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SUFFICIENT CONDITIONS FOR THE DIRICHLET PROPERTY

HUAYI CHEN AND ATSUSHI MORIWAKI

Abstract. The effectivity up to R-linear equivalence (Dirichlet property) of
pseudoeffective adelic R-Cartier divisors is a subtle problem in arithmetic geom-
etry. In this article, we propose sufficient conditions for the Dirichlet property
by using the dynamic system in the classic Arakelov geometry setting. We also
give a numerical criterion of the Dirichlet property for adelic R-Cartier divisors
on curves over a trivially valued field.

1. Introduction

Let K be a number field and X be a normal, projective and geometrically
integral scheme over Spec K. Recall that an adelic R-Cartier divisor on X is by
definition a couple D = (D, g), where D is an R-Cartier divisor on X and g =
(gv)v∈MK is a family of Green functions indexed by the set MK of all places of K.
Note that the adelic R-Cartier divisors on X form a vector space D̂ivR(X) over R

and one has a natural R-linear homomorphism from Rat(X)×R := Rat(X)× ⊗Z R

to D̂ivR(X), where Rat(X) denotes the field of rational functions on X. Two
adelic R-Cartier divisors are said to be R-linearly equivalent if their difference is
R-principal, that is, lies in the image of the canonical map Rat(X)×

R
→ D̂ivR(X).

Several positivity conditions in algebraic geometry (in particular bigness and
pseudo-effectivity of R-Cartier divisors) have the counterpart in the setting of
adelic R-Cartier divisors. We refer the readers to [14] for more details.

In [13], Moriwaki has compared the pseudo-effectivity and the effectivity up to
R-linear equivalence in the setting of adelic R-Cartier divisors in introducing the
so-called Dirichlet property. We say that an adelic R-Cartier divisor satisfies the
Dirichlet property if it is R-linearly equivalent to an effective adelic R-Cartier di-
visor. It can be shown that the Dirichlet property implies the pseudo-effectivity.
It is then quite natural to ask if all pseudo-effective R-Cartier divisors satisfy
the Dirichlet property, and if it is not the case, how to determine the Dirichlet
property of pseudo-effective divisors.

It is worth to mention that the first question above has a confirmative answer if
X = Spec K. It can be deduced from the Dirichlet unit theorem for number fields,
from which comes the terminology of Dirichlet property, see [13] for more de-
tails. Moreover, it has been shown in the same reference that a pseudo-effective
adelic R-Cartier divisor (D, g) with D principal also satisfies the Dirichlet prop-
erty. However, in higher dimensional case the first question above has a negative
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2 HUAYI CHEN AND ATSUSHI MORIWAKI

answer. We refer the readers to [10] for counterexamples and obstructions to the
Dirichlet property.

The problem of Dirichlet property can be stated in the classic algebraic ge-
ometry setting and other arithmetic settings such as arithmetic varieties over a
function field or a field with trivial valuation. The purpose of this article is to
provide some sufficient conditions for the Dirichlet property in divers situations,
with highlights on the role of finiteness conditions. We first focus on the num-
ber field case, using the dynamic system on arithmetic varieties. Let X be a
normal, projective and geometrically integral scheme over a number field K. Let
f : X → X be a surjective endomorphism over K. Let D be an effective and am-
ple R-Cartier divisor on X. We assume that there are d ∈ R>1 and ϕ ∈ Rat(X)×R
such that f ∗(D) = dD + (ϕ). By [10, Section 3], there is a unique family
g = {gv}v∈MK of D-Green functions of C0-type with f ∗(D, g) = d(D, g) + (̂ϕ).
The pair D = (D, g) is called the canonical compactification of D. Note that D is
nef in the arithmetical sense (for details, see [10, Lemma 4.1]). We establish the
following sufficient condition for the Dirichlet property.

Theorem 1.1. Suppose that there exists a finite dimensional vector subspace of Rat(X)×
R

which contains ϕ and is stable by f ∗. Then D satisfies the Dirichlet property. In
particular, if f ∗(D) = dD, then D satisfies the Dirichlet property.

We can for instance apply the above theorem to the case where X = Pn
K =

Proj(K[T0, T1, . . . , Tn]), D = {T0 = 0} and f is a polynomial map, that is,

f (Pn
K \ {T0 = 0}) ⊆ Pn

K \ {T0 = 0}.

If f is not an automorphism, then f ∗(D) = dD for some d ∈ Z>2. Therefore,
the above theorem implies the effectivity of D. For example, if f is given by
f (T0 : T1) = (T2

0 : T2
1 + cT2

0 ) (c ∈ K) on P1
K, then D is effective. Even if the Julia

set J( fv) of fv (v ∈ MK) is complicated, |1|gv = 1 on J( fv) by [10, Lemma 2.1 and
Remark 2.3]. More concrete examples of adelic R-Cartier divisors verifying the
sufficient condition will be discussed in Example 3.9.

We then consider the Dirichlet property in the setting of arithmetic varieties
over a trivially valued field. We consider an integral projective scheme X over
a field K. We equip K with the trivial absolute value |.| (namely |a| = 1 for
any a ∈ K×). Denote by Xan the Berkovich space associated with X. If D is an
R-Cartier divisor on X, by D-Green function of C0-type, or Green function of D, we
refer to a continuous function on the complementary of the analytification of the
support of D, which is locally of the form ϕ − log | f |, where ϕ is a continuous
function on Xan and f is an element of Rat(X)×

R
which defines D locally. The

pair D = (D, g) is called an adelic R-Cartier divisor on X. The analogue of the
arithmetic volume function can be defined in this setting, and the bigness and
pseudo-effectivity of adelic R-Cartier divisors are defined in a similar way as in
the classic arithmetic framework. It is then a natural question to determine suf-
ficient conditions for a pseudo-effective adelic R-Cartier divisor to be R-linearly
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equivalent to an effective one. Even for this simple setting where only the triv-
ial valuation is considered in the adelic structure, this problem still seems to be
very subtle. However, in the case where X is a regular curve over Spec K such
that dimQ(Pic(X)⊗ Q) = 1, we have a complete answer to this problem. In fact,
when X is a regular curve over Spec K, the Berkovich space Xan can be illustrated
by an infinite tree of depth 1

η0

· · ·
x

· · ·

where the root vertex η0 corresponds to the generic point and the trivial absolute
value on the field Rat(X), and the leaves are parametrised by the set X(1) of
closed point in X (together with the trivial absolute value on the corresponding
residue field). We denote by i : X → Xan the map sending the generic point η

of X to η0 and each closed point x to the corresponding leaf in the tree. Each
branch [η0, x] with x ∈ X(1) is parametrised by t : [η0, x] → [0,+∞]. Any
ξ ∈ [η0, x[ corresponds to the generic point of X and the field Rat(X) equipped
with the absolute value |.|ξ such that

|.|ξ = e−t(ξ)ordx(.) on Rat(X)×

where ordx(.) is the discrete valuation on Rat(X) with valuation ring OX,x.
Moreover, t(x) = +∞. The space Xan is equipped with the Berkovich topology,
whose restriction on each branch [η0, x] corresponding to the usual topology on
[0,+∞] via the parametrisation t(.), and any open neighbourhood of η0 contains
all but finitely many branches.

Given a continuous function g on Xan \ i(X(1)), we define a family of invariants

∀ x ∈ X(1), µx(g) := inf
ξ∈ ]η0,x[

g(ξ)
t(ξ)

∈ R ∪ {−∞}.

We establish the following result (see Theorems 5.9, 5.10, and Remark 5.11).

Theorem 1.2. Let X be a regular projective curve over Spec K such that dimQ(Pic(X)⊗
Q) = 1. Let D = (D, g) be an adelic R-Cartier divisor on X such that D is big. Then
for all but a finite number of x ∈ X(1), one has µx(g) 6 0. Moreover, with the notation

µtot(g) := ∑
x∈X(1)

µx(g)[κ(x) : K],

where κ(x) denotes the residue field of x, the following statements hold.

(1) The adelic R-Cartier divisor D is pseudo-effective if and only if µtot(g) > 0.
(2) The adelic R-Cartier divisor D satisfies the Dirichlet property if and only if µx(g) >

0 for all but a finite number of x ∈ X(1), and µtot(g) > 0.
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Let f : P1
K → P1

K be an endomorphism and D be an R-Cartier divisor on
P1

K such that deg(D) > 0 and f ∗(D) = dD + (ϕ) for some d ∈ R>1 and
ϕ ∈ Rat(X)×R . Let g be a unique D-Green function of C0-type with f ∗(g) =

dg − log |ϕ|. As a corollary of the above theorem, we can conclude that D =
(D, g) satisfies the Dirichlet property (cf. Corollary 5.13, Proposition 2.22, and
Corollary 5.15). This is an essentially different point from the classic setting.

Surprisingly, we observe again a finiteness condition in the comparison of
the pseudo-effectivity and the Dirichlet property. These results suggest that the
functional obstructions to the Dirichlet property introduced in [10] may not be
the only obstruction.

The rest of the article is organised as follows. We first introduce the notation
and conventions that will be used throughout the article. In the second section
we recall some basic constructions on Berkovich spaces such as Green functions
of (R-)Cartier divisors and prove preliminary results which are useful for the
proof of the main theorems. In the third section, we prove Theorem 1.1 and
provide several concrete applications of the theorem. In the fourth section, we
introduce the framework of Arakelov geometry over a trivially valued field and
discuss several positivity conditions such as bigness and pseudo-effectivity in
this framework. Finally in the fifth section we discuss the Dirichlet property in
the setting of Arakelov geometry over a trivially valued field.

Conventions and terminology. Throughout this subsection, let K be either Q

or R.

1. Let (G, ·) be a multiplicative abelian group. The tensor product G ⊗Z K is
denoted by GK. For φ1, . . . , φr ∈ GK and A = (a1, . . . , ar) ∈ Kr, we set φA :=
φa1

1 · · · φar
r in GK for sake of simplicity.

2. Let X be a Noetherian integral scheme and MX be the sheaf of rational func-
tions on X. We define Div(X) and DivK(X) to be

Div(X) := H0(X, M×
X /O×

X ) and DivK(X) := H0(X, M×
X /O×

X )⊗ K,

whose elements are called Cartier divisors and K-Cartier divisors on X, respec-
tively. Let Rat(X) be the field consisting of all rational functions on X and
PDiv(X) be the subgroup of Div(X) consisting principal divisors on X, that is,
PDiv(X) := {(φ) | φ ∈ Rat(X)×}. We call any element of Rat(X)×

K
a K-rational

function on X. Note that the natural homomorphism Div(X) → DivK(X) is not
necessarily injective (see Remark 2.8). A K-Cartier divisor D on X is locally given
by f ∈ Rat(X)×K , which is called a local equation of D. For a K-rational function ϕ
on X, we can define a K-Cartier divisor (ϕ) on X by considering the local equa-
tion ϕ everywhere. The K-Cartier divisor (ϕ) is called a K-principal divisor of ϕ.
We denote the vector subspace of DivK(X) consisting of K-principal divisors on
X by PDivK(X). Note that PDivK(X) = PDiv(X) ⊗Z K. Moreover, Pic(X) =
Div(X)/ PDiv(X) and PicK(X) := Pic(X)⊗Z K ∼= DivK(X)/ PDivK(X).
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A Cartier divisor is said to be effective if every local equation can be taken as
a regular function. Furthermore, a K-divisor D on X is said to be K-effective,
denoted by D >K 0, if there are effective Cartier divisors D1, . . . , Dr on X
and a1, . . . , ar ∈ K>0 such that D = a1D1 + · · · + arDr. For a Q-Cartier divi-
sor D, by applying (2) in Claim 2.16.1 to the case where V = Rat(X)×

Q
, x =

a local equation of D and xi = a local equation of Di (i = 1, . . . , r), we can see
that D >Q 0 if and only if D >R 0. However, a Cartier divisor which is effec-
tive as a K-Cartier divisor is not necessarily effective as a Cartier divisor (see
Remark 2.8). For simplicity, a K-effective K-Cartier divisor is often said to be
effective and the notation D >K 0 is denoted by D > 0.

Let D be a K-Cartier divisor on X and, for each x ∈ X, let fx (∈ Rat(X)×K) be
a local equation of D at x. We define SuppK(D) to be

SuppK(D) := {x ∈ X | fx 6∈ (O×
X,x)K}.

Note that the above definition does not depend on the choice of fx because
if f ′x is another local equation of D at x, then fx/ f ′x ∈ (O×

X,x)K. Moreover,
SuppK(D) is closed by [14, Proposition 1.2.1]. In addition, for a Q-Cartier divisor
D, SuppQ(D) = SuppR(D) by (1) in Claim 2.16.1. If D is a Cartier divisor, then
we can take fx belonging to Rat(X)× , so that we can define another SuppZ(D)
to be

SuppZ(D) := {x ∈ X | fx 6∈ O×
X,x}.

Obviously SuppK(D) ⊆ SuppZ(D), but SuppK(D) 6= SuppZ(D) in general (for
details, see [14, Subsection 1.2] or Remark 2.8). For sake of simplicity, we often
denote SuppK(D) by Supp(D). Furthermore, for a K-Cartier divisor D on X,
we define H0(X, D) to be

H0(X, D) := {φ ∈ Rat(X)× | D + (φ) >K 0} ∪ {0}.

We assume that D is a Cartier divisor on X. Let OX(D) be an invertible sheaf
associated with D. Then we have a canonical injective homomorphism

H0(X,OX(D)) → H0(X, D).

Note that it is not necessarily surjective (for details, see Remark 2.8).

3. Let X be an integral projective scheme over a field K and D be either a Cartier
divisor or a Q-Cartier divisor or an R-Cartier divisor on X. We say D is semiample
if one of the following conditions is satisfied according to the class of D:

• Cartier divisor: there is a positive integer n such that OX(nD) is generated
by global sections.
• Q-Cartier divisor: there is a positive integer m such that mD can be rep-

resented by a semiample Cartier divisor, that is, there is a semiample Cartier
divisor A on X such that mD is the image of A via the natural homomorphism
Div(X) → DivQ(X).
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• R-Cartier divisor: there are semiample Cartier divisors A1, . . . , Ar and non-
negative real numbers a1, . . . , ar such that D = a1 A1 + · · ·+ ar Ar.

Note that every R-principal divisor is semiample because every principal divisor
is semiample.

4. Let K be a number field, that is, K is a finite extension field over Q. Let OK
be the ring of integers in K. We set Mfin

K := Spec(OK) \ {(0)}, which is referred
as the set of finite places of K. Moreover, the set of all embeddings K →֒ C is
denoted by K(C). By abuse of notation, K(C) is referred to as the set of infinite
places of K and it is often denoted by M∞

K . We set MK := Mfin
K ∪ M∞

K . Note that
MK is slightly different from the notation in [10]. Let X be a normal, projective
and geometrically integral scheme over Spec K. For each v ∈ MK, Kv Xv and Xan

v
are defined as follows (see also §2.1):

• Case v = p ∈ Mfin
K :





Kv := the completion of K at v,
Xv := X ×Spec(K) Spec(Kv),
Xan

v := the analytification of Xv in the sense of Berkovich.

• Case v = σ ∈ M∞
K :





Kv := K ⊗σ
K C with respect to v : K →֒ C,

Xv := X ×σ
Spec(K)

Spec(C) with respect to v : K →֒ C,

Xan
v := Xv(C).

5. Let K be a number field and X be a normal, projective and geometrically
integral scheme over Spec K. A pair D = (D, g) of an R-Cartier divisor D on X
and a collection

g = {gp}p∈MK
∪ {gσ}σ∈M∞

K

of D-Green functions of C0-type is called an adelic arithmetic R-Cartier divisor of
C0-type on X if the following conditions are satisfied:

(1) For each p ∈ Mfin
K , gp is a D-Green function of C0-type on Xan

p . In addition,
there are a non-empty open set U of Spec(OK), a model XU of X over U
and an R-Cartier divisor DU on XU such that DU ∩ X = D and gp is a
D-Green function induced by the model (XU , DU) for all p ∈ U ∩ MK.

(2) For each σ ∈ M∞
K , gσ is a D-Green function of C0-type on Xan

σ . Moreover,
the function {gσ}σ∈M∞

K
is an F∞-invariant, that is, for all σ ∈ M∞

K , gσ ◦
F∞ = gσ, where F∞ : Xan

σ → Xan
σ is an anti-holomorphic map induced by

the complex conjugation.
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The space of all adelic arithmetic R-Cartier divisors of C0-type on X is denoted
by D̂ivR(X). For an adelic arithmetic R-Cartier divisor D of C0-type on X, we
define Γ̂(X, D)×

R
to be

Γ̂(X, D)×R := {s ∈ Rat(X)×R | D + (̂s) > 0}.

We say D satisfies the Dirichlet property if Γ̂(X, D)×
R
6= ∅.

2. Green functions on Berkovich analytic spaces

Let K be a field and |.| be a complete absolute value of K. The absolute value
|.| might be trivial (so that |a| = 1 for any a ∈ K \ {0}). Let X be an integral
projective scheme over Spec K and Xan be the analytification of X in the sense of
Berkovich. In this section, we consider a Green function on Xan associated with
an R-Cartier divisor.

2.1. Reminder on Berkovich spaces. Let X be a scheme over Spec K. As a set,
X identifies with the colimit of the functor FX , from the category EK of fields
extensions of K and K-linear field homomorphisms, to the category Set of sets,
which sends any extension K′/K to the set of K-morphisms from Spec K′ to X.
The Berkovich space (see [1]) Xan associated with X can also be defined in a
similar way. We denote by VEK the category of valued extensions of K and K-
linear homomorphisms preserving absolute values. More precisely, any objet of
VEK is of the form (K′, |.|′), where K′ is an extension of K and |.|′ is an absolute
value on K′ extending |.|. We let ̟ : VEK → EK be the forgetful functor sending
(K′, |.|′) to K′. As a set the Berkovich space Xan is then defined as the colimit
of the composed functor FX ◦ ̟. By the universal property of colimit one has
a natural map j : Xan → X, called the specification map. This construction is
functorial: for any morphism of K-schemes ϕ : X → Y, the universal property of
colimit determines a map ϕan : Xan → Yan.

Let ξ be a point of Xan and κ(ξ) be the residue field of j(ξ) ∈ X, called the
residue field of ξ. If y : Spec K′ → X is a K-morphism, where (K′, |.|y) is a valued
extension of (K, |.|), which represents the point ξ ∈ Xan, then the morphism
factorises through the canonical K-morphism Spec κ(ξ) → X and the restriction
of |.|y on κ(ξ) does not depend on the representative y of the class ξ. We denote
by |.|ξ this absolute value. We emphasis that two different points ξ and ξ′ of Xan

may have the same residue field. However, in this case |.|ξ and |.|ξ ′ are different.
On the Berkovich space Xan there is a natural topology which is the most

coarse topology making the specification map j : Xan → X continuous, where we
consider the Zariski topology on X. This topology is called the Zariski topology
on Xan. Berkovich has introduced a finer topology as follows, called Berkovich
topology nowadays. Let f be a regular function on a Zariski open subset U of
X. Recall that f corresponds to a morphism from U to A1

K. Therefore, for any
ξ ∈ Uan, the morphism f determines an element f (ξ) in κ(ξ). We denote by
| f |(ξ) the absolue value | f (ξ)|ξ . The Berkovich topology on Xan is defined as
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the most coarse topology on Xan which makes the specification map j and all
functions of the form | f | continuous, where f runs over all regular functions
on Zariski open subsets of X (see [1, §3.4] for more details). If f : X → Y is
a morphism of K-schemes, then the map f an : Xan → Yan is continuous with
respect to the Berkovich topology.

2.2. Green function. Let X be an integral projective scheme over Spec K. We
denote by Ĉ0(Xan) the set of continuous functions on a non-empty Zariski open
subset of Xan, modulo the following equivalence relation

f ∼ g ⇐⇒ f and g coincide on a non-empty Zariski open subset.

Note that the addition and the multiplication of functions induce a structure of
R-algebra on Ĉ0(Xan). Moreover, for any non-empty Zariski open subset U of
X, we have a natural homomorphism of R-algebras from C0(Uan) to Ĉ0(Xan).
Since Uan is dense in Xan (see [1, Corollary 3.4.5]), this homomorphism is injec-
tive. Therefore, by abuse of notation we may consider any function in C0(Uan)

as an element in Ĉ0(Xan). We say that an element of Ĉ0(Xan) extends to a contin-
uous function on Uan if it belongs to the image of the canonical homomorphism
C0(Uan) → Ĉ0(Xan).

Example 2.1. Let X be an integral projective scheme over Spec K. If f is a non-
zero rational function on X, then it coincides with an invertible regular function
on some non-empty Zariski open subset U of X. Therefore log | f | determines an
element of Ĉ0(Xan), which does not depend on the choice of U. The map from
Rat(X)× to Ĉ0(Xan) sending f ∈ Rat(X)× to log | f | is a group homomorphism,
and hence induces an R-linear map Rat(X)×

R
→ Ĉ0(X) which we still denote by

log |.|.

Definition 2.2. Let D be a Cartier divisor on X. We call D-Green function of
C0-type (or simply Green function of D) any element g ∈ Ĉ0(Xan) such that, for
any element f ∈ Rat(X)× which defines the Cartier divisor D locally on a non-
empty Zariski open subset U of X, the element g + log | f | of Ĉ0(Xan) extends to
a continuous function on Uan.

Similarly if K = Q or R and if D is a K-Cartier divisor on X, we call D-
Green function of C0-type or Green function of D any element g ∈ Ĉ0(Xan) such
that, for any element f ∈ Rat(X)×K which defines the K-Cartier divisor D locally
on a non-empty Zariski open subset U of X, the element g + log | f | of Ĉ0(Xan)
extends to a continuous function on Uan.

For K-Cartier divisors D and D′ and a, a′ ∈ K, it is easy to see that if g and g′

are Green functions of D and D′, respectively, then ag + a′g′ is a Green function
of aD + a′D. In particular, if g is a Green function of the trivial Cartier divisor
or the trivial K-Cartier divisor, then it extends to a continuous function on Xan.
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Let {gn}∞
n=1 be a sequence of D-Green functions of C0-type and g be a D-Green

function of C0-type. Let θn be the unique continuous extension of g − gn on Xan.
We say that the sequence {gn}∞

n=1 converges uniformly to g if limn→∞ ‖θn‖sup = 0.

Example 2.3. Let f be an element in Rat(X)×R and ( f ) be the R-Cartier divisor
on X defined by f . Then the element − log | f | ∈ Ĉ0(Xan) is a Green function of
( f ).

Remark 2.4. Green functions are closely related to continuous metrics on line
bundles. Let L be an invertible OX-module. By continuous metric on L, we refer
to a family φ = (|.|φ(x))x∈Xan , where for each x ∈ Xan, |.|φ(x) is a norm on
L ⊗OX κ(x), which defines a morphism of sheaves (of sets) from L to j∗(C0

Xan),
with C0

Xan being the sheaf of continuous real functions on Xan. If L is an invertible
OX-module equipped with a continuous metric φ, for any non-zero rational
section s of L, the function − log |s|φ, which is well defined on a Zariski open
subset of Xan, determines a Green function of the Cartier divisor associated with
s. Conversely, given a Cartier divisor D on X equipped with a Green function
of C0-type g, the section −D of M

×
X /O×

X defines an invertible sub-OX-module
of MX, denoted by OX(D), where MX is the sheaf of rational functions on
X. The element −D ∈ Γ(X, M×

X /O×
X ) also determines a rational section of

OX(D) denoted by sD. If f is a non-zero rational function of X which defines
the divisor D on a non-empty Zariski open subset U, then the element f−1sD
is a rational section of OX(D) which determines a regular section sU of OX(D)
on U trivialising the invertible sheaf on U. By definition g + log | f | extends to
a continuous function on Uan. For any x ∈ Uan, we let |.|g(x) be the norm on
L ⊗OX κ(x) such that

|sU(x)|g(x) = exp(−(g + log | f |)(x)).
It does not depend on the choice of (U, f ). Moreover, the family of norms
(|.|g(x))x∈Xan defines a continuous metric on OX(D), denoted by φg.

Proposition 2.5. For any R-Cartier divisor D on X, there is a Green function of D.

Proof. First we assume that D is an ample Cartier divisor. Let m be a positive
integer such that mD is very ample. Let s0, . . . , sN be a basis of H0(OX(mD))
and φ : X → PN = Proj(K[T0, . . . , TN]) be the morphism given by

x 7→ (s0(x) : . . . : sN(x)).

We set zi = Ti/T0 for i = 1, . . . , N and g0 = log max{1, |z1|, . . . , |zn|}. Then it is
easy to see that g0 is a Green function of H0 := {T0 = 0}. Thus φ∗(g0) is a Green
function of φ∗(H0). We choose θ ∈ Rat(X)× such that mD = φ∗(H0) + (θ). Then
(1/m)(φ∗(g0)− log |θ|) is a Green function of D.

Next we assume that D is a Cartier divisor. Then there are ample Cartier
divisors A and B with D = A − B. Let gA and gB be Green functions of A and
B, respectively. Then gA − gB is a Green function of D.
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In general, there are Cartier divisors D1, . . . , Dr and a1, . . . , ar ∈ R with D =
a1D1 + · · ·+ arDr. Let gDi be a Green function of Di. Then a1gD1 + · · ·+ argDr is
a Green function of D. �

Proposition 2.6. Let D be an effective R-Cartier divisor on X (see Conventions and
terminology 2) and g be a Green function of D. Then the element e−g of Ĉ0(X) extends
to a non-negative continuous function on Xan. In particular, there is a constant C such
that g > C on Xan.

Proof. Let f be a local equation of D on a Zariski open subset U of X. Note
that the element g + log | f | of Ĉ0(Xan) extends to a continuous function on Uan.
Hence e−g = | f | · e−(g+log | f |) extends to a continuous function on Uan, which is
non-negative. By gluing continuous functions we obtain that e−g extends to a
continuous function on Xan. For the last assertion, note that Xan is compact, so
that there is a constant C such that e−g 6 e−C on Xan, as required. �

Remark 2.7. Let D be an effective R-Cartier divisor and g be a Green function
of D. The above proposition shows that the element e−g extends to a continuous
function on Xan. By abuse of notation, we use the expression g to denote the
map − log(e−g) : Xan → R ∪ {+∞}, where we consider e−g as a continuous
function from Xan to [0,+∞[.

�
Remark 2.8. Let K be either Q or R. In the case where X is normal, for a

Cartier divisor D on X, the effectivity of D as a Cartier divisor is equivalent
to the effectivity of D as a K-Cartier divisor by algebraic Hartogs’ property 1.
However, if X is not normal, then a Cartier divisor which is effective as a K-
Cartier divisor is not necessarily effective as a Cartier divisor. For example, we
set X := Proj(K[T0, T1, T2]/(T0T2

2 − T3
1 ), Ui := {Ti 6= 0} ∩ X (i = 0, 1, 2) and x :=

T1/T0, y := T2/T0 on U0. Then U0 = X \ {(0 : 0 : 1)} ans U2 = X \ {(1 : 0 : 0)},
so that X = U0 ∪ U2. Note that y/x ∈ O×

X,ζ for all ζ ∈ U0 ∩ U2. Let D be a
Cartier divisor on X given by

D =

{
(y/x) on U0,
(1) on U2.

As y/x is not regular at (1 : 0 : 0), D is not effective as a Cartier divisor. On the
other hand, since

2D =

{
(x) on U0,
(1) on U2,

D is effective as a K-Cartier divisor. As a consequence, 1 6∈ H0(X,OX(D)) and
1 ∈ H0(X, D), that is, H0(X,OX(D)) → H0(X, D) is not surjective.

1If φ is a rational function on a normal algebraic variety V over a field and φ is regular at
every codimension 1 point of V, then φ is regular on V.
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From now on, we assume that char(K) = 2. We set U′
0 := U0 \ {(1 : 1 : 1)}.

Note that X = U′
0 ∪ U2 and 1 + y/x ∈ O×

X,ζ for all ζ ∈ U′
0 ∩ U2, so that we set

D′ :=

{
(1 + y/x) on U′

0,
(1) on U2.

Since y/x is not regular at (1 : 0 : 0), we have D′ 6= 0. Moreover, as (1+ y/x)2 =
1 + x, we have

2D′ =

{
(1 + x) on U′

0,
(1) on U2,

and hence 2D′ = 0 because 1 + x ∈ O×
X,ζ for all ζ ∈ U′

0. Therefore, the natural
homomorphism Div(X) → DivK(X) is not injective. Furthermore SuppK(D′) =
∅, but SuppZ(D

′) = {(1 : 0 : 0)}.

2.3. Plurisubharmonic Green functions. Let K be a field equipped with a non-
archimedean complete absolute value |.| and X be an integral projective scheme
over Spec K. For each ξ ∈ Xan, the residue field of the associated scheme point
of ξ is denoted by κ(ξ). Let κ̂(ξ) be the completion of κ(ξ) with respect to the
absolute value |.|ξ (see §2.1). Let L be an invertible sheaf on X. Let V = (V, ‖.‖)
be a finite-dimensional vector space equipped with an ultrametric norm ‖.‖. We
assume that there is a surjective homomorphism π : V ⊗K OX → L. For each
ξ ∈ Xan, let ‖.‖κ̂(ξ) be the norm of V ⊗K κ̂(ξ) obtained by the scaler extension of
‖.‖, which is by definition the operator norm on V ⊗K κ̂(ξ) ∼= HomK(V∨, κ̂(ξ))
(cf. [9, §1.3.4]). The quotient norm of L(ξ) := L ⊗OX κ̂(ξ) induced by ‖.‖κ̂(ξ) and

the surjective homomorphism V ⊗K κ̂(ξ) → L(ξ) is denoted by |.|quot
V

(ξ). Note

that {|.|quot
V

(ξ)}ξ∈Xan yields a continuous metric on L (cf. [9, Corollary 3.4]).

Definition 2.9. We assume that L is semiample. A continuous metric h =
{|.|h(x)}x∈Xan on L is said to be semipositive if there are a sequence {en}n∈N of
positive integers and a sequence {Vn}n∈N of normed finite-dimensional vector
spaces over K such that there is a surjective homomorphism Vn ⊗K OX → L⊗en

for each n and the sequence




1
en

log
|.|quot

Vn
(ξ)

|.|hen (ξ)





n∈N

converges to 0 uniformly on Xan. In other words, if we choose a non-zero rational
section s of L, then the sequence

{
1
en

log |sen |quot
Vn

(ξ)

}

n∈N

of div(s)-Green functions converges to log |s|h(ξ) uniformly (cf. Definition 2.2).

We recall a characterisation of semipositive metrics as follows.
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Proposition 2.10 ([9, Corollary 3.11]). Let L be a semiample invertible sheaf on X and
h be a continuous metric on L. Then h is semipositive if and only if, for any ǫ > 0, there
is a positive integer n such that, for any ξ ∈ Xan, we can find s ∈ H0(X, Ln)κ̂(ξ) \ {0}
with ‖s‖hn ,κ̂(ξ) 6 enǫ|s|hn(ξ).

Proposition 2.11. Let L and L′ be semiample invertible sheaves on X and h and h′ be
continuous metrics on L and L′, respectively.

(1) If h and h′ are semipositive, then the metric h ⊗ h′ on L ⊗ L′ is also semipositive.
(2) Let f : Y → X be a morphism of projective integral schemes over Spec K. If

h = {|.|h(x)}x∈Xan is semipositive, then f ∗(L) is semiample and ( f an)∗(h) =
{|.|h( f an(y))κ̂(y)}y∈Yan is a semipositive metric on f ∗(L), where |.|h( f an(y))κ̂(y)
denotes the norm on f ∗(L)⊗OY κ̂(y) ∼= L(x)⊗κ̂(x) κ̂(y) induced by |.|h( f an(y))
by extension of scalars.

(3) Let {hn}∞
n=1 be a sequence of semipositive metrics of Lan. If

{
log

|.|hn

|.|h

}∞

n=1

converges to 0 uniformly, then h is semipositive.
(4) The following are equivalent:

(4.1) h is semipositive.
(4.2) hn is semipositive for all n > 1.
(4.3) hn is semipositive for some n > 1.

Proof. (1) As h and h′ are semipositive, by Proposition 2.10, for any ǫ > 0, there
are positive integers n and n′ such that, for all ξ ∈ Xan, we can find

s ∈ H0(X, Ln)κ̂(ξ) \ {0} and s′ ∈ H0(X, Ln′
)κ̂(ξ) \ {0}

with
‖s‖hn ,κ̂(ξ) 6 enǫ|s|hn(ξ) and ‖s′‖hn′ ,κ̂(ξ) 6 en′ǫ|s′|hn′ (ξ).

Then sn′
s′n ∈ H0(X, (L ⊗ L′)nn′

)κ̂(ξ) \ {0} and

‖sn′
s′n‖(h⊗h)nn′ ,κ̂(ξ) 6

(
‖s‖hn ,κ̂(ξ)

)n′ (
‖s′‖hn′ ,κ̂(ξ)

)n

6 enn′ǫ(|s|hn (ξ))n′
(|s′|hn′ (ξ))

n

= enn′ǫ|sn′
s′n|(h⊗h′)nn′ (ξ).

Therefore, by Proposition 2.10 again, h ⊗ h′ is semipositive.

(2) The semiampleness of f ∗(L) is obvious. By Proposition 2.10, for any ǫ >

0, there is a positive integer n such that, for any ζ ∈ Yan, we can find s ∈
H0(X, Ln)κ̂( f an(ζ)) \ {0} with ‖s‖hn ,κ̂( f an(ζ)) 6 enǫ|s|hn( f an(ζ)). Then, as s is not
zero at the scheme point of f an(ζ),

f ∗κ̂( f an(ζ))(s) ∈ H0(Y, f ∗(L))κ̂( f an(ζ)) \ {0},
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where f ∗
κ̂( f an(ζ)) : H0(X, L)κ̂( f an(ζ)) → H0(Y, f ∗(L))κ̂( f an(ζ)) is the natural homo-

morphism. Thus, if we set

s′ = f ∗κ̂( f an(ζ))(s)⊗κ̂( f an(ζ)) 1κ̂(ζ) ∈ H0(Y, f ∗(L))κ̂(ζ) \ {0},

Then

‖s′‖( f an)∗(hn),κ̂(ζ) = ‖ f ∗κ̂( f an(ζ))(s)‖( f an)∗(hn),κ̂( f an(ζ))

6 ‖s‖hn ,κ̂( f an(ζ)) 6 enǫ|s|hn( f an(ζ))

= enǫ|s′|( f an)∗(hn)(ζ),

so that the assertion follows from Proposition 2.10.

(3) For ǫ > 0, there is a positive integer n0 such that

e−ǫ 6
|.|hn0

|.|h
6 eǫ on Xan.

Moreover, as hn0 is semipositive, there is a positive integer n1 such that, for any
ξ ∈ Xan, we can find s ∈ H0(X, Ln1)κ̂(ξ) \ {0} with ‖s‖h

n1
n0 ,κ̂(ξ) 6 en1ǫ|s|hn1

n0
(ξ), and

hence

‖s‖hn1 ,κ̂(ξ) 6 en1ǫ‖s‖h
n1
n0

,κ̂(ξ) 6 e2n1ǫ|s|hn1
n0
(ξ) 6 e3n1ǫ|s|hn1 (ξ),

so that h is semipositive by Proposition 2.10.

(4) “(4.1) =⇒ (4.2)” is a consequence of (1). “(4.2) =⇒ (4.3)” is obvious. We
can easily check “(4.3) =⇒ (4.1)” by using Proposition 2.10. �

Definition 2.12. Let D be a semiample Q-Cartier divisor on X and g be a D-
Green function of C0-type. We say that g is of plurisubharmonic type (or plurisub-
harmonic) if there is a positive integer n such that nD is a Cartier divisor and |.|ng
is a semipositive metric of OX(nD). Note that, by (4) in Proposition 2.11, the
last condition does not depend on the choice of n. Moreover, if nD is a Cartier
divisor for some positive integer n, then |.|ng is semipositive.

Proposition 2.13 (Q-version). Let D and D′ be semiample Q-Cartier divisors on X,
and let g and g′ be plurisubharmonic Green functions of D and D′, respectively. Then
we have the following:

(1) For φ ∈ Rat(X)×
Q

, − log |φ| is a (φ)-Green function of plurisubharmonic type.
(2) For all a, a′ ∈ Q>0, ag + a′g′ is also of plurisubharmonic type.
(3) Let f : Y → X be a morphism of projective integral schemes over K such that

f (Y) 6⊆ Supp(D). Then f ∗(D) is semiample and ( f an)∗(g) is an f ∗(D)-Green
function of plurisubharmonic type.

(4) Let {gn}n∈N be a sequence of D-Green functions of plurisubharmonic type. If
{gn}n∈N converges a D-Green function g uniformly (cf. Definition 2.2), then g
is also of plurisubharmonic type.
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Proof. (1) Clearly we may assume that φ ∈ Rat(X)× . We set D = (φ) and g =
− log |φ|. As OX(D) = OXφ−1, the homomorphism OX → OX(D) given by
1 7→ φ−1 yields an isomorphism. If we give the trivial metric |.| to OX, then the
above isomorphism gives rise to an isometry (OX , |.|) ≃ (OX(D), |.|g). Thus the
assertion follows.

(2), (3) and (4) follows from (1), (2), (3) in Proposition 2.11. �

Definition 2.14. Let D be an R-Cartier divisor on X. We assume that D is semi-
ample, that is, there are semiample Cartier divisors A1, . . . , Ar and a1, . . . , ar ∈
R>0 such that D = a1 A1 + · · · + ar Ar (cf. Conventions and terminology 3).
We say a D-Green function g of C0-type is said to be of plurisubharmonic type
(or plurisubharmonic) if there is a sequence {gn}n∈N of D-Green functions of
C0-type with the following conditions:

(1) Let θn be the continuous extension of g− gn on Xan. Then limn→∞ ‖θn‖sup =
0.

(2) For each n, there are semiample Q-Cartier divisors An1, . . . , Anrn on X,
plurisubharmonic Green function gn1, . . . , gnrn of An1, . . . , Anrn , respec-
tively and positive real numbers an1, . . . , anrn such that D = an1An1 +
· · ·+ anrn Anrn and gn = an1gn1 + · · ·+ anrn gnrn .

We refer the readers to [11, §3] for more details about plurisubhamonic functions
and semi-positive metrics.

The R-version of Proposition 2.13 can be checked by using the Q-version.

Proposition 2.15 (R-version). Let D and D′ be semiample R-Cartier divisors on X,
and let g and g′ be plurisubharmonic Green functions of D and D′, respectively. Then
we have the following:

(1) For φ ∈ Rat(X)×R , − log |φ| is a (φ)-Green function of plurisubharmonic type.
(2) For all a, a′ ∈ R>0, ag + a′g′ is also of plurisubharmonic type.
(3) Let f : Y → X be a surjective morphism of projective integral schemes over K

such that f (Y) 6⊆ Supp(D). Then f ∗(D) is semiample and ( f an)∗(g) is an
f ∗(D)-Green function of plurisubharmonic type.

(4) Let {gn} be a sequence of D-Green functions of plurisubharmonic type. If {gn}
converges a D-Green function g uniformly (cf. Definition 2.2), then g is also of
plurisubharmonic type.

Finally let us see the following proposition:

Proposition 2.16. Let D be a semiample Q-Cartier divisor on X and g be a D-Green
function of C0-type. The Green function g is of plurisubharmonic type as a Q-Cartier
divisor if and only if g is of plurisubharmonic type as an R-Cartier divisor.

Proof. It is sufficient to show that if g is plurisubharmonic as an R-Cartier divisor,
then g is plurisubharmonic as a Q-Cartier divisor. By (4) in Proposition 2.13, we
may assume that g is obtained by the following way: there are semiample Q-
Cartier divisors A1, . . . , Ar on X and plurisubharmonic Green functions h1, . . . , hr
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of A1, . . . , Ar, respectively such that

D = a1 A1 + · · ·+ ar Ar and g = a1h1 + · · ·+ arhr

for some a1, . . . , ar ∈ R>0. Here we claim the following:

Claim 2.16.1. Let V be a vector space over Q. Then we have the following:

(i) WR ∩ V = W for any a vector subspace W of V.
(ii) Let x, x1, . . . , xr ∈ V such that x = a1x1 + · · ·+ arxr for some a1, . . . , ar ∈ R.

Then, for any ǫ > 0, there are a′1, . . . , a′r ∈ Q such that x = a′1x1 + · · ·+ a′rxr
and |a′i − ai| 6 ǫ for all i.

Proof. (i) is obvious because V/W → (V/W)R is injective and (V/W)R =
VR/WR.

(ii) We set W := Qx1 + · · ·+ Qxr. Then, by (i), there are b1, . . . , br ∈ Q such
that x = b1x1 + · · ·+ brxr. Let us consider a homomorphism ψ : Qr → V given
by ψ(t1, . . . , tr) = t1x1 + · · ·+ trxr. We denote the scalar extension Rr → VR by
ψR, that is, ψR(α1, . . . , αr) = α1x1 + · · ·+ αrxr. We set

δ := (a1, . . . , ar)− (b1, . . . , br) ∈ Ker(ψR).

As Ker(ψR) = Ker(ψ)R, Ker(ψ) is dense in Ker(ψR), so that there is δ′ ∈ Ker(ψ)
such that |δ − δ′| 6 ǫ, where for y = (y1, . . . , yr) ∈ Rr, |y| := max{|y1|, . . . , |yr|}.
Therefore, if we set

(a′1, . . . , a′r) = (b1, . . . , br) + δ′,

then x = a′1x1 + · · ·+ a′rxr (a′1, . . . , a′r ∈ Q) and |ai − a′i| 6 ǫ for all i = 1, . . . , r. �

By applying the above claim to the case where V = DivQ(X), x = D and
xi = Ai (i = 1, . . . , r), there are sequences {an1}∞

n=1, . . . , {anr}∞
n=1 of positive

rational numbers such that

ai = lim
n→∞

ani (i = 1, . . . , r) and D = an1A1 + · · ·+ anr Ar.

We set gn := an1h1 + · · · + anrhr. Then gn is a D-Green function of plurisub-
harmonic type by (2) in Proposition 2.13. Let θn be a continuous function
on Xan with g − gn = θn. It is sufficient to see that limn→∞ ‖θn‖sup = 0 by
virtue of (4) in Proposition 2.13. If we set bni := ai − ani, then limn→∞ bni = 0,
bn1A1 + · · · + bnr Ar = 0 and the continuous extension of bn1h1 + · · · + bnrhr is
θn. Let E1, . . . , Es be a basis of the vector subspace QA1 + · · ·+ QAr of DivQ(X).
We choose αi1, . . . , αis ∈ Q with Ai = ∑

s
j=1 αijEj. Then, as

0 = ∑
i

bni Ai =
s

∑
j=1

(
r

∑
i=1

bniαij

)
Ej,

we have ∑
r
i=1 bniαij = 0 for all n > 1 and j = 1, . . . , s. For each j, let ej be an

Ej-Green function of C0-type. Then, for each i, there is a continuous function νi
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on Xan such that hi − ∑
s
j=1 αijej = νi. Note that

θn =
r

∑
i=1

bnihi =
r

∑
i=1

bni

(
νi +

s

∑
j=1

αijej

)

=
r

∑
i=1

bniνi +
s

∑
j=1

(
r

∑
i=1

bniαij

)
ej =

r

∑
i=1

bniνi.

Thus ‖θn‖sup 6 ∑
r
i=1 |bni|‖νi‖sup, and hence the assertion follows. �

2.4. Canonical Green functions with respect to endomorphisms. Given a po-
larised dynamic system on a projective variety over Spec K one can attach to the
polarisation divisor a canonical Green function, which is closely related to the
canonical local height function. We refer the readers to [16] for the original work
of Néron in the Abelian variety case, and to [3, 18] for general dynamic systems
in the setting of canonical local height and canonical metric respectively. See [12]
for the non-archimedean case. In the following, we recall the construction of the
canonical Green functions of R-Cartier divisors.

Let f : X → X be a surjective endomorphism of X over K. Let D be an R-
Cartier divisor on X. We assume that there are a real number d and ϕ ∈ Rat(X)×

R

such that d > 1 and f ∗(D) = dD + (ϕ). We fix a Green function g0 of D. There
exists a unique continuous function λ on Xan such that

( f an)∗(g0) = dg0 − log |ϕ|+ λ,

where for any element g ∈ Ĉ0(Xan) represented by a continuous function h :
Uan → R, with U being a non-empty Zariski open subset of X, the expression
( f an)∗(g) denotes the element in Ĉ0(Xan) represented by the function h ◦ f an :
f−1(U)an → R. We set

(2.1) hn =
n−1

∑
i=0

1
di+1 (( f an)i)∗(λ) (n > 1).

Lemma 2.17. The sequence {hn}n>1 of continuous functions on Xan converges to a
continuous function h on Xan uniformly.

Proof. If n > m, then

‖hn − hm‖sup 6

n−1

∑
i=m

1
di+1‖(( f an)i)∗(λ)‖sup =

‖λ‖sup

dm+1

n−m−1

∑
i=0

1
di

6
‖λ‖sup

dm+1

∞

∑
i=0

1
di =

‖λ‖sup

dm(d − 1)
.

Thus the lemma follows. �

Proposition 2.18. There is a unique Green function of D with ( f an)∗(g) = dg −
log |ϕ| on Xan.
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Proof. Let us begin with the uniqueness of g. Let g′ be another Green function
of D with ( f an)∗(g′) = dg′ − log |ϕ| on Xan. Then ( f an)∗(g′ − g) = d(g′ − g) on
Xan. Note that there is a continuous function θ on Xan with θ = g′ − g, so that
( f an)∗(θ) = d(θ). Here we consider the sup norm ‖.‖sup of continuous functions.
Then

‖θ‖sup = ‖( f an)∗(θ)‖sup = ‖dθ‖sup = d‖θ‖sup,

and hence ‖θ‖sup = 0. Therefore, θ = 0.

Since

( f an)∗(hn) =
n−1

∑
i=0

1
di+1 (( f an)i+1)∗(λ) = dhn+1 − λ,

we have ( f an)∗(h) = dh − λ, so that if we g = g0 + h, then

( f an)∗(g) = (dg0 − log |ϕ|+ λ) + (dh − λ) = dg − log |ϕ|,
as required. �

A Green function g of D is called the canonical Green function of D with respect
to f if ( f an)∗(g) = dg − log |ϕ| on Xan.

Lemma 2.19. For θ ∈ Rat(X)×
R

, we have the following:

(1) f ∗(D + (θ)) = d(D + (θ)) +
(

f ∗(θ)θ−d ϕ
)
.

(2) The canonical Green function of D + (θ) is given by g − log |θ|.
Proof. (1) is obvious. Since

( f an)∗(g − log |θ|) = dg − log |ϕ| − log | f ∗(θ))|
= d(g − log |θ|)− log | f ∗(θ)θ−d ϕ|,

the assertion (2) follows. �

We set

(2.2)





gn := g0 + hn (n > 1)

ϕ0 = 1, ϕn =
n−1

∏
i=0

( f i)∗(ϕ)1/di+1
(n > 1).

Let us see the following facts:

Lemma 2.20. (1) ( f an)∗(gn−1) = dgn − log |ϕ| and f ∗(ϕn−1) = ϕd
n/ϕ for all

n > 1.
(2) If D > 0 and g0 > 0, then D + (ϕn) > 0 and gn − log |ϕn| > 0 for all n > 0.

Proof. (1) In the case n = 1, since ( f an)∗(g0) = dg0 − log |ϕ|+λ, g1 = g0 +(1/d)λ
and ϕ1 = ϕ1/d, the assertion is obvious. For n > 2,

( f an)∗(gn−1) = ( f an)∗
(

g0 +
n−2

∑
i=0

1
di+1 (( f an)i)∗(λ)

)
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= ( f an)∗(g0) +
n−2

∑
i=0

1
di+1 (( f an)i+1)∗(λ)

= dg0 − log |ϕ|+ λ +
n−2

∑
i=0

1
di+1 (( f an)i+1)∗(λ)

= d

(
g0 +

1
d

λ +
n−2

∑
i=0

1
di+2 (( f an)i+1)∗(λ)

)
− log |ϕ|

= dgn − log |ϕ|

and

f ∗(ϕn−1) = f ∗
(

n−2

∏
i=0

( f i)∗(ϕ)1/di+1

)
=

n−2

∏
i=0

( f i+1)∗(ϕ)1/di+1

=
n−1

∏
i=1

( f i)∗(ϕ)1/di
=

(
n−1

∏
i=1

( f i)∗(ϕ)1/di+1

)d

= (ϕn/ϕ1/d)d = ϕd
n/ϕ.

Therefore, the assertion follows inductively.

(2) follows from (1). �

Proposition 2.21. If D + (s) is effective for some s ∈ Rat(X)×R , then, for any ǫ > 0,
there is ϕǫ ∈ Rat(X)×R such that D + (ϕǫ) > 0 and g − log |ϕǫ|+ ǫ > 0.

Proof. First we assume that D > 0. By Proposition 2.5 and Proposition 2.6, we
can choose a Green function g0 of D with g0 > 0. Then, by Lemma 2.17 and
Lemma 2.20, for ǫ > 0, there is a positive integer n such that ‖h − hn‖sup 6 ǫ,
D + (ϕn) > 0 and gn − log |ϕn| > 0, and hence

0 6 gn − log |ϕn| = g + (hn − h)− log |ϕn| 6 g + ǫ − log |ϕn|,
as required.

Next we assume that D + (s) is effective for some s ∈ Rat(X)×R . Then, by
Lemma 2.19, the canonical Green function of D + (s) is g − log |s|. Therefore,
by the previous observation, for any ǫ > 0, there is ψǫ ∈ Rat(X)×

R
such that

D + (s) + (ψǫ) > 0 and g − log |s| − log |ψǫ|+ ǫ > 0, and hence the assertion of
the proposition follows for ϕǫ := sψǫ. �

Proposition 2.22. If D is semiample, then the canonical Green function of D is of
plurisubharmonic type.

Proof. Since D is semiample, we can choose a Green function g0 of plurisubhar-
monic type as an initial Green function. Note that g is the uniform limit of the
sequence {gn}n>1, so that, by (4) in Proposition 2.15, it is sufficient to show that
each gn is of plurisubharmonic type. We prove it by induction on n. We assume
that gn−1 is of plurisubharmonic type. Then, by Lemma 2.20 and (3) in Propo-
sition 2.15, dgn − log |ϕ| is of plurisubharmonic type. Therefore, by (1) and (2)
Proposition 2.15, gn is of plurisubharmonic type. �
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3. A sufficient condition for the Dirichlet property

of arithmetic dynamic system

Throughout this section, let K be a number field and X be a normal, projective
and geometrically integral scheme over Spec K. In this section, we consider a
sufficient condition to guarantee the Dirichlet property. As a consequence, if
X = Pn

K and f is an endomorphism given by polynomials, then we can see
that the Dirichlet property holds for the canonical compatification of an ample
Cartier divisor with respect to the endomorphism f .

3.1. Preliminaries. In this subsection, we discuss several facts which are used
in the later subsection.

Lemma 3.1. The natural homomorphism Rat(X)×R → D̂ivR(X) given by ϕ 7→ (̂ϕ) is
injective, that is, Rat(X)×R can be considered as a vector subspace of D̂ivR(X).

Proof. We denote the homomorphism Rat(X)×
R
→ D̂ivR(X) by α. Let ϕ ∈ Ker(α).

We set ϕ = ϕ
a1
1 · · · ϕ

al
l such that ϕ1, . . . , ϕl ∈ Rat(X)× , a1, . . . , al ∈ R and a1, . . . , al

are linearly independent over Q. As a1(ϕ) + · · ·+ al(ϕl) vanishes in D̂ivR(X),
for any prime divisor Γ on X,

a1 ordΓ(ϕ1) + · · ·+ al ordΓ(ϕl) = 0,

which implies ordΓ(ϕi) = 0 for all i because a1, . . . , al are linearly independent
over Q. Thus ϕi ∈ K× for all i, by which we may assume that X = Spec(K). For
v ∈ Mfin

K , as before,

a1 ordv(ϕ1) + · · ·+ al ordv(ϕl) = 0,

so that ϕi ∈ O×
K for all i. Therefore, Ker(α) ⊆ (O×

K )R. Let us consider the
homomorphism L : O×

K → RK(C) given by x 7→ (− log |x|), where (− log |x|)σ =
− log |σ(x)|. It is well known that Ker(L) is a finite group, so that the natural
extension LR : (O×

K )R → RK(C) is injective. Therefore we have the assertion. �

Lemma 3.2. Let H be a finite dimensional vector subspace of D̂ivR(X) over R. Let
{Dn}n∈N be a sequence in H. Moreover, let {(0, θn)}n∈N be a sequence in D̂ivR(X),
that is, for each v ∈ MK, {θn,v}n∈N is a sequence of continuous functions on Xan

v . We
assume the following:

(1) {Dn}n∈N has a limit D in the natural topology of H as a finite dimensional
vector space over R.

(2) For each v ∈ Σ, {θn,v}n∈N converges to 0 uniformly.

If Dn + (0, θn) > 0 for all n, then D > 0.

Proof. Let H1 = (H1, h1), . . . , Hr = (Hr, hr) be a basis of H. We set

Dn = an1H1 + · · ·+ anr Hr
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and ai = limn→∞ ani for i = 1, . . . , r. Note that D = a1H1 + · · ·+ ar Hr. Let Γ be
a prime divisor on X. Then

ordΓ(D) = a1 ordΓ(H1) + · · ·+ ar ordΓ(Hr)

= lim
n→∞

{an1 ordΓ(H1) + · · ·+ anr ordΓ(Hr)}
= lim

n→∞
ordΓ(Dn) > 0,

so that D > 0.
Here we set

gn := an1h1 + · · ·+ anrhr + θn and g := a1h1 + · · ·+ arhr.

For each v ∈ MK(= Mfin
K ∪ M∞

K ), we need to show that gv > 0 under the as-
sumption gn,v > 0 for all n. Note that gv is continuous on Xan

v \ Supp(D)an
v and

gv(x) = ∞ for x ∈ Supp(D)an
v . We assume that the non-negativity of gv does not

hold. Then there is an open set U of Xan
v \ Supp(D)an

v such that gv < 0 on U.
Choose x ∈ U \ (⋃r

i=1 Supp(Hi))
an
v . Then

gn,v(x) = θn,v(x) +
r

∑
i=1

anihi,v(x) > 0,

which implies

gv(x) =
r

∑
i=1

aihi,v(x)

= lim
n→∞

θn,v(x) +
r

∑
i=1

(
lim

n→∞
ani

)
hi,v(x)

= lim
n→∞

(
θn,v(x) +

r

∑
i=1

anihi,v(x)

)
> 0.

This is a contradiction. �

Lemma 3.3. Let D be an adelic arithmetic R-Cartier divisor of C0-type. Then we have
the following:

(1) Γ̂(X, D)×R is a convex set (for the definition of Γ̂(X, D)×R , see Conventions and
terminology 5).

(2) Let H be a finite dimensional vector subspace of Rat(X)×R . Then H ∩ Γ̂(X, D)×R
is compact.

Proof. (1) For t ∈ [0, 1] and s, s′ ∈ Γ̂(X, D)×R ,

D +
̂

(sts′(1−t)) = D + t(̂s) + (1 − t)(̂s′)

= t(D + (̂s)) + (1 − t)(D + (̂s′)) > 0,

so that Γ̂(X, D)×R is convex.
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(2) We can find a model (X , D) of (X, D) and an F∞-invariant D-Green func-
tion k of C0-type on X(C) =

⋃
σ∈K(C) Xa

σ such that (D , k)a > D, where (D , k)a is
the associated adelic R-Cartier divisor of C0-type on X. Then

Γ̂(X, (D , k)a)×R ⊇ Γ̂(X, D)×R .

By Lemma 3.1 together with [13, Corollary 3.3.2], H ∩ Γ̂(X, (D , k)a)×R is compact.
Moreover, by Lemma 3.2, we can see that H ∩ Γ̂(X, D)×R is closed, so that H ∩
Γ̂(X, D)×

R
is compact. �

3.2. Algebraic dynamic system and a sufficient condition for the Dirichlet
property. Let f : X → X be a surjective endomorphism of X over K. Let D
be an R-Cartier divisor on X. We assume that there are a real number d and
ϕ ∈ Rat(X)×

R
such that d > 1 and f ∗(D) = dD + (ϕ). An adelic arithmetic

R-Cartier divisor D = (D, g) of C0-type is called the canonical compactification
of D if f ∗(D) = dD + (̂ϕ). Note that D is uniquely determined by the equa-
tion f ∗(D) = dD + (̂ϕ) (for details, see [10, Section 3] or Proposition 2.18). By
Lemma 2.19, for θ ∈ Rat(X)×

R
, we have the following:

(i) f ∗(D + (θ)) = d(D + (θ)) +
(

f ∗(θ)θ−d ϕ
)
.

(ii) The canonical compactification of D + (θ) is given by D + (̂θ).

Let g0 = {g0,v}v∈MK be a family of D-Green function of C0-type on X. We choose
a collection of continuous functions λ = {λv}v∈MK such that

(3.1) f ∗(D, g0) = d(D, g0) + (̂ϕ) + (0, λ).

As in Subsection 2.4, we set




gn := g0 +
n−1

∑
i=0

1
di+1 ( f i)∗(λ) (n > 1)

ϕ0 = 1, ϕn =
n−1

∏
i=0

( f i)∗(ϕ)1/di+1
(n > 1).

By Lemma 2.17,

hn =
n−1

∑
i=0

1
di+1 ( f i)∗(λ) (n > 1),

converges to a continuous function h uniformly. Here we set g = g0 + h. Then
the pair D = (D, g) yields the canonical compactification of D (for details, see
[10, Section 3] or Proposition 2.18). Note that g does not depend on the choice
of the initial Green function g0. By Lemma 2.20, we have the following:

(a) f ∗(gn−1) = dgn − log |ϕ|2 and f ∗(ϕn−1) = ϕd
n/ϕ for all n > 1. In particu-

lar, f ∗
(
(D, gn−1) + (̂ϕn−1)

)
= d

(
(D, gn) + (̂ϕn)

)
for all n > 1.

(b) If (D, g0) > 0, then (D, gn) + (̂ϕn) > 0 for all n > 0.
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The vector subspace of Rat(X)×R generated by {ϕn}∞
n=1 is denoted by V(ϕ). We

say that V(ϕ) has the finiteness property if V(ϕ) is finitely generated as a vector
space over R.

Lemma 3.4. The following are equivalent:

(1) V(ϕ) has the finiteness property.
(2) There are R-rational functions φ1, . . . , φl on X and A, A1, . . . , Al ∈ Rl such

that ϕ = φA and f ∗(φi) = φAi for i = 1, . . . , l (see Conventions and terminol-
ogy 1).

Proof. (1) =⇒ (2): Let {ϑ1, . . . , ϑn} be a basis of V(φ). Clearly ϕ = ϑB for some
B ∈ Rn. For each i, we can find c1, . . . , cr ∈ R such that ϑi = ϕ

c1
n1 · · · ϕcr

nr . Thus, as

f ∗(ϑi) = f ∗(ϕn1)
c1 · · · f ∗(ϕnr)

cr = (ϕ
dc1
n1+1/ϕc1) · · · (ϕdcr

nr+1/ϕcr ),

we can find Bi ∈ Rn such that f ∗(ϑi) = ϑBi .

(2) =⇒ (1): Clearly V(ϕ) is a vector subspace of the vector space generated by
φ1, . . . , φl, so that the assertion follows. �

Lemma 3.5. We assume that (D, g0) > 0 and V(ϕ) has the finiteness property. Then
there is a subsequence {ϕni}i∈N of {ϕn}n>1 such that the limit of {ϕni}i∈N exists in
the usual topology of V(ϕ) as a finite dimensional vector space over R.

Proof. First of all, note that there is a non-empty open set U of Spec(OK) such
that λp = 0 for all p ∈ U, where λp is determined by (3.1). Moreover, there is a
positive number c such that (hn)v 6 hv + c for all v ∈ MK \ (U ∩ Mfin

K ). Thus, if
we set

D
′
= (D, g) +


0, ∑

v∈MK\(U∩Mfin
K )

c[v]


 ,

then, by Lemma 2.20,

D
′
+ (̂ϕn) > (D, gn) + (̂ϕn) > 0.

Thus, ϕn ∈ Γ̂(X, D)×R ∩ V(ϕ), so that the assertion follows from Lemma 3.3. �

Theorem 3.6. If D is effective and V(ϕ) has the finiteness property, then the Dirichlet
property holds.

Proof. We can choose an initial family g0 of D-Green functions with (D, g0) > 0.
By Lemma 3.5 together with Lemma 2.20, there is a subsequence {ϕni}i∈N of
{ϕn}n>1 such that the limit of {ϕni}i∈N exists in the usual topology of V(ϕ) as
a finite dimensional vector space over R. We denote the limit by ϕ. Note that

(D, gni) + (̂ϕni) > 0 by Lemma 2.20, so that, if we set hni = gni − g, then then

D + (0, hni) + (̂ϕni) > 0. Therefore, by Lemma 3.2, D + (̂ϕ) > 0, as required. �
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Remark 3.7. Let θ ∈ Rat(X)×R . If we set D′ = D + (θ), then, by Lemma 2.19, we
have

f ∗(D′) = dD′ + ( f ∗(θ)θ−d ϕ).

In order to apply Theorem 3.6, it is better to choose θ such that D′ > 0 and
f ∗(θ)θ−d ϕ is simple as much as possible.

For example, X = Proj(K[T0, T1]), D = {T1 = 0} and f is given by

f (T0 : T1) = (T2
0 : T2

1 + cT2
0 )

for some c ∈ K. This is a famous complex dynamic system. If we set z =
T0/T1, then f ∗(D) = 2D + (1 + cz2). We do not know the finiteness property
of V(1 + cz2). On the other hand, if we set D′ = {T0 = 0}, then f ∗(D′) = 2D′.
In this case, V(1) is trivial, so that by the above theorem, the Dirichlet property
holds for D′ equipped with its canonical Green function (see §2.4).

Corollary 3.8. If D is effective and f ∗(D) = dD, then the canonical compactification
D of D has the Dirichlet property.

Finally let us consider examples.

Example 3.9. We assume X is the n-dimensional projective space over K, that is,
X = Pn

K = Proj(K[T0, T1, . . . , Tn]). Let f : Pn
K → Pn

K be a surjective endomor-
phism over K. We assume that f is a polynomial map, that is,

f (Pn
K \ {T0 = 0}) ⊆ Pn

K \ {T0 = 0}.

We set zi = Ti/T0 for i = 1, . . . , n. Then there are f1, . . . , fn ∈ K[z1, . . . , zn] such
that

f (1 : x1 : · · · : xn) = (1 : f1(x1, . . . , xn) : · · · : fn(x1, . . . , xn)).

We set d = max{deg( f1), . . . , deg( fn)}. Then f : Pn
K → Pn

K is given by

f (T0 : · · · : Tn) = (Td
0 : F1(T0, . . . , Tn) : · · · : Fn(T0, . . . , Tn)),

where F1, . . . , Fn are homogeneous polynomials of degree d with

Fi(1, X1, . . . , Xn) = fi(X1, . . . , Xn)

for i = 1, . . . , n and

{(t1, . . . , tn) ∈ K
n | F1(0, t1, . . . , tn) = · · · = Fn(0, t1, . . . , tn) = 0} = {(0, . . . , 0)}.

We set D = {T0 = 0}. Then f ∗(D) = dD, so that the Dirichlet property holds
for the canonical compactification by Corollary 3.8.

For example, in the case where fc : P1
K → P1

K is given by

fc(T0 : T1) = (T2
0 : T2

1 + cT2
0 ) (c ∈ K),

it is well-known that the Julia set of fc heavily depends on the choice of c. Nev-
ertheless, the Dirichlet property holds.
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Example 3.10. The Dirichlet property is very sensitive on the choice of the dy-
namic system. For example, we set K := Q(

√
−1), X := P1

K = Proj(K[T0, T1])
and z := T1/T0. Let us consider two endomorphisms f and f ′ on X given by

f (T0 : T1) = (2T0T1 : T2
1 − T2

0 ) and f ′(T0 : T1) = (2
√
−1T0T1 : T2

1 − T2
0 ),

that is, f (z) = (1/2)(z − 1/z) and f ′(z) = (1/2
√
−1)(z − 1/z). If we set D :=

{T1 −
√
−1T0 = 0}, then f ∗(D) = 2D because

(T2
1 − T2

0 )−
√
−1(2T0T1) = (T1 −

√
−1T0)

2.

Let g be the canonical D-Green function of C0-type with respect to f . Then, by
Corollary 3.8, D = (D, g) has the Dirichlet property. On the other hand, for
σ ∈ M∞

K , it is well-known that the Julia set of f ′ on Xσ is equal to Xσ itself (cf.
[15, Theorem 4.2.18]). Therefore, by [10, Theorem 4.5], for any ample R-Cartier
divisor A, the canonical compactification A with respect to f ′ does not have the
Dirichlet property.

3.3. A remark on a sufficient condition for the Dirichlet property. In this sub-
section, we do not suppose given the endomorphism f : X → X. Let D be an
adelic arithmetic R-Cartier divisor of C0-type on X. We assume that D is big and
D is pseudo-effective. Let ζ be an adelic R-divisor on Spec(K) with d̂eg(ζ) = 1.
Then D + tπ∗(ζ) is big for all t ∈ (0, ∞), where π : X → Spec(K) is the canonical
morphism (see [10, §6.2]).

Proposition 3.11. Let H be a finite-dimensional vector subspace of Rat(X)×R . If there is
a sequence {tn}n∈N of positive numbers such that limn→∞ tn = 0 and, for each n ∈ N,
we can find θn ∈ H with D + tnπ∗(ζ) + (̂θn) > 0, then D has the Dirichlet property.

Proof. Let ϑ ∈ K×
R such that ζ + (̂ϑ) > 0. Then

D + tnπ∗(ζ) + (̂θn) = D + tn(π
∗(ζ + (̂ϑ)) + ̂(θnπ∗(ϑ)−tn),

so that, replacing H by the vector subspace generated by H and π∗(ϑ), we may
assume that ζ > 0.

We choose t > 0 such that tn 6 t for all n. Then

θn ∈ H ∩ Γ̂(X, D + tπ∗(ζ))×R
for all n. Note that H ∩ Γ̂(X, D + tπ∗(ζ))×R is a compact convex set by Lemma 3.3.
Therefore, there is a subsequence {θnk}k∈N of {θn}n∈N such that the limit θ of
{θnk}k∈N exists. Moreover, by Lemma 3.2, we have D + (̂θ) > 0. �

Example 3.12 (Toric variety). Let N be a free Z-module of rank n and M =
HomZ(N, Z). Let Σ be a complete fan in NR. Let X = X(Σ)K be the toric variety
over K associated with Σ. Let D be a big toric R-Cartier divisor on X and g a
family of D-Green functions of toric type. If D is big, then we can find m ∈ MR

such that D + (̂χm) > 0. Therefore, we can see that any pseudo-effective adelic
arithmetic R-Cartier divisor of toric type has the Dirichlet property.
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4. Arakelov geometry over a trivially valued field

In this section, we introduce the analogue of Arakelov geometry in the setting
of projective varieties over a trivially valued field. Throughout the section, let K
be a field and |.| be the trivial absolute value on K. Namely |a| = 1 if a ∈ K×

and |0| = 0.

Definition 4.1. Let X be an integral projective scheme over Spec K. By adelic R-
Cartier divisor on X, we refer to a couple D = (D, g), where D is an R-Cartier
divisor on X and g is a D-Green function of C0-type. We say that an adelic
R-Cartier divisor (D, g) is effective if D is effective as an R-Cartier divisor and
g, viewed as a map from Xan to R ∪ {+∞} (see Remark 2.7), is a non-negative
function.

The set D̂ivR(X) of adelic R-Cartier divisors on X forms a vector space over
R. The map from Rat(X)×R to D̂ivR(X) sending f to (̂ f ) := (( f ),− log | f |) is
R-linear. The adelic R-Cartier divisors lying in the image of this map are said
to be principal. If two adelic R-Cartier divisors differ by a principal one, then we
say that they are R-linearly equivalent.

4.1. Global section space and sup norm. Let X be an integral projective scheme
over Spec K and (D, g) be an adelic R-Cartier divisor on X. Let

H0(D) := {s ∈ Rat(X)× : (s) + D >R 0} ∪ {0} ⊂ Rat(X).

This is a finite dimensional K-vector subspace of Rat(X) (cf. Remark 4.2).
Let s be a non-zero element in H0(D). As (s) + D is an effective R-Cartier

divisor on X and g− log |s| is a Green function of (s)+D, we obtain that |s|e−g =

e−g+log |s|, which is denoted by |s|g, is continuous on Xan by Proposition 2.6. We
define ‖s‖g to be

‖s‖g := sup{|s|g(x) | x ∈ Xan}.

Then ‖.‖g : H0(D) → R+ actually yields an ultrametric norm on the K-vector
space H0(D). Note that {‖s‖g | s ∈ H0(D)} is a finite set because the absolute
value of K is trivial (cf. [9, §1.2.1]). The function ‖.‖g defines a decreasing R-
filtration on the vector space H0(D) as follows:

∀ t ∈ R, F t(H0(D)) := {s ∈ H0(D) : ‖s‖g 6 e−t},

which is a vector subspace of H0(D) because the absolute value of K is trivial.
The function t 7→ rkK(F t(H0(D))) is decreasing and left-continuous. Moreover,
F t(H0(D)) reduces to the zero vector space when t is sufficiently positive, and
F t(H0(D)) = H0(D) when t is sufficiently negative. We let

d̂eg+(D, g) :=
∫ +∞

0
rkK(F t(H0(D))) dt

and
λmax(D, g) := sup{t ∈ R : F t(H0(D)) 6= {0}}.
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We refer the readers to [7, §1.2] for more details on R-filtered vector spaces and
to [6, §3.2] for the comparison of the invariant d̂eg+ and the logarithm of the
number of small sections in the classic setting of arithmetic geometry over a
number field.

Remark 4.2. The finite-dimensionality of H0(X, D) can be checked in the follow-
ing way:

Step 1: Clearly we may assume that H0(X, D) 6= {0}, so that we can choose
s ∈ H0(X, D) \ {0}. Then a homomorphism H0(X, D) → H0(X, D + (s)) given
by φ 7→ φs−1 yields an isomorphism. Therefore, replacing D by D + (s), we may
suppose that D >R 0.

Step 2: By Step 1, there are effective Cartier divisors D1, . . . , Dr and a1, . . . , ar ∈
R>0 such that D = a1D1 + · · · + arDr. We choose integers a′1, . . . , a′r such that
ai 6 a′i for all i. If we set D′ = a′1D1 + · · ·+ a′r Dr, then H0(X, D) ⊆ H0(X, D′), so
that we may assume that D is a Cartier divisor.

Step 3: Let µ : X′ → X be the normalization of X. Then H0(X, D) ⊆
H0(X′ , µ∗(D)), and hence we may assume that X is normal. Therefore, by using
Hartogs’ property, we can see that the natural homomorphism H0(X,OX(D)) →
H0(X, D) is bijective, as required.

4.2. Height and essential minimum. If (D, g) is an adelic R-Cartier divisor on
X, we let

λ
asy
max(D, g) := lim sup

n→+∞

1
n

λmax(nD, ng).

Since the sequence {λmax(nD, ng)}n>1 is super-additive, we obtain that

λ
asy
max(D, g) = sup

n>1

1
n

λmax(nD, ng).

This invariant is closely related to the analogue in the setting of arithmetic ge-
ometry over a trivially valued field of the essential minimum of height function.

Here let us introduce the height function han
(D,g) on Xan associated with (D, g).

Fix a point ξ of Xan. Let pξ ∈ X be the associated scheme point of ξ and κ(ξ)
be the residue field of pξ . The point ξ gives rise to an absolute value vξ on κ(ξ).
Note that vξ is non-archimedean because vξ is trivial on K. We set

oξ := {α ∈ κ(ξ) | vξ(α) 6 1} and mξ := {α ∈ κ(ξ) | vξ(α) < 1}.

In the case where vξ is trivial, oξ = κ(ξ) and mξ = {0}. Since X is proper over
Spec K, by the valuative criterion of properness there is a unique K-morphism
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Spec(oξ) → X such that the following diagram is commutative:

Spec(oξ) X

Spec(κ(ξ))

where Spec(κ(ξ)) → Spec(oξ) and Spec(κ(ξ)) → X are the canonical mor-
phisms. The image of mξ by Spec(oξ) → X is denoted by rξ , which is called
the reduction point of ξ.

Let f be a local equation of D on a Zariski open set U containing rξ . Note
that ξ ∈ Uan because pξ ∈ U. By definition the function g + log | f | extends to a
continuous function ϑ f on Uan. Here we consider the evaluation ϑ f (ξ) of ϑ f at
ξ. It does not depend on the choice of U and f . Indeed, let f ′ be another local
equation of D on a Zariski open set U′ containing rξ . Then there is u ∈ (O×

X,rx
)R

with f ′ = u f , so that the extension ϑ f ′ of g + log | f ′| is equal to ϑ f + log |u|
around ξ, and hence the assertion follows because |u|(ξ) = 1. Thereore it is
denoted by han

(D,g)(ξ). For any point x of X, we denote by xan the point in Xan

corresponding to the point x and the trivial absolute value on the residue field
of x. We define h(D,g)(x) to be h(D,g)(x) := han

(D,g)(x
an).

For a Cartier divisor E on X, we say E is semiample if OX(mE) is generated by
global sections for some positive integer m. In general, an R-Cartier divisor D
on X is said to be semiample if there are semiample Cartier divisors E1, . . . , Er on
X and a1, . . . , ar ∈ R>0 with D = a1E1 + · · ·+ arEr. The following proposition
contains basic properties of the height functions.

Proposition 4.3. Let (D, g) and (D′, g′) be adelic R-Cartier divisors on X. Then we
have the following:

(1) han
a(D,g)+a′(D′,g′)(ξ) = ahan

(D,g)(ξ) + a′han
(D′ ,g′)(ξ) for all ξ ∈ Xan and a, a′ ∈ R.

(2) han
(̂s)
(ξ) = 0 for all ξ ∈ Xan and s ∈ Rat(X)×R .

(3) Let π : Y → X be a morphism of integral projective schemes over K such that
π(Y) 6⊆ Supp(D). Then han

π∗(D,g)(ζ) = han
(D,g)(π

an(ζ)) for all ζ ∈ Yan.
(4) If D is semiample, then there is a constant C such that han

(D,g)(ξ) > C for all
ξ ∈ Xan.

Proof. In the following proof, for ξ ∈ Xan, let f and f ′ be local equations of D
and D′ over an Zariski open set U containing rξ , respectively. Let ϑ f and ϑ f ′ be
the continuous extensions of g + log | f | and g′ + log | f ′| over Uan, respectively.

(1) Note that f a f ′a
′

yields a local equation of aD + a′D′, and that the continu-
ous extension of

(ag + a′g′) + log | f a f ′a
′
| = a(g + log | f |) + a′(g′ + log | f ′|)
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is aϑ f + a′ϑ f ′ . Therefore,

han
a(D,g)+a′(D′,g′)(ξ) = (aϑ f + a′ϑ f ′)(ξ) = ahan

(D,g)(ξ) + a′han
(D′,g′)(ξ).

(2) A local equation of (s) is given by s, so that the continuous extension of
− log |s|+ log |s| is zero, as required.

(3) For ζ ∈ Yan, we set ξ = πan(ζ). As π∗( f ) is a local equation of π∗(D) over
π−1(U), the continuous extension of πan∗(g) + log |π∗( f )| is πan∗(ϑ f ). There-
fore,

han
π∗(D,g)(ζ) = πan∗(ϑ f )(ζ) = ϑ f (π

an(ζ)) = han
(D,g)(π

an(ζ)).

(4) First we assume that D is a Cartier divisor and OX(mD) is generated by
global sections for a positive integer m. Let {s0, . . . , sN} be a basis of H0(OX(mD)).
We consider a morphism π : X → PN

K = Proj(K[T0, . . . , TN]) given by x 7→
(s0(x) : · · · : sN(x)). We set H0 := {T0 = 0}, zij := Ti/Tj (0 6 i, j 6 N) and
h0 := log max{1, |z10|, . . . , |zN0|}. Note that h0 is a Green function of H0.

Here let us see that han
(H0,h0)

(ζ) > 0 for all ζ ∈ P
N,an
K . We assume that rζ ∈

Ui = {Ti 6= 0}. A local equation of H0 on Ui is given by z0i and the continuous
extension of h0 + log |z0i| is

log max{|z0i|, |z1i|, . . . , |zi−1i|, 1, |zi+1i|, . . . , |zNi|},

so that the assertion follows because the above function is non-negative on Uan
i .

There is s ∈ Rat(X)× such that π∗(H0) = mD + (s), so that we can find a
continuous function θ on Xan such that πan∗(h0) = mg − log |s|+ θ. Since θ is a
continuous function on the compact space Xan, there is a constant C′ such that
θ 6 C′ on Xan. Thus, for ξ ∈ Xan, by using (1), (2) and (3) together with the
non-negativity of han

(H0,h0)
,

0 6 han
(H0,h0)

(πan(ξ)) = han
π∗(H0,h0)

(ξ) = han
(mD+(s),mg−log |s|+θ)(ξ)

= han
m(D,g)+(̂s)+(0,θ)

(ξ) = mhan
(D,g)(ξ) + han

(̂s)
(ξ) + han

(0,θ)(ξ)

= mhan
(D,g)(ξ) + θ(ξ) 6 mhan

(D,g)(ξ) + C′,

so that h(D,g)(ξ) > −C′/m, as required.

Next we consider the general case, that is, there are semiample Cartier divisors
E1, . . . , Er on X and a1, . . . , ar ∈ R>0 such that D = a1E1 + · · · + arEr. We can
find Green functions e1, . . . , er of E1, . . . , Er, respectively such that g = a1e1 +
· · ·+ arer. By the previous observation, for each i = 1, . . . , r, there is a constant
Ci such that han

(Ei,ei)
> Ci on Xan. Therefore, by (1),

han
(D,g) = a1han

(E1,e1)
+ · · ·+ arhan

(Er ,er)
> a1C1 + · · ·+ arCr

on Xan. �
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We define the essential minimum of (D, g) as

µ̂ess(D, g) := sup
Z(X

inf
x∈X\Z
x closed

h(D,g)(x),

where Z runs over the set of strict closed subschemes of X.

Proposition 4.4. Let (D, g) be an adelic R-Cartier divisor on X. One has µ̂ess(D, g) =
g(η0), where η0 denotes the point in Xan corresponding to the generic point of X and
the trivial absolute value on Rat(X).

Proof. Let α be a real number, α > g(η0). We consider g as a continuous function
on certain Uan, where U is a non-empty Zariski open subset of X. The set
{x ∈ Uan : g(x) < α} is an open subset of Uan (for the Berkovich topology),
which contains the point η0. Thus there is a non-empty Zariski open subset
V ⊂ U, an invertible regular function f on V and an open subset A of R such
that

η0 ∈ | f |−1(A) ⊂ {x ∈ Uan : g(x) < α}.

Note that | f |(η0) = 1. Moreover, since f is invertible, for any closed point
x ∈ V, one has | f |−1(x) = 1, where we have identified x with the point in
Xan corresponding to x and the trivial absolute value on the residue field κ(x).
Therefore all closed point in V are contained in {x ∈ Uan : g(x) < α}. In other
words, the set of closed points of height 6 α is dense in X. Hence µ̂ess(D, g) is
bounded from above by g(η0).

Conversely, if β is a real number such that β < g(η0), then {x ∈ Uan : g(x) >
β} is also an open subset of Uan which contains the point η0. By the same
method as above, we obtain the existence of a non-empty Zariski open subset
V ⊂ U such that any closed point x ∈ V satisfies g(x) > β. In other words,
the set of closed points y ∈ X such that g(y) 6 β is contained in the Zariski
closed subset X \ V. Since β is arbitrary, we obtain that µ̂ess(D, g) is bounded
from below by g(η0). �

Remark 4.5. Let {xn}n∈N be a sequence of closed points in X which is generic
(namely every subsequence of {xn}n∈N is Zariski dense in X) and such that

lim
n→+∞

h(D,g)(xn) = µ̂ess(D, g)

for certain adelic R-Cartier divisor (D, g) with D big. For any n ∈ N, let µn be
the Borel probability measure on Xan defined as the distribution of the average
on the Galois orbite of xan

n (under the action of Gal(K/K)). Then the sequence
{µn}n∈N converges weakly to the Dirac measure on η0. This assertion can be
deduced from the fact that µ̂ess is a linear form on the vector space of adelic R-
Cartier divisors, by using the technics in [8, §5.2]. Compared to classic equidistri-
bution results in Arakelov geometry such as [17], or the p-adic analogue proved
by Chamber-Loir [4] (see also [5] for a survey on the related problems), the above
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equidistribution result does not require neither the equality between the essen-
tial minimum of the height function and the normalised Arakelov height of the
variety, nor any positivity condition on the Green function.

Corollary 4.6. Let (D, g) be an adelic R-Cartier divisor on X. One has λ
asy
max(D, g) 6

µ̂ess(D, g). In particular, λ
asy
max(D, g) < +∞.

Proof. Let n be an integer, n > 1. If s is a non-zero element in H0(nD), then
ng− log |s| defines a continuous function on Xan valued in R∪{+∞}. Therefore,
for any closed point x of X outside of the support of (s), one has − log ‖s‖ng 6

ng(x). Therefore − log ‖s‖ng 6 nµ̂ess(D, g). The second assertion follows from
Proposition 4.4. �

Remark 4.7. For a subset S of Xan, we define Suppess(S) to be

Suppess(S) :=
⋂

Z(X

{ξ ∈ S | rξ 6∈ Z},

where Z runs over all strict closed subschemes of X. Here we consider

Xan
60 := {ξ ∈ Xan | han

(D,g)(ξ) 6 0}

as a subset of Xan. If (D, g) + (̂s) > 0 for some s ∈ Rat(X)×
R

, then

Suppess

(
Xan
60
)
∩ {ξ ∈ Xan | |s|g(ξ) < 1} = ∅.

This can be proved in the similar way as [10, Lemma 2.1]. Indeed, we set Y :=
Supp(D + (s)). It is sufficient to see that

{
ξ ∈ Xan

60 | rξ 6∈ Y
}
⊆ {ξ ∈ Xan | |s|g(ξ) > 1}

because {ξ ∈ Xan | |s|g(ξ) > 1} is closed. For ξ ∈ Xan
60 with rξ 6∈ Y, we choose

a Zariski open set U containing rξ and a local equation f of D over U. As
(g − log |s|) + log | f s| = g + log | f | and | f s|(ξ) = 1 (because f s ∈ (O×

X,rξ
)R), we

have
(g − log |s|)(ξ) = han

(D,g)+(̂s)
(ξ) = han

(D,g)(ξ) 6 0,

which means that |s|g(ξ) > 1, as required. In particular, we have
⋂

Z(X

{xan | x ∈ X \ Z and h(D,g)(x) 6 0} ∩ {ξ ∈ Xan | |s|g(ξ) < 1} = ∅

because rxan = x for x ∈ X.

Proposition 4.8. Let X be an integral projective scheme over Spec K and (D, g) be an
adelic R-Cartier divisor on X. For any s ∈ Rat(X)× , we have the following:





λmax(D, g) = λmax(D + (s), g − log |s|),
λ

asy
max(D, g) = λ

asy
max(D + (s), g − log |s|),

µ̂ess(D, g) = µ̂ess(D + (s), g − log |s|).
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Proof. Note that the isomorphism H0(D) → H0(D + (s)) given by f 7→ f s−1

gives rise to an isometry with respect to the norms ‖.‖g and ‖.‖g−log |s|, so that
the first assertion follows. The second equation is a consequence of the first one.
The last assertion results from the equality h(D,g) = h(D+(s),g−log |s|). �

4.3. Criterion of bigness. Let (D, g) be an adelic R-Cartier divisor on X. First,
let us introduce the volume, the bigness and the pseudo-effectivity of (D, g).

Definition 4.9. Let (D, g) be an adelic R-Cartier divisor on X. We define the
volume of (D, g) as

v̂ol(D, g) := lim sup
n→+∞

d̂eg+(nD, ng)

nd+1/(d + 1)!
,

where d is the dimension of X. If this number is positive, we say that (D, g) is
big. An adelic R-Cartier divisor (D′, g′) is said to be pseudo-effective if for any big
adelic R-Cartier divisor (D, g), the sum (D + D′, g+ g′) is a big adelic R-Cartier
divisor.

By definition one has

d̂eg+(D, g) 6 max(λmax(D, g), 0)rkK(H0(D)).

Therefore, one has

(4.1) v̂ol(D, g) 6 (d + 1)max(λasy
max, 0)vol(D).

In particular, v̂ol(D, g) < ∞ by Corollary 4.6. Moreover, if (D, g) is big, then
vol(D) > 0, namely D is big.

Proposition 4.10. Let (D, g) be an adelic R-Cartier divisor. If (D, g) is big, then
λ

asy
max(D, g) > 0. The converse is true when D is big. In particular, the following

conditions are equivalent:
(a) (D, g) is big.
(b) D is big and there are a positive integer n0 and a non-zero s ∈ H0(n0D) with

‖s‖n0g < 1.

Proof. By the inequality (4.1), we obtain that, if (D, g) is big, then λ
asy
max(D, g) is

positive. In the following we prove that, if D is big and λ
asy
max(D, g) > 0, then one

has v̂ol(D, g) > 0. Let V• be the graded linear series
⊕

n∈N H0(nD). Since D is
big, it contains an ample series (see [2, Definition 1.1]). It is moreover R-filtered.
By [2, Lemma 1.6], for any t ∈ R such that 0 6 t < λ

asy
max(D, g), the graded

linear series Vt
• :=

⊕
n∈N Fnt(H0(nD)) contains an amples series and hence has

a positive volume. Moreover, by [2, Corollary 1.13], one has

v̂ol(D, g) = (d + 1)
∫ λ

asy
max(D,g)

0
vol(Vt

• )dt > 0.

The proposition is thus proved. �
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Corollary 4.11. Let (D, g) be an adelic R-Cartier divisor on X. We assume that D is
big. Then (D, g) is pseudo-effective if and only if λ

asy
max(D, g) > 0.

Proof. Assume that λ
asy
max(D, g) > 0. Let (D′, g′) be a big adelic R-Cartier divi-

sor on X. Since (D′, g′) is big, by Proposition 4.10 one has λ
asy
max(D′, g′) > 0.

Therefore

λ
asy
max(D + D′, g + g′) > λ

asy
max(D, g) + λ

asy
max(D

′, g′) > 0.

Since D + D′ is big, still by Proposition 4.10 we obtain that (D + D′, g + g′) is
big. �

Example 4.12. We assume X = Pd
K = Proj(K[T0, . . . , Td]). We set zi = Ti/T0 (i =

0, . . . , d), D = {T0 = 0} and g = log max{a0, a1|z1|, . . . , ad|zd|} for a0, a1, . . . , ad ∈
R>0. Then g is a Green function of D, and

λ
asy
max(D, g) = µ̂ess(D, g) = log max{a0, . . . , ad}.

In particular, (D, g) is big (resp. pseudo-effective) if and only if max{a0, . . . , ad} >

1 (resp. max{a0, . . . , ad} > 1).

Let us see the above facts. The first assertion is obvious. Furthermore, by
Proposition 4.4,

µ̂ess(D, g) = g(η0) = log max{a0, . . . , ad},

so that, by Corollary 4.6, it is sufficient to show that

log max{a0, . . . , ad} 6 λ
asy
max(D, g).

We choose ai0 with ai0 = max{a0, . . . , ad}. We set wi = Ti/Ti0 (i = 0, . . . , d),
D′ = D + (zi0) and g′ = g − log |zi0 |. Note that D′ = {Ti0 = 0} and

g′ = log max{a0|w0|, . . . , ai0−1|wi0−1|, ai0 , ai0+1|wi0+1|, . . . , ad|wd|}.

Moreover, by Proposition 4.8, λ
asy
max(D, g) = λ

asy
max(D′, g′). Therefore, we may

assume that a0 = max{a0, . . . , ad}.
Let us see ‖1‖g = 1/a0. Note that

|1|g =
1

max{a0, a1|z1|, . . . , ad|zd|}
,

so that, as max{a0, a1|z1|, . . . , ad|zd|} > a0, we have |1|g 6 1/a0 on Xan. Further-
more |1|g(η0) = 1/a0, as desired.

The above observation shows 1 ∈ F log a0(H0(D)). Thus, log a0 6 λmax(D, g),
that is, log a0 6 λ

asy
max(D, g), as required.

Let us consider a natural homomorphism α : Kd+1 ⊗O
Pd

K
→ O

Pd
K
(1) given by

α(ei) = Ti and a norm ‖.‖ on Kd+1 given by

‖(x0, . . . , xn)‖ = max{(1/a0)|x0|, . . . , (1/ad)|xd|}.
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Then the Green function g is induced by the quotient metric of O
Pd

K
(1) by α and

‖.‖.

4.4. Algebraic dynamic system over a trivially valued field. Let f : X → X
be a surjective endomorphism of an integral projective scheme over a trivially
valued field K. Let D be an R-Cartier divisor on X such that f ∗(D) = dD + (ϕ)
for some d ∈ R>1 and ϕ ∈ Rat(X)×

R
. By Proposition 2.18, we can see that there

is a unique Green function g of D such that f ∗(D, g) = d(D, g) + (̂ϕ). Then we
have the following:

Proposition 4.13. (1) han
(D,g)( f an(ξ)) = dhan

(D,g)(ξ) for all ξ ∈ Xan.

(2) For ξ ∈ Xan, if ( f an)n(ξ) = ( f an)m(ξ) for some integers n, m with 0 6 n < m,
then han

(D,g)(ξ) = 0.
(3) han

(D,g)(η0) = 0, that is, g(η0) = 0.
(4) If D is semiample, then han

(D,g)(ξ) > 0 for all ξ ∈ Xan.

(5) If D + (s) is effective for some s ∈ Rat(X)×R , then, for any ǫ > 0, there is

ψǫ ∈ Rat(X)×R such that (D, g + ǫ) + (̂ψǫ) is effective.

Proof. (1) Indeed, by Proposition 4.3,

han
(D,g)( f an(ξ)) = han

f ∗(D,g)(ξ) = han
d(D,g)+(̂ϕ)

(ξ) = dhan
(D,g)(ξ).

(2) By virtue of (1),

dnhan
(D,g)(ξ) = han

(D,g)(( f an)n(ξ)) = han
(D,g)(( f an)m(ξ)) = dmhan

(D,g)(ξ),

and hence the assertion follows.
(3) is a consequence of (2) because f an(η0) = η0.
(4) By Proposition 4.3, there is a constant C such that han

(D,g)(ξ) > C for all
ξ ∈ Xan. In particular, han

(D,g)(( f an)n(ξ)) > C, that is, by (1), han
(D,g)(ξ) > C/dn for

all n > 0. Thus the assertion follows.
(5) follows from Proposition 2.21. �

5. the Dirichlet property over a trivially valued field

In this section, we study the Dirichlet property in the setting of Arakelov
geometry over a trivially valued field. We let K be a field and |.| be the trivial
absolute value on K. Let X be an integral projective scheme over Spec K.

Definition 5.1. Let (D, g) be an adelic R-Cartier divisor on X. We say that (D, g)
satisfies the Dirichlet property if it is R-linearly equivalent to an effective adelic
R-Cartier divisor (see Definition 4.1 and Remark 2.7).

Proposition 5.2. Let (D, g) be an adelic R-Cartier divisor on X. We assume that the
R-Cartier divisor D is big. Then (D, g) is pseudo-effective if and only if (D, g + ε)
satisfies the Dirichlet property for any ε > 0.
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Proof. Suppose that (D, g) is pseudo-effective. By Corollary 4.11 one has

λ
asy
max(D, g) > 0.

Then for ε > 0 one has

λ
asy
max(D, g + ε) = λ

asy
max(D, g) + ε > 0.

Therefore, by Proposition 4.10, we obtain that (D, g + ε) is big. Therefore (D, g+
ε) satisfies the Dirichlet property.

Conversely, if (D, g + ε) satisfies the Dirichlet property, then (D, g + ε) is
pseudo-effective, and hence by Corollary 4.11 we obtain that λ

asy
max(D, g + ε) =

λ
asy
max(D, g) + ε > 0. Therefore, if (D, g + ε) satisfies the Dirichlet property for

any ε > 0, then one has λ
asy
max(D, g) > 0. By Corollary 4.11 we obtain that (D, g)

is pseudo-effective. �

Definition 5.3. We say that the rank of Pic(X) is one if dimQ PicQ(X) = 1 (or
equivalently dimR PicR(X) = 1). In other words, there is a K-Cartier divisor
A on X such that, for any K-Cartier divisor D on X, we can find a ∈ K and
ϕ ∈ Rat(X)×K with D = aA + (ϕ), where K is either Q or R. Obviously, A can
be taken as an ample Cartier divisor.

Proposition 5.4. We assume that dim X = 1. Then the following are equivalent:

(1) The rank of Pic(X) is one.
(2) Every element of Pic0(X) is of finite order.

Proof. We fix an ample Cartier divisor A on X.
(1) =⇒ (2): For a Cartier divisor D on X with deg(D) = 0, there are a ∈ Q

and ϕ ∈ Rat(X)×
Q

such that D = aA + (ϕ). Note that a = 0 because deg(D) = 0
and deg(A) > 0. We choose a positive integer n such that ϕn ∈ Rat(X)× , so that
nD ∈ PDiv(X), as required.

(2) =⇒ (1): Let D be a Q-Cartier divisor on X. If we set H := deg(A)D −
deg(D)A, then deg(H) = 0. Let n0 be a positive integer such that n0D is a
Cartier divisor. Then, as OX(n0H) yields an element of Pic0(X), we can find a
positive integer n1 such that n1n0H = ( f ) for some f ∈ Rat(X)× , so that

D =
deg(D)

deg(A)
A +

1
n1n0 deg(A)

( f ),

as desired. �

Remark 5.5. If either X = P1
K or K is the algebraic closure of a finite field, then

the above condition on Pic0(X) is satisfied.

5.1. Adelic R-Cartier divisors on curves. In the rest of the section, we assume
that X is a regular projective curve over Spec K such that the rank of Pic(X)
is one. Under the above definition, for any R-Cartier divisor D on X with
deg(D) = 0, there exists an element f ∈ Rat(X)×R such that D = ( f ). Indeed, if
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A is an ample Cartier divisor on X, then there are a ∈ R and f ∈ Rat(X)×R such
that D = aA + ( f ). Since deg(D) = 0, we have a = 0, as required.

Recall that the Berkovich space associated with X can be illustrated by an
infinite tree Xan, where the root vertex η0 corresponds to the generic point η of
X with the trivial absolute value on the field Rat(X) of rational functions. The
leaves are indexed by closed points of X.

η0

· · ·
x

· · ·

Let x be a closed point of X. We parametrise the branch linking η0 and x
by t ∈ [0,+∞], where t = 0 correspond to the point η0; the point t = +∞

correspond to the point x with the trivial absolute value on the residue field
κ(x), and any t ∈ ]0,+∞[ corresponds to the generic point η with the following
absolute value on Rat(X):

|.|x,t = e−t ordx(·),
where ordx(·) is the discrete valuation on Rat(X) corresponding to x.

The topology on each branch identifies with the usual topology on [0,+∞]
by this parametrisation and hence each branch is compact. However, any open
neighbourhood of η0 in Xan contains all but a finite number of branches. Namely,
a subset U of Xan is open if and only if the following conditions are satisfied:

(i) U ∩ [η0, x] is open for all closed points x of X.
(ii) If η0 ∈ U, then [η0, x] ⊆ U for all but a finitely many closed points x of X.

Note that Xan is compact with this topology.
If s is a non-zero rational function on X, on the interval [η0, x] one has

(5.1) − log |s|(ξ) = t(ξ) ordx(s) ∈ [−∞,+∞], ξ ∈ [η0, x].

This function is linear on each branch [η0, x[ with respect to the parametrisation
t.

5.2. Numerical criteria of pseudo-effectivity and Dirichlet property. In this
subsection, we consider a numerical criterion of pseudo-effectivity and the Dirich-
let property.

Definition 5.6. Let (D, g) be an adelic R-Cartier divisor on X. We consider g as
a continuous map from Xan to [−∞,+∞]. For any closed point x of X, we define

µx(g) = inf
ξ∈ ]η0,x[

g(ξ)
t(ξ)

∈ R.

Clearly µx(g) > 0 if and only if the function g is bounded from below by 0 on
]η0, x[.

Proposition 5.7. Let (D, g) be an adelic R-Cartier divisor on X. For all but finitely
many closed point x in X, one has µx(g) 6 0.
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Proof. Since g is a Green function, it extends to a continuous real-valued function
on some Uan, where U is a non-empty Zariski open subset of X. Hence for any
closed point x in U, then function g is bounded on [η0, x]. Therefore µx(g) 6 0
for any closed point x ∈ U. Since there are only a finite number of closed points
outside of U, the proposition is proved. �

The above result permits to define an invariant µtot(g) as follows

(5.2) µtot(g) := ∑
x∈X(1)

µx(g)[κ(x) : K] ∈ [−∞,+∞[ ,

where X(1) denotes the set of closed points of X, considered as a discrete mea-
sure space such that each point x ∈ X(1) has mass 1, and the summation means
the integration on this measure space. In the case where the set of x ∈ X(1)

such that µx(g) < 0 is uncountable, one has µtot(g) = −∞. Otherwise the set
{x ∈ X(1) : µx(g) 6= 0} is countable. If it is infinite then we can write it as a
sequence {xn}n∈N and one has

µtot(g) = ∑
n∈N

µxn(g)[κ(xn) : K].

The sum does not depend on the choice of the sequence since µxn(g) < 0 for all
but finitely many n ∈ N.

Lemma 5.8. Let X be a regular projective curve over Spec K and (D, g) be an adelic
R-Cartier divisor on X.

(1) For any non-zero element s ∈ Rat(X)×
R

, one has

µx(g − log |s|) = µx(g) + ordx(s).

(2) One has µx(g) 6 ordx(D).

Proof. (1) For any s ∈ Rat(X)×
R

one has

µx(g − log |s|) = inf
ξ∈ ]η0,x[

g(ξ) − log |s|(ξ)
t(ξ)

= µx(g) + ordx(s),

where the second equality comes from (5.1).
(2) We let s be an element in Rat(X)×R which defines D locally on a Zariski

open neighbourhood of x. Then the function g + log |s| extends continuously to
[η0, x] and hence is bounded. Therefore µx(g + log |s|) 6 0. By (1), we obtain
that µx(g) 6 ordx(D). �

Theorem 5.9. Let X be a regular projective curve over Spec K such that the rank of
Pic(X) is one and (D, g) be an adelic R-Cartier divisor on X. The following conditions
are equivalent.

(1) The adelic R-Cartier divisor (D, g) satisfies the Dirichlet property.
(2) For all but a finite number of closed points x ∈ X, one has µx(g) > 0, and

µtot(g) > 0.
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Proof. “(1)=⇒(2)”: We assume that there exists s ∈ Rat(X)×R such that (D, g) +

(̂s) is effective. By Lemma 5.8 (1) one has

(5.3) µx(g − log |s|) = µx(g) + ordx(s)

for any x ∈ X. Therefore, for all but a finite number of x ∈ X(1), one has

µx(g) = µx(g − log |s|) > 0.

Moreover, by (5.3)

µtot(g) = µtot(g − log |s|)− ∑
x∈X(1)

ordx(s)[κ(x) : K] = µtot(g − log |s|) > 0.

Therefore the condition (2) holds.
“(2)=⇒(1)”: Suppose that (2) is true. Since g is a Green function of D, for any

x ∈ X(1) which does not belong to the support of D, the function g extends to
a continuous function on a open subset of Xan containing [η0, x] and hence is
bounded on this compact set. In particular, one has µx(g) 6 0 for such point x.
Hence by the hypothesis in the condition (2), we obtain that µx(g) = 0 for all but
a finite number of closed points x1, . . . , xn in X. Let a1, . . . , an be real numbers
such that ai 6 µxi(g) and

n

∑
i=1

ai[κ(xi) : K] = 0.

This is possible since
n

∑
i=1

µxi(g)[κ(xi) : K] = µtot(g) > 0.

Let

D′ =
n

∑
i=1

ai[xi].

Since deg(D′) = 0, it is an principal R-Cartier divisor. Let s ∈ Rat(X)×R such
that −D′ = (s). By Lemma 5.8 (2) one has µx(g) 6 ordx(D) for any x. Hence
D − D′ is effective. Moreover, Lemma 5.8 (1) shows that

µx(g − log |s|) = µx(g) + ordx(s) =

{
µxi(g)− ai > 0, if x = xi,
µx(g) > 0, else.

Therefore g − log |s| is non-negative. �

Theorem 5.10. Let X be a regular projective curve over Spec K such that the rank of
Pic(X) is one and (D, g) be an adelic R-Cartier divisor on X. The following conditions
are equivalent.

(1) For any ε > 0, the Dirichlet property holds for (D, g + ε).
(2) One has µtot(g) > 0.
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Proof. By Theorem 5.9, if (1) holds, then for any ε > 0 one has µtot(g + ε) > 0.
Since the function ε 7→ µy(g + ε) is decreasing and converges to µy(g), by the
monotone convergence theorem we obtain µtot(g) > 0.

Conversely, assume that the inequality µtot(g) > 0 holds. We claim that
g(η0) > 0. Otherwise one has µx(g) = −∞ for any x ∈ Xan and hence
µtot(g) = −∞. Let ε be a positive number. The set {y ∈ Xan : g(y) + ε > 0}
is an open subset of Xan containing η0. Therefore, there exists a finite subset
S of X(1) such that g(y) + ε > 0 for any x ∈ X(1) \ S and any y ∈ [η0, x]. In
particular, for any x ∈ X(1) \ S, one has µx(g + ε) > 0. Moreover, one has
µtot(g + ε) > µtot(g) > 0. By Theorem 5.9, we obtain that the Dirichlet property
holds for (D, g + ε). �

Remark 5.11. Let X be a regular projective curve over Spec K such that the rank
of Pic(X) is one. Let (D, g) be an adelic R-Cartier divisor on X. We assume
that D is big. By Proposition 5.2, the conditions in Theorem 5.10 are equivalent
to the pseudo-effectivity of (D, g). Note that the function λ

asy
max(.) is derivable

at (D, g) along any direction in C0(Xan). Moreover, the directional derivatives
of λ

asy
max(.) form a positive linear functional on C0(Xan), which identifies with

the Dirac measure on η0. Therefore the above results suggest that the functional
obstruction to the Dirichlet property proposed in [10] may not be the only ob-
struction.

Example 5.12. We assume X = P1
K = Proj(K[T0, T1]). We set 000 = (1 : 0), ∞∞∞ =

(0 : 1), z = T1/T0, D = {T0 = 0} and g = log max{1, |z|}. Then g is a Green
function of D and (D, g) is pseudo-effective by Example 4.12. Moreover, since

g(ξ) =

{
t(ξ) if x = ∞∞∞,
0 otherwise

for a closed point x ∈ X and ξ ∈ [η0, x], we have

µx(g) =

{
1 if x = ∞∞∞,
0 otherwise.

We choose distinct countably many closed points x1, . . . , xn, . . . in P1
K \ {000, ∞∞∞}.

Here we consider the following continuous function ψ on P
1,an
K : for a closed

point x of P1
K and ξ ∈ [η0, x],

ψ(ξ) :=





θ 1
2n [κ(xn):K]

(t(ξ)) if x = xn for some n,

0 if x 6∈ {x1, . . . , xn, . . .},

where θa (a ∈ R>0) is a continuous function on [0, ∞] given by

θa(t) :=

{
at t ∈ [0, 1],
a t ∈ [1, ∞].
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We introduce a new Green function g′ given by g′ := g − ψ. Then

µx(g′) =





− 1
2n[κ(xn) : K]

if x = xn for some n,

µx(g) if x 6∈ {x1, . . . , xn, . . .}.

Thus,

µtot(g′) = 1 −
∞

∑
n=1

(1/2)n = 0.

Therefore (D, g′) is pseudo-effective, but (D, g′) has no Dirichlet’s property.

Corollary 5.13. Let f : X → X be a surjective endomorphism of X over K and D
be an R-Cartier divisor on X such that f ∗(D) = dD + (ϕ) for some ϕ ∈ Rat(X)×

R

and d ∈ R>1. Let (D, g) be the canonical compactification of D with respect to f . We
assume that dim X = 1, the rank of Pic(X) is one and deg(D) > 0. Then (D, g)
satisfies the Dirichlet property.

Proof. We set D = a1D1 + · · · + arDr for some Cartier divisors D1, . . . , Dr on X
and a1, . . . , ar ∈ R. Let A be an ample and effective Cartier divisor on X. Since
the rank of Pic(X) is one, for each i, there are bi ∈ Q and si ∈ Rat(X)×

Q
with

Di = bi A + (si). Thus D = aA + (s) for some a ∈ R and s ∈ Rat(X)×
R

. Note that
a > 0 because deg(D) > 0. Therefore, D is semiample and D + (s−1) is effective.

We set U = X \ Supp(D). A local equation of D over U is given by 1. There-
fore, by (4) in Proposition 4.13, for all ξ ∈ Uan, g(ξ) = han

(D,g)(ξ) > 0. Therefore,
g > 0 on [η0, x] for all but finitely many closed points x, and hence µx(g) > 0 for
all but finitely many closed points x.

Moreover, by Theorem 5.10 together with (5) in Proposition 4.13, µtot(g) > 0.
Thus (D, g) satisfies the Dirichlet property by Theorem 5.9. �

5.3. The plurisubharmonic case. Here we apply the criterion of the previous
subsection to a plurisubharmonic Green function.

Proposition 5.14. Let X → Spec K be a regular projective curve on Spec K, D be an
R-Cartier divisor on X and g be a plurisubharmonic Green function of D. For any closed
point x of X, the restriction of the function g on [η0, x[ is concave, where we consider
the parametrisation t : [η0, x[→ [0,+∞[.

Proof. Since uniform limits and positive linear combinations of concave functions
is still a concave function, it suffices to treat the case where D is a Cartier divisor
and the metric φg on OX(D) corresponding to the Green function g is a quotient
metric. Let (E, ‖.‖) be a finite dimensional normed vector space over K and
f : X → P(E) be a K-morphism such that f ∗(OE(1)) ∼= OX(D) and that φg is
the quotient metric induced by ((E, ‖.‖), f ). Let x be a closed point of X and s be
a section of OX(D) over a Zariski open neighbourhood U of X, which trivialises
the invertible sheaf OX(D) on U. Let (αi)

n
i=1 be an orthogonal basis of (E∨, ‖.‖∨),
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where ‖.‖∨ denotes the dual norm of ‖.‖. Recall that for any (λ1, . . . , λn) ∈ Kn

one has
‖λ1α1 + · · ·+ λnαn‖ = max

i∈{1,...,n}
|λi| · ‖αi‖∨.

We refer the readers to [9, §1.3] for the existence of an orthogonal basis of
(E∨, ‖.‖∨). We write the dual section s∨ ∈ H0(U,OX(D)∨) as a linear com-
bination

s∨ = u1α1 + · · ·+ unαn,

where u1, . . . , un are regular functions on U. One has

− log |s| = log |s∨| = max
i∈{1,...,n}

(log |ui|+ log ‖αi‖∨).

Since each function log |ui| is linear on [η0, x[ with respect to the parametrisation
t : [η0, x[→ [0,+∞[, we obtain that the function − log |s| is concave on [η0, x[.
Since the functions g and − log |s| differ by a linear function on [η0, x[, the func-
tion g is also concave. �

Corollary 5.15. Let X be a regular projective curve over Spec K such that the rank of
Pic(X) is one and (D, g) be an adelic R-Cartier divisor. We assume that the Green
function g is plurisubharmonic. Then the adelic R-Cartier divisor (D, g) satisfies the
Dirichlet property if and only if it is pseudo-effective.

Proof. It is clear that any adelic R-Cartier divisor satisfying the Dirichlet property
is pseudo-effective. Let (D, g) be a pseudo-effective adelic R-Cartier divisor. We
claim that g(η0) > 0. In fact, let (D1, g1) be a big adelic R-Cartier divisor. For any
ε > 0, the adelic R-Cartier divisor (D + εD1, g + εg1) is big. Hence by Corollary
4.6 and Proposition 4.10, one has

g(η0) + εg1(η0) = µ̂ess(D + εD1, g + εg1) > 0,

where the equality comes form Proposition 4.4. Since ε > 0 is arbitrary, we
obtain g(η0) > 0.

Let x be a closed point of X. We choose a Zariski open set U containg x such
that a local equation of D over U is given by f . Then there is a continuous
function u on Uan such that g = u − log | f | over Uan. Note that [η0, x] ⊆ Uan and

ordx( f ) = lim
t(ξ)→+∞

− log | f |(ξ)
t(ξ)

= lim
t(ξ)→+∞

g(ξ)
t(ξ)

,

so that

ordx(D) = lim
t(ξ)→+∞

g(ξ)
t(ξ)

= lim
t(ξ)→+∞

g(ξ) − g(η0)

t(ξ)
.

Since the restriction of the function g on [η0, x[ is concave, the function

ξ 7−→ g(ξ) − g(η0)

t(ξ)
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is decreasing with respect to the parametrisation t(ξ). We then deduce that, for
any ξ ∈ ]η0, x[ one has

g(ξ)
t(ξ)

>
g(ξ) − g(η0)

t(ξ)
> ordx(D),

which implies that

µx(g) = lim
t(ξ)→+∞

g(ξ)
t(ξ)

= ordx(D).

Hence µx(g) = 0 for all but finitely many closed point x in X. Finally, since D is
pseudo-effective, the R-Cartier divisor D is pseudo-effective, and hence

µtot(g) = ∑
x∈X(1)

ordx(D) > 0.

By Theorem 5.9, we obtain that (D, g) satisfies the Dirichlet property. �

Remark 5.16. By the above corollary together with Proposition 2.22, we can give
an alternative proof of Corollary 5.13.
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