On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity

Abstract : Navier-Stokes equations in the whole space R^3 subject to an anisotropic viscosity and a random perturbation of multiplicative type is described. By adding a term of Brinkman-Forchheimer type to the model, existence and uniqueness of global weak solutions in the PDE sense are proved. These are strong solutions in the probability sense. The convective term given in terms of the Brinkman-Forchheirmer provides some extra regularity in the space L^{2α+2} (R^3), with α > 1. As a consequence, the nonlinear term has better properties which allows to prove uniqueness. The proof of existence is performed through a control method. A Large Deviations Principle is given and proven at the end of the paper.
Type de document :
Article dans une revue
Journal of Mathematical Analysis and Applications, Elsevier, 2018, 462 (1), pp.915-956. 〈10.1016/j.jmaa.2017.12.053〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01502048
Contributeur : Annie Millet <>
Soumis le : lundi 20 novembre 2017 - 21:38:19
Dernière modification le : vendredi 31 août 2018 - 08:58:42
Document(s) archivé(s) le : mercredi 21 février 2018 - 14:21:57

Fichiers

Stoc_3D_anisotropic_HB-AM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Hakima Bessaih, Annie Millet. On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity. Journal of Mathematical Analysis and Applications, Elsevier, 2018, 462 (1), pp.915-956. 〈10.1016/j.jmaa.2017.12.053〉. 〈hal-01502048v2〉

Partager

Métriques

Consultations de la notice

143

Téléchargements de fichiers

35