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Abstract

The technician routing problem with conventional and electric vehicles (TRP-CEV) consists in
designing service routes taking into account the customers’ time windows and the technicians’ skills,
shifts, and lunch breaks. In the TRP-CEV routes are covered using a fixed and heterogeneous fleet
of conventional and electric vehicles (EVs). Due to their relatively limited driving ranges, EVs
may need to include in their routes one or more recharging stops. In this talk we present a parallel
matheuristic for the TRP-CEV. The approach works in two phases. In the first phase it decomposes
the problem into a number of “easier to solve” vehicle routing problems with time windows and
solves these problems in parallel using a GRASP. During the execution of this phase, the routes
making up the local optima are stored in a long-term memory. In the second phase, the approach
uses the routes stored in the long-term memory to assemble a solution to the TRP-CEV. We discuss
computational experiments carried on real-world TRP-CEV instances provided by a French public
utility and instances for the closely-related electric fleet size and mix vehicle routing problem with
time windows and recharging stations taken from the literature.

1 Introduction

The technician routing problem with conventional and electric vehicles (TRP-CEV) can be defined on a
directed and complete graphG = (N , E) whereN is the set of nodes and E is the set of edges. The set of
nodes is defined asN = {0}∪C ∪S, where node 0 represents the depot, C is a set of nodes representing
the customers, and S is a set of nodes representing the charging stations (CSs) where the electric vehicles
can recharge their batteries. Each customer i ∈ C has a request demanding a skill ki from a set K and
having a service time pi and a time window [eci, lci], where eci and lci are the earliest and latest possible
service start times. For the sake of simplicity, in the remainder of this extended abstract we use the terms
customer and request interchangeably. The set of technicians is denoted as T . Each technician t ∈ T
has: a fixed “utilization” cost ct; a subset of skills Kt ⊆ K; a shift [est, lst], where est is the technician’s
earliest possible departure time from the depot and lst is the technician’s latest return time to the depot;
a lunch break that must start at elt and end at llt; and an energy consumption factor cft associated to
the technician’s driving profile (e.g., sportive, normal, eco). To cover their routes, the technicians drive
vehicles from a fixed fleet composed by different types of conventional and electric vehicles (hereafter
CVs and EVs). The set of vehicle types is defined as V = Vc∪Ve, where Vc is the set of CV types and Ve
is the set of EV types. For each vehicle type v ∈ V there is a unitary travel cost tcv (expressed in e/km)
and a fixed and limited number of vehicles mv. Vehicles of type v ∈ Ve additionally have: a fixed cost
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gcv for recharging the battery (expressed in e)1, a battery capacity Qv (expressed in kWh), a set Sv ⊆ S
of compatible CSs, and a discrete and non-linear charging function fvs describing the relation between
the vehicle’s charging time and state of charge (SoC) at station s ∈ Sv. Depending on the context we
refer to the SoC as the amount of remaining energy (in kWh) or as the percentage of remaining battery
capacity. The charging function is defined as fvs = {ab|b ∈ {0, 1, . . . , 100}} were ab is the time needed
to take the SoC from 0 to b percent of Q. Finally, set E = {(i, j) : i, j ∈ N , i 6= j} denotes the set of
arcs connecting nodes in N . Each arc (i, j) ∈ E has three associated nonnegative values: a travel time
ttij , a distance dij , and a nominal energy consumption eijv for each type of EV v ∈ Ve.

In the TRP-CEV the objective is to find a set of routes of minimum total cost. The latter is defined
as the sum of i) travel costs, ii) fixed charging costs, iii) parking costs, and iv) technician utilization
costs. The planned set of routes must satisfy the following constraints: each request is served exactly
once within its time window by a technician with the required skill; the level of the battery when the EVs
arrive at any vertex is nonnegative; the EVs only charge at compatible CSs; each technician works only
during his or her shift; each technician takes the lunch break at the pre-defined times; the number of CVs
and EVs used are less or equal than |Vc| and |Ve|; and each route starts and ends at the depot.

2 Parallel matheuristic

Algorithm 1 describes the general structure of our parallel matheuristic (here after referred to as PMa).
The algorithm starts by calling procedure groupTechnicians(T ) – line 2. This procedure groups
the technicians sharing the same characteristics (i.e., skills, fixed utilization cost, energy consumption
factor, shift, and lunch break) and generates the set T P of technician profiles. Then, the algorithm
invokes procedure buildAssignments(T P,V) – line 3. The latter builds the set A containing all
possible technician profile-vehicle type assignments. Note that |A| = |T P|× |Vc|+ |T P|× |Ve|. Then,
the algorithm starts the parallel phase – lines 5 to 8. For each assignment a ∈ A the algorithm solves,
on a dedicated thread, a vehicle routing problem with time windows and lunch breaks (VRP-TWLB).
Let p(a) ∈ T P and v(a) ∈ V be the technician profile and the type of vehicle involved in assignment
a. In the VRP-TWLB for assigment a we assume that i) the fleet is unlimited and composed only of
vehicles of type v(a) and that we have an unlimited number of technicians with profile p(a). If v(a) is
an EV, then the resulting problem is an electric VRP-TWLB. To solve the |T P| × |Vc| VRPs-TWLB
and the |T P| × |Ve| eVRPs-TWLB our approach relies on a GRASP (line 6). The GRASP slightly
varies depending on the type of problem being solved (VRP-TWLB or eVRP-TWLB). Figure 1 depicts
the components embedded in the two versions. The GRASP returns a set Ωa containing all the routes
found in the local optima reached during the algorithm’s execution. The routes in Ωa join the long
term memory structure Ω (line 7). After completing the parallel phase, the algorithm calls procedure
setCovering(G,Ω,V,A) – line 9 –, which solves an extended set covering formulation over Ω to
find a feasible TRP-CEV solution. It is worth noting that it is only at this point that we take into account
the constraints on the number of technicians and vehicles. Full details on the GRASP components,
specially those used to solve the eVRPs-TWLB, and the parallel implementation will be discussed in the
talk.

3 Computational experiments

We implemented our PMa in Java (jre V.1.8.0) and used Gurobi Optimizer (version 6.0) to solve the set
covering formulation (Algorithm 1, line 9) and to explore the Global Charging Improvement neighbor-
hood (bottom-right of Figure 3). We ran experiments on two sets of instances. The first set is made up of
24 “real-world” TRP-CEV instances (10 small with proven optima + 14 large) built using data provided
by French electricity giant ENEDIS. The reader can find a full description of these instances in [2, chap.
5]. For the 10 small instances our PMa was able to find the optimal solutions. For the remaining 14

1This cost accounts for the long-term battery degradation cost
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Algorithm 1 Parallel matheuristic: general structure
1: function PARALLELMATHEURISTIC(G,T ,V)
2: E ←− groupTechnicians(T )
3: P ←− buildAssignments(T P,V)
4: Ω←− ∅
5: parallel for each a ∈ A
6: Ωa ←− GRASP(a,G)
7: Ω←− Ω ∪ Ωa

8: end for
9: σ ←− setCovering(G,Ω,V,A)

10: return σ
11: end function
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Figure 1: Algorithmic components embedded in the two GRASP versions

instances our method reported average improvements of 6.5% with respect to the solutions delivered by
the commercial software currently used at ENEDIS. The second set consists of the 276 instances (108
small with proven optima + 168 large) proposed in [1] for the closely-related electric fleet size and mix
vehicle routing problem with time windows and recharging stations. Although our method was not tai-
lored for this problem, it was able to deliver competitive perfomances with respect to the state-of-the-art
Adaptive Large Neighborhood Search (ALNS) proposed in [1]. On the small instances our PMa found
81/108 optimal solutions and reported better avg. gaps (0.32% vs 0.55%) and execution times (0.06min
vs. 0.32min) than ALNS. On the large instances, our method unveiled 61 new best known solutions but
reported larger avg. gaps than ALNS (2.20% vs. 1.18%) with comparable execution times.
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