.

Since

(F) Z dz+1 ((F™) ) (A) = dhygr — A,

we have (f2)*(h) = dh — A, so that if we g = g0+ h, then
(f*)*(g) = (dgo —log|e| + A) + (dh — A) = dg —log|¢|,
as required. O

A Green function g of D is called the canonical Green function of D with respect
to fif (f*)*(g) = dg —log|¢| on X"
Lemma 2.19. For 6 € Rat(X)y, we have the following:

(1) f4(D+(8)) =d(D+(0)) + (f(0)0 o).
(2) The canonical Green function of D + () is given by g — log |6)].

Proof. (1) is obvious. Since
(f*)" (g —log|6]) = dg —log|¢| —log|f*(6))]
= d(g —log [0]) —log |f*(6)6"¢],

the assertion (2) follows. O
We set
§n =80 + Iy (n>1)
(2.2) n_1

w=1 ¢.=[1U @V (n=1).

i=0

Let us see the following facts:

Lemma 2.20. (1) (f*)*(gn—1) = dgn — log|o| and f*(pu—1) = ¢/ ¢ for all
n>1.

(2 If D >0and gy > 0, then D + (¢,) = 0 and g, —log || = 0 foralln >0
Proof. (1) In the case n = 1, since (f*")*(go) = dgo —log |¢| + A, g1 = go+ (1/d)A
and ¢ = gol/ 4 the assertion is obvious. For n > 2,

n—2

()" (gn—1) = (f7)° (go + ZO di1+1((fa“)i)*(A)>
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n—2 )
= (P (80) + X e () ()

i=0

= 1 an \ i *
= dgo —log |p| + A + ZO g (U N

n—2 )
—d (go rA L #«f&wl“)*w) ~log|o|

= dgn —log | ¢

N

l:

f ((P <ﬁ 1/di+1> = fz+1 1/01”’1
n— 1
0

i=1

‘ n_t . i+1 i
=TT ()" = (H(fl)*(sv)l/d ) = (¢n/ 9" = 93/ 9.

Therefore, the assertion follows inductively.
(2) follows from (1). (]

Proposition 2.21. If D + (s) is effective for some s € Rat(X)g, then, for any € > 0,
there is e € Rat(X)g such that D + (@e) > 0 and g —log |¢e| +€ > 0.

Proof. First we assume that D > 0. By Proposition 2.5 and Proposition 2.6, we
can choose a Green function gy of D with gg > 0. Then, by Lemma 2.17 and
Lemma 2.20, for € > 0, there is a positive integer n such that || — hy||sup < €,
D+ (¢n) = 0and g, — log |@x| = 0, and hence

0 < gn —log|gn| = g+ (I — ) —log [¢n] < g + € —log [gnl,
as required.

Next we assume that D + (s) is effective for some s € Rat(X)g. Then, by
Lemma 2.19, the canonical Green function of D + (s) is ¢ — log |s|. Therefore,
by the previous observation, for any € > 0, there is o € Rat(X)y such that
D+ (s) + () = 0 and g —log|s| — log |e| + € = 0, and hence the assertion of
the proposition follows for @¢ := sipe. O

Proposition 2.22. If D is semiample, then the canonical Green function of D is of
plurisubharmonic type.

Proof. Since D is semiample, we can choose a Green function gg of plurisubhar-
monic type as an initial Green function. Note that ¢ is the uniform limit of the
sequence {gn },>1, so that, by (4) in Proposition 2.15, it is sufficient to show that
each gy is of plurisubharmonic type. We prove it by induction on n. We assume
that g,_1 is of plurisubharmonic type. Then, by Lemma 2.20 and (3) in Propo-
sition 2.15, dg, — log |¢| is of plurisubharmonic type. Therefore, by (1) and (2)
Proposition 2.15, g, is of plurisubharmonic type. (]
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3. A SUFFICIENT CONDITION FOR THE DIRICHLET PROPERTY
OF ARITHMETIC DYNAMIC SYSTEM

Throughout this section, let K be a number field and X be a normal, projective
and geometrically integral scheme over SpecK. In this section, we consider a
sufficient condition to guarantee the Dirichlet property. As a consequence, if
X = PP§ and f is an endomorphism given by polynomials, then we can see
that the Dirichlet property holds for the canonical compatification of an ample
Cartier divisor with respect to the endomorphism f.

3.1. Preliminaries. In this subsection, we discuss several facts which are used
in the later subsection.

Lemma 3.1. The natural homomorphism Rat(X)g — Divg(X) given by ¢ — @ is
injective, that is, Rat(X)g can be considered as a vector subspace of Divg (X).

Proof. We denote the homomorphism Rat(X)g — Divg (X) by a. Let ¢ € Ker(a).
Weset ¢ = @|'--- ¢, such that ¢1,..., ¢ € Rat(X)*,ay,...,4; € Rand ay, ..., q
are linearly independent over Q. As a;(¢) + - - - 4 a;(¢;) vanishes in Divg(X),
for any prime divisor I' on X,

ai ordr(qol) + -+ ordr(gol) =0,

which implies ordr(¢;) = 0 for all i because ay, ..., a; are linearly independent
over Q. Thus ¢; € K* for all i, by which we may assume that X = Spec(K). For
vE Mﬁn, as before,

a, ordv(qol) + - 4a ordv((pl) =0,

so that ¢; € Og for all i. Therefore, Ker(#) € (Og)r. Let us consider the
homomorphism L : Of — RX(©) given by x +— (—log |x|), where (—log |x|)s =
—log |o(x)|. It is well known that Ker(L) is a finite group, so that the natural
extension Ly : (Og )r — RK(®) is injective. Therefore we have the assertion. []

Lemma 3.2. Let H be a finite dimensional vector subspace of Divg(X) over R. Let
{D,}nen be a sequence in H. Moreover, let {(0,8,)}nen be a sequence in Divg (X),
that is, for each v € Mg, {64,0 }neN is a sequence of continuous functions on X5". We
assume the following:

(1) {Dy}nen has a limit D in the natural topology of H as a finite dimensional
vector space over RR.
(2) For each v € X, {0y,0 fneN converges to 0 uniformly.

If Dy + (0,6,) = 0 for all n, then D > 0.
Proof. Let Hy = (Hy,hy),...,H, = (Hy, h,) be a basis of H. We set
En = anlﬁl +- ﬂnrﬁr
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and a; = lim, e a,; fori =1,...,r. Note that D = ayHy + - -- +a,H,. Let I be
a prime divisor on X. Then

Ordr(D) =m OI'dr(Hl) +---+a Ordr(Hr)
= nlgro}o{anl Ordr(Hl) + -+ ay Ordr(Hr)}
= lim ordr(D,) >0,
n—sc0

sothat D > 0.
Here we set
gni=amh+ -+ anh, +6, and g:i=ah+---+ah.

For each v € Mg(= Mi" U M), we need to show that g, > 0 under the as-
sumption g, > 0 for all n. Note that g, is continuous on X3" \ Supp(D)3" and
Qo(x) = oo for x € Supp(D)3". We assume that the non-negativity of g, does not
hold. Then there is an open set U of X3" \ Supp(D)2a" such that g, < 0 on U.
Choose x € U\ (U/_; Supp(H;))3". Then

gn,v( —an +Zﬂm zv =0,
which implies

go(x) = iaihw(x)

= lim 60, ,(x) + Zr: (11m am> o(X)

n—oo n—oo
i=1
= lim a > 0.
1300 n ZJ + Z nz 1 z) =
This is a contradiction. ]

Lemma 3.3. Let D be an adelic arithmetic R-Cartier divisor of CO-type. Then we have
the following:
(1) T'(X, D)y is a convex set (for the definition of I'(X, D), see Conventions and
terminology 5).
(2) Let H be a finite dimensional vector subspace of Rat(X)g. Then HNT'(X, D)y
is compact.

Proof. (1) For t € [0,1] and 5,s' € T'(X, D)g,

D+ (sts0 D) =D+ t(s) + (1 — 1) (s')
=D+ () +(1-H(D+()) 20,
so that ['(X, D) is convex.
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(2) We can find a model (27, Z) of (X, D) and an Fe-invariant D-Green func-
tion k of C%-type on X(C) = Uyek(c) X3 such that (Z,k)* > D, where (Z,k)" is
the associated adelic R-Cartier divisor of C%-type on X. Then

F(X, (2,65 2 F(X, D)j.

By Lemma 3.1 together with [13, Corollary 3.3.2], H N I'(X, (2,k)")y is compact.
Moreover, by Lemma 3.2, we can see that H N lA"(X,ﬁ)]E is closed, so that H N
I'(X,D)g is compact. O

3.2. Algebraic dynamic system and a sufficient condition for the Dirichlet
property. Let f : X — X be a surjective endomorphism of X over K. Let D
be an R-Cartier divisor on X. We assume that there are a real number d and
¢ € Rat(X)g such that d > 1 and f*(D) = dD + (¢). An adelic arithmetic
R-Cartier divisor D = (D, g) of CO-type is called the canonical compactification
of D if f*(D) = dD + (¢). Note that D is uniquely determined by the equa-
tion f*(D) = dD + (¢) (for details, see [10, Section 3] or Proposition 2.18). By
Lemma 2.19, for § € Rat(X)y, we have the following:

(@) f*(D+(0)) =d(D+(8)) + (f(0)0~9). =
(ii) The canonical compactification of D + () is given by D + (9).

Let g0 = {g0,0 }vem, be a family of D-Green function of Co-type on X. We choose
a collection of continuous functions A = {Ay }yepm, such that

(3.1) (D, 80) = d(D, go) + () + (0, A).
As in Subsection 2.4, we set

n—1 )
=gt Lo (F) =)
i=0

n—1

p=1 ¢.= 1)@V (n=1).

i=0

By Lemma 2.17,

n—1 )
= 5 gm0 (21,

converges to a continuous function i uniformly. Here we set ¢ = go + h. Then
the pair D = (D, g) yields the canonical compactification of D (for details, see
[10, Section 3] or Proposition 2.18). Note that ¢ does not depend on the choice
of the initial Green function go. By Lemma 2.20, we have the following;:

@) f*(gn_1) = dgn —log|@|? and f*(¢,_1) = ¢% /¢ for all n > 1. In particu-
lar, f* ((D/gn—l) + ((Pn—l)) =d ((D/gn) + (qon)) forall n > 1.

—

(b) If (D, go) = 0, then (D, ) + (¢n) = 0 for all n > 0.
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The vector subspace of Rat(X)y generated by {¢,}_; is denoted by V(¢). We
say that V(¢) has the finiteness property if V(¢) is finitely generated as a vector
space over IR.

Lemma 3.4. The following are equivalent:
(1) V(@) has the finiteness property.
(2) There are R-rational functions ¢1,...,¢; on X and A, Aq,...,A; € R! such
that ¢ = ¢ and f*(¢;) = ¢p%i fori =1,...,1 (see Conventions and terminol-
ogy 1).

Proof. (1) = (2): Let {¢1,...,8,} be a basis of V(¢). Clearly ¢ = 8% for some
B € R". For each i, we can find ¢y, ..., ¢, € R such that 9; = qof}l . qofl’y. Thus, as

Fr @) = F(@u) £ (@n)" = (9o 1/ 9) - (@ 1/ 9%,
we can find B; € R" such that f*(¢;) = 95

(2) = (1): Clearly V(¢) is a vector subspace of the vector space generated by
$1,...,¢;, so that the assertion follows. O

Lemma 3.5. We assume that (D, go) = 0 and V(¢) has the finiteness property. Then
there is a subsequence {@u, }tieN Of {@n}n>1 such that the limit of { @y, }icN exists in
the usual topology of V(@) as a finite dimensional vector space over R.

Proof. First of all, note that there is a non-empty open set U of Spec(Ok) such
that A, = 0 for all p € U, where A, is determined by (3.1). Moreover, there is a
positive number ¢ such that (1), < hy + ¢ for all v € Mg \ (U N M), Thus, if
we set

D'=(D,9) + [0, Y. c[v] |,
ve Mg\ (UNMER)
then, by Lemma 2.20,

D'+ (n) > (D, gn) + () 2 0.
Thus, ¢, € I'(X, D) NV(g), so that the assertion follows from Lemma 3.3. [J

Theorem 3.6. If D is effective and V (@) has the finiteness property, then the Dirichlet
property holds.

Proof. We can choose an initial family go of D-Green functions with (D, gp) > 0.
By Lemma 3.5 together with Lemma 2.20, there is a subsequence { ¢y }icN of
{®n}n>1 such that the limit of {¢,, };cn exists in the usual topology of V(¢) as
a finite dimensional vector space over IR. We denote the limit by ¢. Note that

(D, gn;) + @ > 0 by Lemma 2.20, so that, if we set h,, = g, — g, then then

D + (0,hn,) + (¢n,) > 0. Therefore, by Lemma 3.2, D 4 (¢) > 0, as required. [J
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Remark 3.7. Let 6 € Rat(X)y. If we set D’ = D + (), then, by Lemma 2.19, we
have

fH(D") = dD" + (f*(0)0"p).
In order to apply Theorem 3.6, it is better to choose 6 such that D’ > 0 and
*(8)0~%¢ is simple as much as possible.
For example, X = Proj(K[Ty, T1]), D = {T; = 0} and f is given by
f(To:Th) = (Tg : Tf + cT§)

for some ¢ € K. This is a famous complex dynamic system. If we set z =
To/Ti, then f*(D) = 2D + (1 + cz?). We do not know the finiteness property
of V(1 + cz?). On the other hand, if we set D’ = {Ty = 0}, then f*(D’) = 2D’.
In this case, V(1) is trivial, so that by the above theorem, the Dirichlet property
holds for D’ equipped with its canonical Green function (see §2.4).

Corollary 3.8. If D is effective and f*(D) = dD, then the canonical compactification
D of D has the Dirichlet property.

Finally let us consider examples.

Example 3.9. We assume X is the n-dimensional projective space over K, that is,
X = P¥ = Proj(K[To, Ty, ..., Tu]). Let f : P% — P} be a surjective endomor-
phism over K. We assume that f is a polynomial map, that is,

f (P \A{To = 0}) € Pg\ {Tp = 0}.

We set z; = T;/Ty for i = 1,...,n. Then there are fi,..., fu € K|z1,...,25] such
that

f(loixg:oe-ixy) =1 falxg, .o xn) st fu(xr, o0, x0)).
We set d = max{deg(f1),...,deg(fs)}. Then f : P} — P} is given by
f(To::T) = (T¢ :F(To,..., Ty) -+ : Fy(To, ..., Tu)),
where Fj, ..., F, are homogeneous polynomials of degree d with
FE(1,Xy,...,Xn) = fi(Xq,..., Xn)
fori=1,...,nand
{(t1, .., tn) €K' | F(0,t1,...,ty) = --- = F4(0,t1,...,t,) =0} = {(0,...,0)}.
We set D = {Tp = 0}. Then f*(D) = dD, so that the Dirichlet property holds
for the canonical compactification by Corollary 3.8.
For example, in the case where f, : IP}< — ]P}< is given by
fe(To: Ty) = (Tg : Tf +cTg)  (c €K),

it is well-known that the Julia set of f. heavily depends on the choice of c. Nev-
ertheless, the Dirichlet property holds.
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Example 3.10. The Dirichlet property is very sensitive on the choice of the dy-
namic system. For example, we set K := Q(v/—1), X := Pk = Proj(K[To, T1])
and z := T;/T). Let us consider two endomorphisms f and f’ on X given by

f(To:Ty) = QTTy : T2 —T3) and f/(Tp:Ti) = 2V —1ToTy : T? — T3),

thatis, f(z) = (1/2)(z —1/z) and f'(z) = (1/2v/—=1)(z —1/z). If we set D :=
{T} — /—1Ty = 0}, then f*(D) = 2D because

(T? = T3) — V12T Ty) = (T; — vV —1Tp)>.
Let g be the canonical D-Green function of CO-type with respect to f. Then, by
Corollary 3.8, D = (D, g) has the Dirichlet property. On the other hand, for
o € MY, it is well-known that the Julia set of f "on X, is equal to X itself (cf.
[15, Theorem 4.2.18]). Therefore, by [10, Theorem 4.5], for any ample R-Cartier

divisor A, the canonical compactification A with respect to f does not have the
Dirichlet property.

3.3. A remark on a sufficient condition for the Dirichlet property. In this sub-
section, we do not suppose given the endomorphism f : X — X. Let D be an
adelic arithmetic R-Cartier divisor of C’-type on X. We assume that D is big and
D is pseudo-effective. Let { be an adelic R-divisor on Spec(K) with (Té\g(é ) =1
Then D + t7t*({) is big for all t € (0,0), where 77 : X — Spec(K) is the canonical
morphism (see [10, §6.2]).

Proposition 3.11. Let H be a finite-dimensional vector subspace of Rat(X)y. If there is
a sequence {t, } yeN Of positive numbers such that limy,_, t, = 0 and, for each n € N,
we can find 0, € H with D + t,7w*({) + (0,) > O, then D has the Dirichlet property.

—~

Proof. Let & € Ky such that { + (¢) > 0. Then

D+ b7 (0) + (0) = D+ (" (T + (8)) + (07" (8) 1),
so that, replacing H by the vector subspace generated by H and 77%(¢), we may
assume that ¢ > 0.
We choose t > 0 such that t, < t for all n. Then

0, € HNI'(X, D + t0°(0))g

for all n. Note that HN (X, D + t71*({) )5 is a compact convex set by Lemma 3.3,
Therefore, there is a subsequence {60y, }xen Of {61 }nen such that the limit 6 of

{64, }ren exists. Moreover, by Lemma 3.2, we have D + (0) > 0.

Example 3.12 (Toric variety). Let N be a free Z-module of rank n and M =
Homz(N,Z). Let £ be a complete fan in Nr. Let X = X(X)k be the toric variety
over K associated with .. Let D be a big toric R-Cartier divisor on X and g a
family of D-Green functions of toric type. If D is big, then we can find m € MR

—

such that D + (x™) > 0. Therefore, we can see that any pseudo-effective adelic
arithmetic IR-Cartier divisor of toric type has the Dirichlet property.
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4. ARAKELOV GEOMETRY OVER A TRIVIALLY VALUED FIELD

In this section, we introduce the analogue of Arakelov geometry in the setting
of projective varieties over a trivially valued field. Throughout the section, let K
be a field and |-| be the trivial absolute value on K. Namely |a| = 1 if a € K*
and [0] = 0.

Definition 4.1. Let X be an integral projective scheme over Spec K. By adelic IR-
Cartier divisor on X, we refer to a couple D = (D, g), where D is an R-Cartier
divisor on X and g is a D-Green function of C%-type. We say that an adelic
R-Cartier divisor (D, g) is effective if D is effective as an R-Cartier divisor and
g, viewed as a map from X®" to RU {+co} (see Remark 2.7), is a non-negative
function.

The set [/)RZ]R(X) of adelic R-Cartier divisors on X forms a vector space over
R. The map from Rat(X)g to Divr(X) sending f to (f) := ((f),—log|f|) is
R-linear. The adelic R-Cartier divisors lying in the image of this map are said
to be principal. If two adelic R-Cartier divisors differ by a principal one, then we
say that they are R-linearly equivalent.

4.1. Global section space and sup norm. Let X be an integral projective scheme
over SpecK and (D, ) be an adelic R-Cartier divisor on X. Let

H(D) := {s € Rat(X)* : (s) + D =g 0} U {0} C Rat(X).

This is a finite dimensional K-vector subspace of Rat(X) (cf. Remark 4.2).

Let s be a non-zero element in H%(D). As (s) + D is an effective R-Cartier
divisor on X and ¢ —log |s| is a Green function of (s) + D, we obtain that |s|e™8 =
e~8718ls| which is denoted by |s|,, is continuous on X" by Proposition 2.6. We
define ||s[/; to be

Isllg := sup{ls|g(x) [ x € X*"}.
Then |-||¢ : H%(D) — R4 actually yields an ultrametric norm on the K-vector
space H(D). Note that {|s||, | s € H%(D)} is a finite set because the absolute
value of K is trivial (cf. [9, §1.2.1]). The function ||-||; defines a decreasing RR-
filtration on the vector space H’(D) as follows:

VieR, F(HD)):={s€HD): [slly <e™'},

which is a vector subspace of H’(D) because the absolute value of K is trivial.
The function t — rkg(F*(H%(D))) is decreasing and left-continuous. Moreover,
FH(H(D)) reduces to the zero vector space when t is sufficiently positive, and
FH(H(D)) = H%(D) when t is sufficiently negative. We let

g, (D) = [ k(P (D)) a

and

Amax(D, g) :=sup{t € R : F(H°(D)) # {0}}.
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We refer the readers to [7, §1.2] for more details on R-filtered vector spaces and
to [6, §3.2] for the comparison of the invariant cTe\g + and the logarithm of the
number of small sections in the classic setting of arithmetic geometry over a
number field.

Remark 4.2. The finite-dimensionality of H’(X, D) can be checked in the follow-
ing way:

Step 1: Clearly we may assume that H(X, D) # {0}, so that we can choose
s € HY(X,D) \ {0}. Then a homomorphism H’(X,D) — H°(X,D + (s)) given
by ¢ — ¢s~! yields an isomorphism. Therefore, replacing D by D + (s), we may
suppose that D >R 0.

Step 2: By Step 1, there are effective Cartier divisors Dy, ..., D, and ay,...,a, €
R~ such that D = a;Dq + - - - 4+ a,D,. We choose integers aj,...,a, such that
a; < a; for all i. If we set D' = a{D1 + - - - +a,D,, then H°(X,D) € H°(X,D’), so
that we may assume that D is a Cartier divisor.

Step 3: Let ¢ : X’ — X be the normalization of X. Then H°(X,D) C
H(X', u*(D)), and hence we may assume that X is normal. Therefore, by using
Hartogs’ property, we can see that the natural homomorphism H°(X, Ox (D)) —
HO(X, D) is bijective, as required.

4.2. Height and essential minimum. If (D, g) is an adelic R-Cartier divisor on
X, we let

) 1
Ao (D, €) := lim sup EAmax(nD, ng).

n—-+o0o

Since the sequence {Amax(nD, ng)},>1 is super-additive, we obtain that

1
/\?I?E}IIX(D/ g) — Sup E/\max (nD, ng)

n=1

This invariant is closely related to the analogue in the setting of arithmetic ge-
ometry over a trivially valued field of the essential minimum of height function.

Here let us introduce the height function h??),g) on X" associated with (D, g).
Fix a point ¢ of X®". Let ps € X be the associated scheme point of ¢ and «x(¢)
be the residue field of pg. The point ¢ gives rise to an absolute value vz on k().

Note that g is non-archimedean because g is trivial on K. We set
og:={a€x(l) |vs(a) <1} and mg:= {a € x({) | ve(a) <1}

In the case where v¢ is trivial, o = x(¢) and mg = {0}. Since X is proper over
SpecK, by the valuative criterion of properness there is a unique K-morphism
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Spec(oz) — X such that the following diagram is commutative:

Spec(oz) —— X

|

Spec(x(%))

where Spec(x(¢)) — Spec(oz) and Spec(x(Z)) — X are the canonical mor-
phisms. The image of ms by Spec(oz) — X is denoted by rz, which is called
the reduction point of ¢.

Let f be a local equation of D on a Zariski open set U containing rz. Note
that ¢ € U because p; € U. By definition the function g + log |f| extends to a
continuous function ¢y on U™". Here we consider the evaluation ¢¢(¢) of 9y at
¢. It does not depend on the choice of U and f. Indeed, let f’ be another local
equation of D on a Zariski open set U’ containing rz. Then there is u € (Og , )r
with f = uf, so that the extension ¢4 of g +log|f’| is equal to ¢ + log [u|
around ¢, and hence the assertion follows because |u|({) = 1. Thereore it is
denoted by k%2 (). For any point x of X, we denote by x®" the point in X"

(D.g)
corresponding to the point x and the trivial absolute value on the residue field

of x. We define h(p ¢)(x) to be hp 4 (x) := h‘(‘g,g)(xan).

For a Cartier divisor E on X, we say E is semiample if Ox(mE) is generated by
global sections for some positive integer m. In general, an R-Cartier divisor D
on X is said to be semiample if there are semiample Cartier divisors Ey, ..., E, on
X and ay,...,a, € Ryo with D = a1E; + - - - + a,E,. The following proposition
contains basic properties of the height functions.

Proposition 4.3. Let (D, g) and (D’,¢’) be adelic R-Cartier divisors on X. Then we
have the following:

(1) hZ?D,g)+a'(D’,g’)(‘:) = ah?g/g) (&) + a’h?g,/g,)((j) forall ¢ € X*™ and a,a’ € R.
() h"(‘i‘)(é‘) =0forall { € X* and s € Rat(X)g.
S
(3) Let t : Y — X be a morphism of integral projective schemes over K such that
(Y) € Supp(D). Then h";[rL(D/g)(g) = h‘(’glg)(nan(g))for all § € Y™™
(4) If D is semiample, then there is a constant C such that h"(‘g g)(c:,‘) > C for all
¢ € X,

Proof. In the following proof, for ¢ € X", let f and f’ be local equations of D
and D’ over an Zariski open set U containing r¢, respectively. Let 8¢ and ¢4 be
the continuous extensions of ¢ + log|f| and ¢’ + log |f’| over U?", respectively.

(1) Note that f*f’ « yields a local equation of aD + a’D’, and that the continu-
ous extension of

(ag +a'g") +log|f*f" | = a(g +1og|f|) +4'(g' +1og|f'])
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is ads + a 8. Therefore,
Z?D,g)—i—u’(D’,g’) ((;") = (aﬂf + ﬂ/ﬂf/)(g) = ﬂh?g’g) ((;") + ﬂ/h?g/’g/) ((;")

(2) A local equation of (s) is given by s, so that the continuous extension of
—log |s| +log |s| is zero, as required.

(3) For ¢ € Y, we set § = m({). As 7t*(f) is a local equation of 7t*(D) over
n1(U), the continuous extension of 72"*(g) + log |7*(f)] is 7**(8¢). There-
fore,

I (D,g)(8) = T (85)(8) = 8p(m™(0)) = h{p o) (T™(0))-

(4) First we assume that D is a Cartier divisor and Ox(mD) is generated by
global sections for a positive integer m. Let {so, . ..,sn} be a basis of HY(Ox(mD)).
We consider a morphism 7 : X — P¥ = Proj(K[Ty,..., Ty]) given by x —
(So(x) Do SN(X)). We set HO = {TO = 0}, Z,']‘ = Tl/T] (0 < i,j < N) and
ho := log max{1, |z19], ..., |zno| }- Note that hg is a Green function of Hy.

Here let us see that h?golho)(g) > 0 for all { € PY™. We assume that r; €
U; = {T; # 0}. A local equation of Hy on Uj; is given by zy; and the continuous
extension of hy + log |zy;| is

log max{|zoi|, |z1i|, - - -, |zi—1il, 1 |zi+1il, - - - |2nil }

so that the assertion follows because the above function is non-negative on U?".
There is s € Rat(X)* such that 7*(Hy) = mD + (s), so that we can find a
continuous function 6 on X" such that 7" (hy) = mg — log |s| 4 6. Since 0 is a

continuous function on the compact space X", there is a constant C’ such that
6 < C' on X*. Thus, for { € X, by using (1), (2) and (3) together with the

non-negativity of hi(ilr}IO/hO)l

0 < 1 n0) (T (8)) = M3 (110 o) (8) = D 4 (5),mg —10g 5| +6) (6)
= g+ 5+ 00 &) = MD,g) (&) 15 (E) + g ()
= mh (8) +6(8) < mhT, . (8) +C,
so that hp ¢)(¢) = —C'/m, as required.

Next we consider the general case, that is, there are semiample Cartier divisors
Ei,...,E,on X and ay,...,a, € Ry such that D = a1E1 + --- 4+ a,E,. We can
find Green functions ey,...,e, of Ey,...,E;, respectively such that ¢ = aje; +
-+ + are;. By the previous observation, for eachi = 1,...,r, there is a constant
C; such that h?gi,ei) > C; on X", Therefore, by (1),

h?g,g) = alh?gllel) + -+ ﬂrh?rElr,er) >aC+ -+ aC
on X4, O
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We define the essential minimum of (D, g) as

fess(D, g) = sup xeig;{z hp,g)(x),
“ x closed

where Z runs over the set of strict closed subschemes of X.

Proposition 4.4. Let (D, g) be an adelic R-Cartier divisor on X. One has jless(D, ) =
<(n0), where no denotes the point in X®™ corresponding to the generic point of X and
the trivial absolute value on Rat(X).

Proof. Let « be a real number, &« > ¢(#9). We consider g as a continuous function
on certain U, where U is a non-empty Zariski open subset of X. The set
{x e U™ : g(x) < a} is an open subset of U (for the Berkovich topology),
which contains the point 779. Thus there is a non-empty Zariski open subset
V C U, an invertible regular function f on V and an open subset A of R such
that

no € |f|7HA) C {x e U™ : g(x) < a}.

Note that |f|(rp) = 1. Moreover, since f is invertible, for any closed point
x € V, one has |f|7}(x) = 1, where we have identified x with the point in
X" corresponding to x and the trivial absolute value on the residue field #(x).
Therefore all closed point in V are contained in {x € U : ¢(x) < a}. In other
words, the set of closed points of height < « is dense in X. Hence jiess(D, g) is
bounded from above by g (o).

Conversely, if B is a real number such that 8 < g(10), then {x € U : g(x) >
B} is also an open subset of U which contains the point 7. By the same
method as above, we obtain the existence of a non-empty Zariski open subset
V C U such that any closed point x € V satisfies g(x) > B. In other words,
the set of closed points y € X such that g(y) < B is contained in the Zariski
closed subset X \ V. Since B is arbitrary, we obtain that jiess(D, g) is bounded
from below by g(#0). O

Remark 4.5. Let {x, },en be a sequence of closed points in X which is generic
(namely every subsequence of {x, },cN is Zariski dense in X) and such that

lim h(D,g) (xn) = Hess(D, g)

n——+o0

for certain adelic R-Cartier divisor (D, g) with D big. For any n € N, let u, be
the Borel probability measure on X" defined as the distribution of the average
on the Galois orbite of x3" (under the action of Gal(K/K)). Then the sequence
{#n}nen converges weakly to the Dirac measure on 7. This assertion can be
deduced from the fact that jiess is a linear form on the vector space of adelic R-
Cartier divisors, by using the technics in [8, §5.2]. Compared to classic equidistri-
bution results in Arakelov geometry such as [17], or the p-adic analogue proved
by Chamber-Loir [4] (see also [5] for a survey on the related problems), the above
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equidistribution result does not require neither the equality between the essen-
tial minimum of the height function and the normalised Arakelov height of the
variety, nor any positivity condition on the Green function.

Corollary 4.6. Let (D, g) be an adelic R-Cartier divisor on X. One has A (D, g) <
fless(D, ). In particular, Apix (D, ) < —+o0.

Proof. Let n be an integer, n > 1. If s is a non-zero element in H(nD), then
ng —log |s| defines a continuous function on X" valued in RU {+o0}. Therefore,
for any closed point x of X outside of the support of (s), one has —log|[s|4 <
ng(x). Therefore —log||s||ng < njless(D, g). The second assertion follows from
Proposition 4.4. Ll

Remark 4.7. For a subset S of X*", we define Supp,(S) to be

Supp.(S) :== (1 {¢ €S| ¢ 7},
ZCX

where Z runs over all strict closed subschemes of X. Here we consider
o e X | 1 (8) <0
as a subset of X*. If (D, g) + (/s\) > 0 for some s € Rat(X)g, then
Supp, (XZp) N{& € X* | |s[g(8) < 1} = @.

This can be proved in the similar way as [10, Lemma 2.1]. Indeed, we set Y :=
Supp(D + (s)). It is sufficient to see that

{CeXBlre g Yy C{TeX™ | Isls(0) > 1}
because {§ € X" | [s[g(§) > 1} is closed. For ¢ € X&) with rz ¢ Y, we choose
a Zariski open set U containing 7z and a local equation f of D over U. As
(¢ —log|s|) +log|fs| = g +log|f| and |fs|(¢) = 1 (because fs € (Ox, )r), we
have

(10BN (e) =Fip g, 5 (6) =MD (€ <O

which means that |s|¢(¢) > 1, as required. In particular, we have

() {x@ [x € X\ Zand hpq)(x) <O} N{E € X™|[s[g() <1} =0
ZCX

because ryan = x for x € X.

Proposition 4.8. Let X be an integral projective scheme over Spec K and (D, g) be an
adelic R-Cartier divisor on X. For any s € Rat(X)*, we have the following:

/\max(D/g) = /\max(D + (S),8 - 108 |S|)/
Amax(D, 8) = Amix(D + (s), g — log |s|),
fless(D, 8) = fless(D + (s), g — log [s]).
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Proof. Note that the isomorphism H°(D) — H%(D + (s)) given by f ~ fs~!
gives rise to an isometry with respect to the norms ||-||g and ||-||_15¢ 5|, SO that
the first assertion follows. The second equation is a consequence of the first one.

The last assertion results from the equality h(p o) = h(p4 (5),¢—logs|)- U

4.3. Criterion of bigness. Let (D, g) be an adelic R-Cartier divisor on X. First,
let us introduce the volume, the bigness and the pseudo-effectivity of (D, g).

Definition 4.9. Let (D, g) be an adelic R-Cartier divisor on X. We define the
volume of (D, g) as

—~ deg, (nD, ng)
I(D,g) = li - ,
vol(D,8) = lim sup -t 7@+ 1),
where d is the dimension of X. If this number is positive, we say that (D, g) is
big. An adelic R-Cartier divisor (D’,g’) is said to be pseudo-effective if for any big
adelic R-Cartier divisor (D, g), the sum (D + D', g+ ¢’) is a big adelic R-Cartier
divisor.

By definition one has
deg, (D, g) < max(Amax(D, g), 0)rkx (H'(D)).
Therefore, one has
4.1) vol(D, g) < (d + 1) max(Amdy, 0)vol(D).

In particular, vol(D,g) < oo by Corollary 4.6. Moreover, if (D,g) is big, then
vol(D) > 0, namely D is big.
Proposition 4.10. Let (D, g) be an adelic R-Cartier divisor. If (D,g) is big, then
Amiax(D,g) > 0. The converse is true when D is big. In particular, the following
conditions are equivalent:

(@) (D, g) is big.

(b) D is big and there are a positive integer ng and a non-zero s € H°(ngD) with

Isllnog < 1.

Proof. By the inequality (4.1), we obtain that, if (D, g) is big, then A?SZX(D, Q) is
positive. In the following we prove that, if D is big and Ama (D, g) > 0, then one

has ;SI(D, g) > 0. Let V, be the graded linear series @, o H’(nD). Since D is
big, it contains an ample series (see [2, Definition 1.1]). It is moreover R-filtered.
By [2, Lemma 1.6], for any + € R such that 0 < t < A?SXX(D,g), the graded
linear series V! := @, cn F(H?(nD)) contains an amples series and hence has
a positive volume. Moreover, by [2, Corollary 1.13], one has

vol(D, g) = (d + 1)/0

The proposition is thus proved. O

Amax (D) .
vol(V})dt > 0.
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Corollary 4.11. Let (D, g) be an adelic R-Cartier divisor on X. We assume that D is
big. Then (D, g) is pseudo-effective if and only if Aguw (D, g) = 0.

Proof. Assume that Apay(D,g) > 0. Let (D', ') be a big adelic R-Cartier divi-
sor on X. Since (D’,¢’) is big, by Proposition 4.10 one has Ami(D’,g') > 0.
Therefore
/\rar?Zx(D + D/1g+g/) Z )\?I?ZX(D/g) + A?;Zx(Dlrg/) > 0.

Since D + D' is big, still by Proposition 4.10 we obtain that (D + D’,g+ ) is
big. Ll
Example 4.12. We assume X = P4 = Proj(K[Ty, ..., T]). Weset z; = T;/ Ty (i =
0,...,d), D={Ty =0} and ¢ = logmax{ag, a1|z1],...,a4|z4|} for ag,ay,...,a4 €
R~o. Then g is a Green function of D, and

Amax(D, 8) = fless(D, g) = logmax{ag, ..., a4}.

In particular, (D, g) is big (resp. pseudo-effective) if and only if max{ay, ..., a5} >
1 (resp. max{ag,...,a;} > 1).

Let us see the above facts. The first assertion is obvious. Furthermore, by
Proposition 4.4,

fless(D, g) = g(10) = logmax{a, ..., a2},
so that, by Corollary 4.6, it is sufficient to show that

logmax{ay, ..., a5} < Amax(D, g).

We choose a;, with a;, = max{ay,...,a5}. We set w; = T;/T;, (i =0,...,d),
D" =D + (z;,) and g’ = g —log |z;,|. Note that D' = {T;, = 0} and

g' = logmax{ag|wol, ..., ai,—1|wi,—1|, aiy, Aig+1|Wig11], - - -, ag|wal }-

Moreovet, by Proposition 4.8, Apin(D,g) = Am(D’,¢’). Therefore, we may

assume that a9 = max{ag,...,a4}.
Let us see ||1{|; = 1/ag. Note that

1

1], =
| |g max{ao,a1]21|,...,ad|zd]}'

so that, as max{ag, a1|z1],...,a4|z4|} = ag, we have |1|; < 1/a9 on X*". Further-
more |1|¢(170) = 1/ap, as desired.

The above observation shows 1 € flOg“O(HO(D)). Thus, logap < Amax(D, g),
that is, log g < Amax (D, g), as required.

Let us consider a natural homomorphism a : K1 ® O]P?( — O]P?( (1) given by

a(e;) = T; and a norm ||-|| on K4*! given by

|(x0, ..., xn)|| = max{(1/ag)|xo|,..., (1/az)|x4|}



SUFFICIENT CONDITIONS FOR THE DIRICHLET PROPERTY 33

Then the Green function g is induced by the quotient metric of O]P,;z( (1) by « and
1[I

4.4. Algebraic dynamic system over a trivially valued field. Let f : X — X
be a surjective endomorphism of an integral projective scheme over a trivially
valued field K. Let D be an R-Cartier divisor on X such that f*(D) = dD + (¢)
for some d € R+ and ¢ € Rat(X)g. By Proposition 2.18, we can see that there

is a unique Green function g of D such that f*(D,g) = d(D, g) + (/go\) Then we
have the following;:
Proposition 4.13. (1) hi(’g 2) (fn(g)) =
(2) For ¢ € X, if (f*)™"(&) = (f*)™(¢
then h?g’g) (¢) =0.

3) h?g’g)(ﬁo) =0, that is, g(np) = 0.
(4) If D is semiample, then h?g g)({;’) > 0 forall § € X",
(5) If D + (s) is effective for some s € Rat(X)g, then, for any € > 0, there is

e € Rat(X)y such that (D, g + €) + () is effective.
Proof. (1) Indeed, by Proposition 4.3,

D ) (F0)) = 180y (€) = IR = (8) = dhh ) (©).

(D,

dh?} ( ¢) forall ¢ € X
) for some integers n, m with 0 <n < m,

(2) By virtue of (1),
d"hp o) (8) = h{p o) ((f*)"(8)) = h{p o) ((fF)™(Z)) = d"h{p ) (Z),
and hence the assertion follows.

(3) is a consequence of (2) because f*(19) = 7.

(4) By Proposition 4.3, there is a constant C such that h‘(m g)({;’) > C for all
¢ € X" In particular, lf’m ((fa“) (¢)) = C, thatis, by (1), ha“ (C) > C/d" for
all n > 0. Thus the assert1on follows.

(5) follows from Proposition 2.21. [l

5. THE DIRICHLET PROPERTY OVER A TRIVIALLY VALUED FIELD

In this section, we study the Dirichlet property in the setting of Arakelov
geometry over a trivially valued field. We let K be a field and |-| be the trivial
absolute value on K. Let X be an integral projective scheme over Spec K.

Definition 5.1. Let (D, g) be an adelic R-Cartier divisor on X. We say that (D, g)
satisfies the Dirichlet property if it is R-linearly equivalent to an effective adelic
R-Cartier divisor (see Definition 4.1 and Remark 2.7).

Proposition 5.2. Let (D, g) be an adelic R-Cartier divisor on X. We assume that the
R-Cartier divisor D is big. Then (D, g) is pseudo-effective if and only if (D, g + €)
satisfies the Dirichlet property for any e > 0.
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Proof. Suppose that (D, g) is pseudo-effective. By Corollary 4.11 one has
Amax(D,g) = 0.
Then for € > 0 one has
Amax(D, g +¢€) = Amix(D, g) +& > 0.

Therefore, by Proposition 4.10, we obtain that (D, g + ¢) is big. Therefore (D, g+
¢) satisfies the Dirichlet property.

Conversely, if (D, g + €) satisfies the Dirichlet property, then (D, g + ¢) is
pseudo-effective, and hence by Corollary 4.11 we obtain that A?SZX(D, g+e) =
Amix(D,g) +¢€ = 0. Therefore, if (D, g + ¢) satisfies the Dirichlet property for
any ¢ > 0, then one has Ami (D, g) > 0. By Corollary 4.11 we obtain that (D, g)
is pseudo-effective. O

Definition 5.3. We say that the rank of Pic(X) is one if dimgPicg(X) = 1 (or
equivalently dimp Picr(X) = 1). In other words, there is a K-Cartier divisor
A on X such that, for any K-Cartier divisor D on X, we can find a € K and
¢ € Rat(X)g with D = aA + (¢), where K is either Q or R. Obviously, A can
be taken as an ample Cartier divisor.

Proposition 5.4. We assume that dim X = 1. Then the following are equivalent:

(1) The rank of Pic(X) is one.
(2) Every element of Pic®(X) is of finite order.

Proof. We fix an ample Cartier divisor A on X.

(1) = (2): For a Cartier divisor D on X with deg(D) = 0, there are a € Q
and ¢ € Rat(X)) such that D = aA + (¢). Note that a = 0 because deg(D) =0
and deg(A) > 0. We choose a positive integer n such that ¢" € Rat(X)*, so that
nD € PDiv(X), as required.

(2) = (1): Let D be a Q-Cartier divisor on X. If we set H := deg(A)D —
deg(D)A, then deg(H) = 0. Let ng be a positive integer such that nyD is a
Cartier divisor. Then, as Ox(n9H) yields an element of Pic’(X), we can find a
positive integer 11 such that nyngH = (f) for some f € Rat(X)*, so that

_ deg(D) 1
B deg(A)A ning deg(A) (f).
as desired. O

D

Remark 5.5. If either X = IP}< or K is the algebraic closure of a finite field, then
the above condition on Pic?(X) is satisfied.

5.1. Adelic R-Cartier divisors on curves. In the rest of the section, we assume
that X is a regular projective curve over SpecK such that the rank of Pic(X)
is one. Under the above definition, for any R-Cartier divisor D on X with
deg(D) = 0, there exists an element f € Rat(X)g such that D = (f). Indeed, if
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A is an ample Cartier divisor on X, then there are 2 € R and f € Rat(X)y such
that D = aA + (f). Since deg(D) = 0, we have a = 0, as required.

Recall that the Berkovich space associated with X can be illustrated by an
infinite tree X*™", where the root vertex 7y corresponds to the generic point 77 of
X with the trivial absolute value on the field Rat(X) of rational functions. The
leaves are indexed by closed points of X.

1o

X

Let x be a closed point of X. We parametrise the branch linking 7y and x
by t € [0,+o0], where t = 0 correspond to the point 7y; the point t = +o0
correspond to the point x with the trivial absolute value on the residue field
k(x), and any t € |0, +oo[ corresponds to the generic point 7 with the following

absolute value on Rat(X):

|t = e_tordx('),

where ordy(-) is the discrete valuation on Rat(X) corresponding to x.

The topology on each branch identifies with the usual topology on [0, +0]
by this parametrisation and hence each branch is compact. However, any open
neighbourhood of 779 in X" contains all but a finite number of branches. Namely,
a subset U of X" is open if and only if the following conditions are satisfied:

(i) U N [no,x] is open for all closed points x of X.
(ii) If 5o € U, then [1o, x] C U for all but a finitely many closed points x of X.
Note that X" is compact with this topology.
If s is a non-zero rational function on X, on the interval [, x] one has

5.1) —log|s[(§) = t(¢) ordx(s) € [—oo,+eo], & € [no, x].
This function is linear on each branch [, x[ with respect to the parametrisation
t.

5.2. Numerical criteria of pseudo-effectivity and Dirichlet property. In this
subsection, we consider a numerical criterion of pseudo-effectivity and the Dirich-
let property.

Definition 5.6. Let (D, g) be an adelic R-Cartier divisor on X. We consider g as
a continuous map from X" to [—oo, +-00]. For any closed point x of X, we define

_ . 8©)
He(g) = dnf e € R

Clearly pix(g) = 0 if and only if the function g is bounded from below by 0 on
10, X[

Proposition 5.7. Let (D, g) be an adelic R-Cartier divisor on X. For all but finitely
many closed point x in X, one has py(g) < 0.
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Proof. Since g is a Green function, it extends to a continuous real-valued function
on some U, where U is a non-empty Zariski open subset of X. Hence for any
closed point x in U, then function g is bounded on [, x]. Therefore p,(g) < 0
for any closed point x € U. Since there are only a finite number of closed points
outside of U, the proposition is proved. O]

The above result permits to define an invariant po(g) as follows

(52) Hot(g) == Y px(g)[K(x) : K] € [~o0,+00],
xex®

where X1 denotes the set of closed points of X, considered as a discrete mea-
sure space such that each point x € X(!) has mass 1, and the summation means
the integration on this measure space. In the case where the set of x € X()
such that py(g) < 0 is uncountable, one has pt(g) = —oo. Otherwise the set
{x € XN : uy(g) # 0} is countable. If it is infinite then we can write it as a
sequence {x, },en and one has

ytOt(g) = Z Hx, (g) [K(xn) : K]
nelN
The sum does not depend on the choice of the sequence since py,(g) < 0 for all
but finitely many n € IN.
Lemma 5.8. Let X be a reqular projective curve over Spec K and (D, g) be an adelic
R-Cartier divisor on X.
(1) For any non-zero element s € Rat(X)y, one has

px(g —logls|) = px(g) + ordy(s).
(2) One has yux(g) < ordy(D).

Proof. (1) For any s € Rat(X)g one has

o 8(8) ~ Togs|(@)
¢ ]| t(¢)
where the second equality comes from (5.1).

(2) We let s be an element in Rat(X)y which defines D locally on a Zariski
open neighbourhood of x. Then the function g + log |s| extends continuously to

[0, x] and hence is bounded. Therefore y,(g + log|s|) < 0. By (1), we obtain
that 11, (g) < ordy (D). O

ux(g —log|s|) = = px(g) + ordy(s),

Theorem 5.9. Let X be a reqular projective curve over Spec K such that the rank of
Pic(X) is one and (D, g) be an adelic R-Cartier divisor on X. The following conditions
are equivalent.

(1) The adelic R-Cartier divisor (D, g) satisfies the Dirichlet property.

(2) For all but a finite number of closed points x € X, one has u,(g) > 0, and

Hiot(g) = 0.
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Proof. “(1)==(2)": We assume that there exists s € Rat(X)y such that (D, g) +
(s) is effective. By Lemma 5.8 (1) one has

(5.3) px(g —log|s|) = px(g) + ordy(s)

for any x € X. Therefore, for all but a finite number of x € X(1), one has

Hx(g) = px(g —log|s|) > 0.
Moreover, by (5.3)
ot () = Hiot(§ — log |s|) — Z ordy(s)[k(x) : K] = pot(g —log|s|) = 0.
xex()

Therefore the condition (2) holds.

“(2)==(1)": Suppose that (2) is true. Since g is a Green function of D, for any
x € X which does not belong to the support of D, the function g extends to
a continuous function on a open subset of X®" containing [1o, x| and hence is
bounded on this compact set. In particular, one has p,(g) < 0 for such point x.
Hence by the hypothesis in the condition (2), we obtain that yix(g) = 0 for all but
a finite number of closed points x1,...,x, in X. Let ay,...,a, be real numbers
such that a; < iy, (g) and

iai[x(xi) :K] =0.
i=1

This is possible since

i‘{ﬂxi(g)[K(xi) K] = piot(g) = 0.
Let
D' = ;ai[xi]'

Since deg(D’) = 0, it is an principal R-Cartier divisor. Let s € Rat(X)g such
that —D’ = (s). By Lemma 5.8 (2) one has px(g) < ordy(D) for any x. Hence
D — D’ is effective. Moreover, Lemma 5.8 (1) shows that

Hy(g) —a; >0, ifx=ux,

px(g —logls|) = px(g) + ordy(s) = {yx(g) >0, else.

Therefore ¢ — log |s| is non-negative. O

Theorem 5.10. Let X be a regular projective curve over Spec K such that the rank of
Pic(X) is one and (D, g) be an adelic R-Cartier divisor on X. The following conditions
are equivalent.

(1) For any € > 0, the Dirichlet property holds for (D, g + €).
(2) One has piot(g) = 0.
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Proof. By Theorem 5.9, if (1) holds, then for any ¢ > 0 one has pot(g +¢€) = 0.
Since the function & — p, (g + ¢€) is decreasing and converges to 1,(g), by the
monotone convergence theorem we obtain Mot ( g) > 0.

Conversely, assume that the inequality por(g) = 0 holds. We claim that
g(no) = 0. Otherwise one has px(g) = —oo for any x € X" and hence
Hiot(§) = —oo. Let € be a positive number. The set {y € X* : ¢(y) +¢ > 0}
is an open subset of X" containing 779. Therefore, there exists a finite subset
S of XM such that g(y) +& > 0 for any x € X\ S and any y € [o,x]. In
particular, for any x € x(®) \'S, one has y,(g+¢) > 0. Moreover, one has
ot (§ +€) = piot(g) = 0. By Theorem 5.9, we obtain that the Dirichlet property
holds for (D, g + ¢). O

Remark 5.11. Let X be a regular projective curve over Spec K such that the rank
of Pic(X) is one. Let (D,g) be an adelic R-Cartier divisor on X. We assume
that D is big. By Proposition 5.2, the conditions in Theorem 5.10 are equivalent
to the pseudo-effectivity of (D,g). Note that the function Amix(-) is derivable
at (D, g) along any direction in C?(X2"). Moreover, the directional derivatives
of Amax(+) form a positive linear functional on C%(X?"), which identifies with
the Dirac measure on 7g. Therefore the above results suggest that the functional
obstruction to the Dirichlet property proposed in [10] may not be the only ob-
struction.

Example 5.12. We assume X = P} = Proj(K[Tp, T1]). We set 0 = (1 : 0), oo =
(0:1),z=T1/Ty, D = {Ty = 0} and ¢ = logmax{1, |z|}. Then g is a Green
function of D and (D, g) is pseudo-effective by Example 4.12. Moreover, since

(@) ifx=oo,
8(8) = {0 otherwise
for a closed point x € X and ¢ € [#o, x], we have

1 if x =00,
Vx(g):{

0 otherwise.

We choose distinct countably many closed points x1,...,xy,... in Pk \ {0,00}.
Here we consider the following continuous function ¢ on lP}éan: for a closed
point x of P} and ¢ € [0, x],
@ 6 1 (t¢)) if x = x, for some n,
P(E) =
0 ifx & {xy,...,xn,...},

where 6, (2 € R+) is a continuous function on [0, o] given by

{at t [0,1],

Oult) = a te]l, ool
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We introduce a new Green function g’ given by ¢’ := ¢ — 1. Then
1

—W if x = Xn for some n,

1x(g) if x & {x1,...,%n,...}.

we(8') =

Thus,
pot(8') =1- ), (1/2)" = 0.
n=1
Therefore (D, ¢’) is pseudo-effective, but (D, ¢’) has no Dirichlet’s property.

Corollary 5.13. Let f : X — X be a surjective endomorphism of X over K and D
be an R-Cartier divisor on X such that f*(D) = dD + (¢) for some ¢ € Rat(X)g
and d € R~q. Let (D, g) be the canonical compactification of D with respect to f. We
assume that dim X = 1, the rank of Pic(X) is one and deg(D) > 0. Then (D, g)
satisfies the Dirichlet property.

Proof. We set D = a;D1 + - - - + a,D; for some Cartier divisors Dy,...,D, on X
and ay,...,a, € R. Let A be an ample and effective Cartier divisor on X. Since

the rank of Pic(X) is one, for each i, there are b; € Q and s; € Rat(X)g with

D; = bjA + (s;). Thus D = aA + (s) for some a € R and s € Rat(X)y. Note that
a > 0 because deg(D) > 0. Therefore, D is semiample and D + (s~ !) is effective.

We set U = X \ Supp(D). A local equation of D over U is given by 1. There-

fore, by (4) in Proposition 4.13, for all ¢ € U, g(¢) = h?g 2 (&) = 0. Therefore,

g = 0 on [n, x| for all but finitely many closed points x, and hence p,(g) > 0 for
all but finitely many closed points x.

Moreover, by Theorem 5.10 together with (5) in Proposition 4.13, pot(g) = 0.
Thus (D, g) satisfies the Dirichlet property by Theorem 5.9. O

5.3. The plurisubharmonic case. Here we apply the criterion of the previous
subsection to a plurisubharmonic Green function.

Proposition 5.14. Let X — SpecK be a regular projective curve on SpecK, D be an
R-Cartier divisor on X and g be a plurisubharmonic Green function of D. For any closed
point x of X, the restriction of the function g on [1o, x[ is concave, where we consider
the parametrisation t : 19, x| — [0, +o0].

Proof. Since uniform limits and positive linear combinations of concave functions
is still a concave function, it suffices to treat the case where D is a Cartier divisor
and the metric ¢, on Ox (D) corresponding to the Green function g is a quotient
metric. Let (E,||-||) be a finite dimensional normed vector space over K and
f : X — P(E) be a K-morphism such that f*(Og(1)) = Ox(D) and that ¢, is
the quotient metric induced by ((E, ||-||), f). Let x be a closed point of X and s be
a section of Ox(D) over a Zariski open neighbourhood U of X, which trivialises
the invertible sheaf Ox (D) on U. Let («;)"_; be an orthogonal basis of (EY, ||-|[V),
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where ||-||V denotes the dual norm of ||-||. Recall that for any (Ay,...,A,) € K"
one has

[Arar + o+ Apan]l = max || [l
ie{1,..,.n}

We refer the readers to [9, §1.3] for the existence of an orthogonal basis of
(EY, ||-||V). We write the dual section sV € H°(U,Ox(D)V) as a linear com-

bination

sV =g + -+ Untty,
where uy, ..., u, are regular functions on U. One has
Y| = max (log|u] +1log [la;).
ie{l

o

—log |s| = log |s

Since each function log |u;| is linear on [1p, x[ with respect to the parametrisation
t : [0, x][— [0, +oo[, we obtain that the function —log|s| is concave on [, x|.
Since the functions g and — log |s| differ by a linear function on [#, x|, the func-
tion g is also concave. O]

Corollary 5.15. Let X be a regular projective curve over Spec K such that the rank of
Pic(X) is one and (D, g) be an adelic R-Cartier divisor. We assume that the Green
function g is plurisubharmonic. Then the adelic R-Cartier divisor (D, g) satisfies the
Dirichlet property if and only if it is pseudo-effective.

Proof. Itis clear that any adelic R-Cartier divisor satisfying the Dirichlet property
is pseudo-effective. Let (D, g) be a pseudo-effective adelic R-Cartier divisor. We
claim that g(79) = 0. In fact, let (D1, 1) be a big adelic R-Cartier divisor. For any
e > 0, the adelic R-Cartier divisor (D + eDj, g +€g1) is big. Hence by Corollary
4.6 and Proposition 4.10, one has

g(10) +eg1(10) = fless(D +eD1, 8 +€81) > 0,

where the equality comes form Proposition 4.4. Since ¢ > 0 is arbitrary, we
obtain g(79) = 0.

Let x be a closed point of X. We choose a Zariski open set U containg x such
that a local equation of D over U is given by f. Then there is a continuous
function u on U™ such that g = u —log | f| over U*". Note that [1o, x] C U*" and

11413 o 86
ord, = lim —2Z1~2 = 1lim <25,
D= e ™ H@) &) -+oo (G)
so that
o 8(0) . 8(&) — &)
ord,(D) = lim <X = m <o
B = 0T D "1 e D)
Since the restriction of the function g on [1p, x| is concave, the function

¢y 8(6) = 8(m)
t(¢)
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is decreasing with respect to the parametrisation #(¢). We then deduce that, for
any ¢ € ]no, x| one has

50 _ 3©) —s(m)
0 - we - o)

which implies that

oQ

= lim (g):or
)=, Jm, g = o)

Hence 11,(g) = 0 for all but finitely many closed point x in X. Finally, since D is
pseudo-effective, the IR-Cartier divisor D is pseudo-effective, and hence

prot(8) = ), ordy(D) = 0.
xeX™

By Theorem 5.9, we obtain that (D, g) satisfies the Dirichlet property. O]

Remark 5.16. By the above corollary together with Proposition 2.22, we can give
an alternative proof of Corollary 5.13.
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