On stochastic modified 3d navier-stokes equations with anisotropic viscosity

Abstract : Navier-Stokes equations in the whole space R^3 subject to an anisotropic viscosity and a random perturbation of multiplicative type is described. By adding a term of Brinkman-Forchheimer type to the model, existence and uniqueness of global weak solutions in the PDE sense are proved. These are strong solutions in the probability sense. The convective term given in terms of the Brinkman-Forchheirmer provides some extra regularity in the space L^{2α+2} (R^3), with α > 1. As a consequence, the nonlinear term has better properties which allows to prove uniqueness. The proof of existence is performed through a control method. A Large Deviations Principle is given and proven at the end of the paper.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01502048
Contributeur : Annie Millet <>
Soumis le : mercredi 5 avril 2017 - 05:54:00
Dernière modification le : jeudi 27 avril 2017 - 09:46:07

Fichiers

HB-AM_Stoch_Aniso_3D_NS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01502048, version 1
  • ARXIV : 1704.01440

Collections

Citation

Hakima Bessaih, Annie Millet. On stochastic modified 3d navier-stokes equations with anisotropic viscosity. 2017. <hal-01502048>

Partager

Métriques

Consultations de
la notice

45

Téléchargements du document

19