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Abstract
In this paper, we present the results of the SHREC'17 Track: Point-Cloud Shape Retrieval of Non-Rigid Toys. The aim of
this track is to create a fair benchmark to evaluate the performance of methods on the non-rigid point-cloud shape retrieval
problem. The database used in this task contains 100 3D point-cloud models which are classi�ed into 10 different categories.
All point clouds were generated by scanning each one of the models in their �nal poses using a 3D scanner,i.e., all models
have been articulated before scanned. The retrieval performance is evaluated using seven commonly-used statistics (PR-plot,
NN, FT, ST, E-measure, DCG, mAP). In total, there are 8 groups and 31 submissions taking part of this contest. The evaluation
results shown by this work suggest that researchers are in the right way towards shape descriptors which can capture the
main characteristics of 3D models, however, more tests still need to be made, since this is the �rst time we compare non-rigid
signatures for point-cloud shape retrieval.

Categories and Subject Descriptors(according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—Information
Search and Retrieval

1. Introduction

With the rapid development of virtual reality (VR) and augmented
reality (AR), especially in gaming, 3D data has become part of our
everyday lives. Since the creation of 3D models is essential to these
applications, we have been experiencing a large growth in the num-
ber of 3D models available on the Internet in the past years. The
problem now has been organizing and retrieving these models from
databases. Researchers from all over the world are trying to create
shape descriptors in a way to organize this huge amount of models,
making use of many mathematical tools to create discriminative
and ef�cient signatures to describe 3D shapes. The importance of
shape retrieval is evidenced by the 11 years of the Shape Retrieval
Contest (SHREC).

There are two distinct areas which concern shape retrieval:
The �rst, non-rigid shape retrieval, which deals with the problem
of articulations of the same shape [LGT� 10, LGB� 11, LZC� 15],
and second, comprehensive shape retrieval [BBC� 10, LLL� 14,
SYS� 16], which deals with any type of deformation, for example,
scaling, stretching and even differences in topology. While compre-
hensive shape retrieval is more general, non-rigid shape retrieval is

y Website: https://www.cs.york.ac.uk/cvpr/pronto
z Track organizers. E-mail: pronto-group@york.ac.uk

as important when it is necessary to carefully classify similar ob-
jects that are in distinct classes [PSR� 16].

Three-dimensional point clouds are the immediate result of scans
of 3D objects. Although there are ef�cient methods to create
meshes from point clouds, sometimes this task can be complex,
particularly when point-cloud data present missing parts or noisy
surfaces, for example, fur or hair. In this paper, we are interested in
the non-rigid shape retrieval task, therefore we propose to create a
non-rigid point-cloud shape retrieval benchmark (PRoNTo: Point-
Cloud Shape Retrieval of Non-Rigid Toys), which was produced
given the necessity of testing non-rigid shape signatures computed
directly from unorganized point clouds,i.e., without any connec-
tivity information. This is the �rst benchmark ever created to test,
speci�cally, the performance of non-rigid point-cloud models.

This benchmark is important given the need to compare 3D non-
rigid shapes based directly on a rough 3D scan of the object, which
is a more dif�cult task than comparing signatures computed from
well-formed 3D meshes. 3D scanners may introduce some sam-
pling problems to the scanned models, given the dif�culty of reach-
ing all parts of the object by the scan head and given that some
materials have specular properties and these can generate outliers.

Although some methods available in the literature use point sets
to create their shape signatures, we have not seen these methods
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Celebrating Dance move Default Hands front Open

Seated Seated hands front Straight Walking Tilted

Figure 1: Different poses captured of the objects, showing modelMonsteras an example. Point clouds were coloured by Y and Z coordinates.

being used directly to address the non-rigid point-cloud shape-
retrieval problem since there are no speci�c point-cloud datasets
available for this purpose. Instead, these methods normally use
mesh vertices, which sometimes can be a very bad idea, unless ver-
tices are very well distributed along the surface of the shape.

2. Dataset

Our dataset consists of 100 models that are derived from 10 dif-
ferent real objects. Each real object was scanned in 10 distinct
poses by phisically articulating them around their joints before be-
ing scanned. The different poses and each one of the objects used to
create this database can be seen in Figures 1 and 2, respectively. Af-
ter scanning all the poses we manually removed the supports used
to scan the objects using MeshLab.

Objects were scanned using the Head & Face Color 3D Scan-
ner of Cyberware. This scanner makes a 360 degrees scan around
the object estimatingx, y, and z coordinates of a vertical patch.
The scanning process captures an array of digitized points and also
the respective RGB colors although they are not used in this con-
test. The �le format for the objects was chosen as the Object File
Format (.off), which, in this case, contains only vertex informa-
tion. We also resample models using the Poisson-Disk Sampling
algorithm [CCS12] since the scan generates an arbitrary number of
samples. This way, we control the sampling rate so that every model
has approximately 4K points. Finally, we perform an arbitrary ro-
tation of the model so that it is not always in the same orientation.

The point clouds acquired by our scans suffer from common
scanning problems like holes and missing parts resulted from self-

occlusions of the shapes, and also from noise given that some toy's
materials have specular properties. To avoid �ne-tuning of param-
eters, we have chosen relatively similar classes to be part of this
dataset, therefore it would be cumbersome to identify classes just
by looking at the point clouds shapes, for example,TeddyandSheep
or Fox andDog.

Bear Dog Einstein Fox Monkey

Monster Rat Sheep Teddy Tiger

Figure 2: Different toys used to create the PRoNTo dataset.

3. Evaluation

The evaluation rules follow standard measures used in SHREC
tracks in the past. We asked participants to submit up to 6 dis-
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similarity matrices. These matrices could be the result of differ-
ent algorithms or different parameter settings, at the choice of the
participant. A dissimilarity matrix is the result of a shape retrieval
problem which gives the difference between every model in the
database. It has the sizeN � N, whereN is the number of models
of the dataset and the position (i; j) in the matrix gives the differ-
ence between modelsi and j. No class information is provided with
the data, and supervised methods are not allowed in the track.

In total, seven standard quantitative evaluation measures were
computed over the dissimilarity matrices submitted by the partic-
ipants to test the retrieval accuracy of the algorithms: Precision-
and-Recall (PR) curve, mean Average Precision (mAP), E-Measure
(E), Discounted Cumulative Gain (DCG), Nearest Neighbor (NN),
First-Tier (FT) and Second-Tier (ST).

4. Participants

During this contest, we had 8 groups taking part in the SHREC'17
PRoNTo contest and we received in total 31 dissimilarity-matrix
submissions, as detailed below:

1. MFLO-FV-IWKS, MFLO-SV-IWKS, PCDL-FV-IWKS, PCDL-
SV-IWKS, GL-FV-IWKSandGL-SV-IWKSsubmitted by Fred-
erico A. Limberger and Richard C. Wilson.

2. BoW-RoPS-1, BoW-RoPS-2, BoW-RoPS-DMF-3, BoW-RoPS-
DMF-4, BoW-RoPS-DMF-5andBoW-RoPS-DMF-6submitted
by Minh-Triet Tran, Viet-Khoi Pham, Hai-Dang Nguyen and
Vinh-Tiep Nguyen. Other team members: Thuyen V. Phan, Bao
Truong, Quang-Thang Tran, Tu V. Ninh, Tu-Khiem Le, Dat-
Thanh N. Tran, Ngoc-Minh Bui, Trong-Le Do, Minh N. Do and
Anh-Duc Duong.

3. POHAPTandBPHAPTsubmitted by Andrea Giachetti.
4. CDSPFsubmitted by Atsushi Tatsuma and Masaki Aono.
5. SQFD(HKS), SQFD(WKS), SQFD(SIHKS), SQFD(WKS-

SIHKS)andSQFD(HKS-WKS-SIHKS)submitted by Benjamin
Bustos and Ivan Sipiran.

6. SnapNetsubmitted by Bertrand Le Saux, Nicolas Audebert and
Alexandre Boulch.

7. AlphaVol1, AlphaVol2, AlphaVol3andAlphaVol4submitted by
Santiago Velasco-Forero.

8. m3DSH-1, m3DSH-2, m3DSH-3, m3DSH-4, m3DSH-5 and
m3DSH-6submitted by Bo Li, Yijuan Lu and Afzal Godil.

5. Methods

In the next sections, we detail all the participant methods that have
successfully competed in the PRoNTo dataset contest. Experimen-
tal settings of each method are displayed at the end of each section.

5.1. Spectral Descriptors for Point Clouds, by Frederico
Limberger and Richard Wilson

The key idea of this method is to test spectral descriptors computed
directly from point clouds using different formulations for the com-
putation of the Laplace-Beltrami operator (LBO). We test three dif-
ferent methods for computing the LBO: the Mesh-Free Laplace op-
erator (MFLO), the Point-Cloud Laplace (PCDLaplace) [BSW09]
and the Graph Laplacian (GL).

Our framework is as follows. We �rst compute the eigendecom-
position of the different LBO methods. Then, we compute local
descriptors. We encode these local features using state-of-the-art
encoding schemes (FV and SV). Furthermore, we compute the dif-
ferences between shape signatures using Ef�cient Manifold Rank-
ing. We now detail each part of our framework.

Laplace-Beltrami operator: The LBO is a linear operator de�ned
as the divergence of the gradient, taking functions into functions
over the 2D manifoldM

DM f = � 5 � 5 M f (1)

given thatf is a twice-differentiable real-valued function. Although
we compute the LBO using three different methods, all these use
the same parameters that are equivalent in each approach. The
eigendecomposition of the LBO results in their eigenvalues and
eigenfunctions, which are commonly known as the shape spectrum
and these are further used to compute a local descriptor.

Local Descriptor: After computing the shape spectrum, we com-
pute the Improved Wave Kernel Signature (IWKS) [LW15] which
is a local spectral descriptor based on the Schrodinger equation and
it is governed by the wave functiony (x;t).

iDM y (x;t) =
¶y
¶t

(x;t); (2)

The IWKS is an improved version of the WKS [ASC11]. It has a
different weighting �lter of the shape spectrum which captures, at
the same time, the major structure of the object and its �ne details,
therefore being more informative than the WKS.

Encoding: For computing the encoding of local descriptors into
global signatures for shape retrieval, we use state-of-the-art encod-
ings: Fisher Vector (FV) [PD07] and Super Vector (SV) [ZYZH10].
These methods are based on the differences between descriptors
and probabilistic distribution functions, which we approximate by
Gaussian Mixture models. More details about these encodings can
be found in [LW15].

Distances between signatures:Distances between signatures are
computed using Ef�cient Manifold Ranking (EMR) [XBC� 11],
which accelerates the classic Manifold Ranking [ZWG� 04]. EMR
has similar evaluation performance to MR, however, it has much
lower computation times when used in large databases.

Experimental settings:We compute the �rst 100 eigenvalues and
eigenfunctions of the respective LBO using 15 nearest neighbours
to compute the proximity graph for all methods. In PCDLaplace,
we use the following additional parameters:htype= ddr;hs =
2;rho = 2. For the computation of the local descriptor, we use
iwksvar= 5. For computing the Gaussian dictionary, we use the
�rst 29 models of the database to create GMMs with 38 compo-
nents for each signature frequency. For computing EMR we use 99
landmarks and we usek-means as the landmark selection method.
The number of landmarks is usually chosen as a slightly smaller
number than the number of models in total. For one model in the
database, it takes approximately 15 seconds to compute the MFLO-
IWKS, 8 seconds to compute the GL-IWKS and 11 seconds to
compute the PCDL-IWKS. To compute the entire dissimilarity ma-
trix it takes approximately 43 seconds with the FV and 56 seconds
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Figure 3: Bag-of-Words framework for 3D object retrieval

with the SV. All experiments were carried out in Matlab on a PC
CPU i7-3770 3.4GHz, 8GB RAM.

5.2. Bag-of-Words Framework for 3D Object Retrieval, by
Minh-Triet Tran, Viet-Khoi Pham, Hai-Dang Nguyen and
Vinh-Tiep Nguyen

We develop our framework for 3D object retrieval based on Bag-
of-Words scheme for visual object retrieval [SZ03]. BoW method
originated from text retrieval domain and is shown to be success-
fully applied on large-scale image [NNT� 15] and 3D object re-
trieval [PSA� 16]. Figure 3 illustrates the main components of our
framework.

Preprocessing: Each point cloud is normalized into a unit cube and
densi�ed to reduce signi�cant difference in the density between
different parts.

Feature detector: For each model, we uniformly take random sam-
ples of 5%� pSampling� 50%.

Feature descriptor: We describe the characteristics of the point
cloud in a sphere with supporting radiusr surrounding a selected
vertex. We propose our point-cloud-based descriptor inspired by
the idea of RoPS [GSB� 13] to calculate the descriptor directly from
a point cloud (without reconstructing faces). We �rst estimate the
eigenvectors of the point cloud within a supporting radiusr of a
selected vertex, then transform the point cloud to achieve rotation
invariant for the descriptor, and �nally calculate the descriptor. We
consider the supporting radiusr from 0.01 to 0.1.

Codebook: All features extracted from the models are used to build
a codebook with size relatively equal to 10% of the total number of
features in the corpus, using Approximate K-Means.

Quantization: To reduce quantization error, we use soft-
assignment [PCI� 08] with 3 nearest neighbors.

Distance measure metric: instead of using a symmetric distance,
we use L1, asymmetric distance measurement [ZJS13], to evaluate
the dissimilarity of each pair of objects.

Our �rst two runs (1 and 2) are results of our BoW framework
using random sampling withpSampling= 45% and codebook size
of 18000. The radius of point-cloud based RoPS for run 1 and 2 are
r = 0:04 and 0:05, respectively.

Each main component of our BoW framework is deployed on a

different server. Codebook training module using Python 2.7 is de-
ployed on Ubuntu 14.04 with 2.4 GHz Intel Xeon CPU E5-2620 v3,
64 GB RAM. It takes 30 minutes to create a codebook with 18,000
visual words from 180,000 features. 3D feature extraction and de-
scription module, written in C++, runs on Ubuntu 14.04, 2GHz In-
tel Xeon CPU E5-2620, 1GB RAM.

The retrieval process in Matlab R2012b with feature quantization
and calculating the dissimilarity matrix is performed on Windows
Server 2008 R2, 2.2GHz Intel Xeon CPU E5-2660, 12 GB RAM.
The average time to calculate features of a model is 1-2 seconds
and it takes on average 0.02 seconds to compare an object against
all 100 objects.

5.2.1. Distance Matrix Fusion

With each setting for our BoW framework, we get a different re-
trieval model. We propose a simple method to linearly combinek
distance matricesD1;D2; :::;Dk with different coef�cients into a
new distance matrix:

DFusion= w1D1 + w2D2 + :::wkDk: (3)

Our objective is to take advantage of different retrieval models
obtained from our framework with the expectation to increase the
performance of the retrieval process.

We limit the number of seedsk of 2 or 3, and the value of a
coef�cient wi is from 0 to 1, step 0.2. Our last four runs are com-
binations of Run1 and Run2 with different values ofw1 andw2:
Run3: w1 = 0:8 andw2 = 0:6; Run4: w1 = 1:0 andw2 = 0:8;
Run5: w1 = 0:6 andw2 = 0:2; andRun6: w1 = 1:0 andw2 = 0:4.
Experimental results show that the fusion runs can even yield better
performance in retrieval than the two original seeds.

5.3. Simple meshing and Histogram of Area Projection
Transform, by Andrea Giachetti

The method is based on simple automatic point cloud meshing fol-
lowed by the estimation of the Histogram of Area Projection Trans-
form descriptor [GL12]. Shapes are represented through a set ofN
voxelized maps encoding the area projected along the inner normal
direction at sampled distancesRi ; i = 1::N in a spherical neighbor-
hood of radiuss around each voxel center location~x. Values at dif-
ferent radii are weighted in order to have a scale-invariant behavior.
Histograms of MAPT computed inside the objects are quantized
in 12 bins and evaluated at 12 equally spaced radii values rang-
ing from 3 to 39mm:, with s always taken as half the radius. His-
tograms computed at the different radii considered are concatenated
creating an unique descriptor. Dissimilarity matrices are generated
by measuring the histogram distances with the Jeffrey divergence.

This descriptor is robust against pose variation and inaccuracy
due to holes, especially if histograms are estimated inside the shape
only. For this reason we applied the HAPT estimation using the
code publicily available at the web site www.andreagiachetti.it on
closed meshes estimated on the original point clouds with two
different procedures implemented as simple Meshlab [CCC� 08]
scripts.

We submitted matrices corresponding to each of these proce-
dures.
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Poisson reconstruction:In the �rst run, we just applied Poisson
reconstruction [KBH]. Points' normals have been estimated on a
12 neighbors range, and the octree depth has been set equal to 9.
Ball Pivoting and Poisson:In the second run we �rst smoothed
the point set using Moving Least squares, then we applied the ball
pivoting method [BMR� 99] to extract an open mesh. The mesh
has been re�ned with triangle splitting and normals have been re-
computed on the basis of the meshing. From mesh and normals
obtained, a closed watertight mesh has been �nally obtained with
the Poisson reconstruction method.

Note that meshing would be not mandatory for the application
of the method, as a point cloud implementation of the descriptor
would be quite simple. However, we believe that Poisson meshing
provides in general a better estimate of the inner part of the mesh
and is effective in reconstructing missing parts in a reasonable way.

Meshlab scripts runs in less than one second per model and
HAPT estimation takes 10 seconds on average. Histogram distance
estimation time, performed in Matlab, is negligible in comparison.

5.4. Covariance Descriptor with Statistics of Point Features,
by Atsushi Tatsuma and Masaki Aono

For non-rigid human 3D model retrieval, we previously proposed
the local feature extraction method [PSR� 16] that calculates the
histogram, mean, and covariance of geometric point features. In
this track, we further calculate the skewness and kurtosis of geo-
metric point features to obtain more discriminative local feature.
3D point-cloud object �nally is represented with the covariance of
the local features consisting of the histogram, mean, covariance,
skewness, and kurtosis of geometric point features. We call our ap-
proach the Covariance Descriptor with Statistics of Point Features
(CDSPF).

The overview of our approach is illustrated in Figure 4. We �rst
calculate 4D point geometric featuref = [ f1; f2; f3; f4] proposed
in [WHH03]. The geometric feature is computed for every pair of
pointspa andpb in the point'sk-neighborhood:

f1 = tan� 1(w � nb=u � na); (4)

f2 = v � nb; (5)

f3 = u � (pb � pa=d); (6)

f4 = d; (7)

where the normal vectors ofpa andpb arena andnb, u = na, v =
(pb � pa) � u=jj (pb � pa) � ujj , w = u � v, andd = jjpb � pajj .

Next, we collect the point features in a 16-bin histogramh. The
index of histogram binh is de�ned by the following formula:

h =
4

å
i= 1

2i� 1s(t; fi); (8)

wheres(t; f ) is a threshold function de�ned as 0 iff < t and 1
otherwise. The threshold value used forf1, f2 and f3 is 0, while
the threshold value forf4 is the average value off4 in the k-
neighborhood.

Furthermore, we calculate the mean, covariance matrix, skew-
ness, and kurtosis of the point features. Letf1; f2; : : : ; fN be the point

Figure 4: Overview of CDSPF extraction process.

features of sizeN. The meanµ, covariance matrixC, skewnesss,
and kurtosisk are calculated as follows [Mar70]:

µ =
1
N

N

å
i= 1

f i ; (9)

C =
1
N

N

å
i= 1

(f i � µ)( f i � µ)> ; (10)

s =
1

N2

N

å
i= 1

N

å
j= 1

f (f i � µ)> C� 1(f i � µ)g3; (11)

k =
1
N

N

å
i= 1

f (f i � µ)> C� 1(f i � µ)g2: (12)

Since the covariance matrixC lies on the Riemannian manifold of
symmetric positive semi-de�ne matrices, we map the covariance
matrix onto a point in the Euclidean space by using Pennec et al.'s
method [PFA06].

We �nally obtain the local feature by concatenating the his-
togram, mean, covariance, skewness, and kurtosis of the point fea-
tures. The local feature is normalized with the signed square rooting
and`2 normalization [JC12]. To compare 3D point-cloud objects,
we integrated the set of local features into a feature vector with the
covariance descriptor approach [TPM06].

Since 3D point-cloud objects in the dataset do not have normal
vector information, we used the Point Cloud Library [RC11] for
estimating normal vector of each point. Moreover, we set the size
of the neighborhoodk to 30. We employ the Euclidean distance for
the dissimilarity between two feature vectors.

The method was implemented in C++. Experiments were carried
out under Debian Linux 8.7 on a CPU 3.4GHz Intel Core i7-6800K
and 128GB DDR4 memory. The average time to calculate the shape
descriptor for a 3D model is about 1.46 seconds and it takes approx-
imately 10 seconds to compute the dissimilarity matrix.

5.5. Signature Quadratic Form Distance on Spectral
Descriptors, by Ivan Sipiran and Benjamin Bustos

Our method combines the �exibility of the Signature Quadratic
Form Distance (SQFD) [BUS09] with the robustness of intrin-
sic spectral descriptors. On the one hand, the SQFD distance has
proven to be effective in multimedia domains where objects are
represented as a collection of local descriptors [SLBS16]. On the
other hand, intrinsic descriptors are useful to keep robustness to
non-rigid transformations. Our proposal consists of representing
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the input 3D point cloud as a set of local descriptors which will
be compared through the use of the SQFD distance.

Let P be a 3D point cloud. The �rst step of our method is to
compute a set of local descriptors onP. The spectral descriptors
depends on the computation of the Laplace-Beltrami operator on
the point cloud. So a pre-processing step is needed to guarantee
a proper computation of this operator. The pre-processing is per-
formed as follows

� Normal computation. We compute a normal for each point in
the point cloud. For a given point, we get the 20 nearest neigh-
bors and compute the less dominant direction of the neighbor-
hood.

� Poisson reconstruction.We reconstruct the surface for the point
cloud using the screened Poisson reconstruction method [KH13].
We set the octree depth to eight and the depth for the Laplacian
solver to six. The output is a Manifold triangle mesh that pre-
serves the structure of the original point cloud.

Let M be the obtained mesh. We compute a local descriptor for
each vertex in the mesh. We denote the set of local descriptors of
the meshM asFM . The challenge now is how to compare two ob-
jects through their collections of local descriptors. The approach to
use the SQFD distance establishes that we need to compute a more
compact representation called signature. Let suppose the existence
of a local clustering onFM that groups similar local descriptors
such that the number of clusters isn and FM = C1

T
C2

T
: : :Cn.

The signature is de�ned asSM = f (cM
i ;wM

i ); i = 1; : : : ;ng, where

cM
i =

å d2 Ci
d

jCi j
andwM

i = jCi j
jFM j . Each element in the signature con-

tains the average descriptor in the cluster (cM
i ) and a weight (wM

i )
to quantify how representative is the cluster in the collection of lo-
cal descriptors.

Note that the local clustering is a key ingredient of the compu-
tation of the signatures. Here we brie�y give some details about
the clustering. We use an adaptive clustering method that searches
groups of descriptors using two distance thresholds. The method
uses an intra-cluster thresholdl that sets the maximum distance
between descriptors in the same cluster. Also, the method uses an
inter-cluster thresholdb that sets the minimum distance between
centroids of different clusters. In addition, the clustering method
only preserves clusters with a number of descriptors greater than a
parameterNm. More details can be found in [SLBS16].

Given two objectsM andN, and their respective signaturesSM

andSN, the Signature Quadratic Form Distance is de�ned as

SQFD(SM ;SN) =
q

(wM j � wN) � Asim� (wM j � wN)T (13)

where(wAjwB) denotes the concatenation of two weight vectors.
The matrixAsim is a block similarity matrix that stores the correla-
tion coef�cients between clusters. To transform a distance between
cluster centroids to a correlation coef�cient, we need to apply a
similarity function. We use the Gaussian similarity function

sim(ci ;c j ) = exp(� ad2(ci ;c j )) : (14)

Note that to compute the transformation, we need to choose the
value of parametera and the ground distance for descriptors. In all
our experiments, we usea = 0:9 andL2 as ground distance. More
details about the computation of signatures and the SQFD distance
can be found in [SLBS16].

Experimental Settings:We provide �ve runs using different con-
�gurations. Here, we describe the parameters used in each run

� SQFD(WKS). We use the normalized Wave Kernel Signa-
ture [ASC11] as local descriptor. The parameters for local clus-
tering arel = 0:2, b = 0:4, Nm = 30.

� SQFD(HKS). We use the normalized Heat Kernel Signa-
ture [SOG09] as local descriptor. The parameters for local clus-
tering arel = 0:1, b = 0:2, Nm = 20.

� SQFD(SIHKS). We use the Scale-invariant Heat Kernel Signa-
ture [BK10] as local descriptor. The parameters for local cluster-
ing arel = 0:1, b = 0:2, Nm = 20.

� SQFD(WKS-SIHKS). We use a distance function as a combina-
tion of distances. For every pair of objects, we compute the sum
of the distances obtained with SQFD(WKS) and SQFD(SIHKS).

� SQFD(HKS-WKS-SIHKS). We use the combination of three
distances. We use the weighted sum of distances SQFD(HKS),
SQFD(WKS) and SQFD(SIHKS). The weights are 0.15, 0.15
and 0.7, respectively.

We implemented our method in Matlab under Windows 10 on a
PC CPU i7 3.6 GHz, 12GB RAM. The average time to compute
the shape signature for a 3D model is about 5 seconds and it takes
approximately 0.3 seconds to compare a pair of signatures.

5.6. SnapNet for Dissimilarity Computation, by Alexandre
Boulch, Bertrand Le Saux and Nicolas Audebert

The objective of this approach is to learn a classi�er, in an unsu-
pervised way, that will produce similar outputs for the same shapes
with different poses. As we do not know the ground truth, i.e. the
model used to generate the pose, we will train the classi�er as if
each pose was a different class. It is a 100-class problem.

Training dataset: The training dataset is generated by taking snap-
shots around the 3D model [Gra14]. In order to create visually con-
sistent snapshots, we mesh the point cloud using [MRB09]. The
snapshots are 3-channel images. The �rst channel encodes the dis-
tance to the camera (i.e. depth map), the second is the normal orien-
tation to the camera direction and the third channel is an estimation
of the local noise in the point cloud (ratio of eigenvalues of the
neighborhood covariance matrix). An example of such a snapshot
is presented in Figure 5 (left).

CNN training: The CNN we train is a VGG16 [SZ14] with a last
fully connected layer with a 100 outputs. We initialize the weights
with the model trained on the ILSVRC12 contest. We then �netune
the network using a step learning rate policy.

Distance computation: The classi�er is then applied to images
and produces images classi�cation vectorsvim. For each model we
compute a prediction vectorVM based on the images:

VM =
å im2 M vim

jj å im2 M vimjj 2
(15)
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Figure 5: Snapshot example (left) and dissimilarity matrix (right).

The distance matrixX contains the pairwisè2 distances between
theVM . Each line is then normalized using a soft max:

Xi; j =
exp(Xi; j )

å j exp(Xi; j )
(16)

Matrix X is not symmetrical. We �nally de�ne the symmetrical
distance matrix asD is such thatD = XT X. The values ofD are
clipped according to the 5th and 50th percentiles and then re-scaled
in [0;1]. The resulting matrix is presented on Figure 5 (right).

The method was implemented in Python and C++, using the deep
learning frameworkPytorch. We ran the experiments on Linux,
CPU Intel Xeon(R) E5-1620 3.50GHz. The training part was op-
erated on a NVidia Titan X Mawell GPU and the test part (pre-
dictions) on a NVidia GTX 1070. Generating the snapshots took
around 10 seconds per model. The training took around 8 hours.
The prediction vectors were generated in 2 seconds per model and
the dissimilarity matrix is computed in less than 10s.

5.7. Alpha-shapes volume curve descriptor, by Santiago
Velasco-Forero

GivenS be the set of �nite set of points inR3, we have computed
a set ofthree-dimensional alpha-shapesof radiusr, proposed by
Edelsbrunner [EM94], and denoted byar (S). Rather than �nd-
ing an optimal �xed value, we focus on a range of values for the
scale parameterr, and our descriptor computes the volume of each
ar (S). Thus, the similarity of two shapes is then computed by the
distance of their alpha-shapes volume curve in Euclidean norm. An
example of differentar (S) by varyingr is illustrated in Figure 6.

The values of parameter (r) used in the different submission are:

� AlphaVol 1: r 2 [0:02;0:045;0:07]
� AlphaVol 2: r 2 [0:02;0:045;0:07;0:095]
� AlphaVol 3: r 2 [0:02;0:045;0:07;0:095;0:12]
� AlphaVol 4: r 2 [0:02;0:045;0:07;0:095;0:12;0:145]

We have implemented our method in Matlab and carried out ex-
periments under Mac on a PC CPU Intel Core i7 2.8 GHz, 16 GB
RAM 1600MHz DDR3, and a NVIDIA GeForce GT 750M 2048
MB. The average computation times for the shape descriptors are
as follows: AlphaVol1: 92 ms, AlphaVol2: 108 ms, AlphaVol3: 118
ms and AlphaVol4: 137 ms and it takes approximately 1.48 seconds
to compute the dissimilarity matrix in the four cases.

(a)
vol (a r= 0:005(S)) =
0:0001

(b)
vol (a r= 0:01(S)) =
0:0003

(c)
vol (a r= 0:035(S)) =
0:0025

Figure 6: Example of representation space bya-shapes

5.8. Modi�ed 3D Shape Histogram for non-rigid 3D toy model
retrieval (m3DSH), by Bo Li, Yijuan Lu and Afzal Godil

The 100 non-rigid point cloud toy models contain only 3D points
to represent ten different poses for each of the ten toys. We can
�rst reconstruct a 3D surface for each 3D point cloud such as to
extract our previously developed 3D surface-based non-rigid shape
descriptors. However, considering retrieval ef�ciency, the raw point
cloud data is directly used for 3D shape descriptor extraction for
shape comparison. For simplicity, we chose 3D Shape Histogram
(3DSH) [AKKS99]. The original 3DSH descriptor uniformly par-
titions the surrounding space of a 3D shape into a set of shells,
sectors or spiderweb bins and counts the percentage of the surface
sampling points falling in each bin to form a histogram as the 3DSH
descriptor. Rather than like the original 3DSH descriptor which di-
vides the space uniformly, to increase its descriptiveness we devel-
oped a modi�ed variation of 3DSH descriptor, that is m3DSH, by
dividing the 3D space occupied by a 3D shape in a non-uniform
way.

Figure 7 illustrates the overview of the feature extraction pro-
cess: Principal Component Analysis (PCA) [Jol02]-based 3D
model normalization, and extraction of a modi�ed 3D Shape His-
togram descriptor m3DSH. The details of our algorithm are de-
scribed as follows.

(a) Original model (b) PCA normalization (c) m3DSH descriptor

Figure 7: Modi�ed 3D Shape Histogram (m3DSH) feature extrac-
tion process.

1) PCA-based 3D shape normalization:PCA-based 3D shape nor-
malization: We utilize PCA [Jol02] for 3D model normalization
(scaling, translation and rotation). After this normalization, each
3D point cloud is scaled to be enclosed in the same bounding sphere
with a radius of 1, centered at the origin, and rotated to have as-
close-as-possible consistent orientations for different poses of the
same toy object. These are important for the following m3DSH de-
scriptor extraction.
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2) Modi�ed 3D Shape Histogram descriptor m3DSH extraction:
The original 3DSH descriptor only has two degrees of freedom
(DOF), which are numbers of sectors and number of shells. As we
know, a 3D space has three DOFs according to its spherical coor-
dinate representation (r , f , q). The reason is that 3DSH uniformly
dividesf andq into the same number of bins, which forms a cer-
tain number of sectors. Here, in order to improve its �exibility and
descriptiveness, we individually dividef andq into a number of
vertical bins (V) and a number of horizontal bins (H), since the
two dimensions do not have the same importance. We denote the
number of radius bins forr asR. In the experiments, we tested two
different combinations ofV, H andR: V=5, H=8, R=6; andV=12,
H=12,R=6.

3) Quadratic form shape descriptor distance computation and
ranking: Similar as [AKKS99], we adopt the quadratic form dis-
tance to measure the distance between the extracted histogram fea-
tures of the 3D models. It has a parameters to control the simi-
larity degree of the resulting distance to Euclidean distance. In our
experiments, we tested threes [AKKS99] values:s=1,s=5,s=10.
Finally, we rank 3D models according to the computed shape de-
scriptor distances in an ascending order.

We implemented our method in Java and carried out experiments
under Windows 7 on a personal laptop with a 2.70 GHz Intel Core
i7 CPU, 16GB memory. The average time to calculate the shape
descriptor for a 3D model is about 0.03 seconds and it takes ap-
proximately 0.14 seconds to compute the dissimilarity matrix.

6. Results

In this section, we compare the results of all participant's runs. In
total, we had 8 groups participating and we received 31 dissim-
ilarity matrices. The retrieval scores computed from these matri-
ces represent the overall retrieval performance of each method,i.e.,
how well they perform on retrieving all models from the same class
when querying every model in the database. The quantitative statis-
tics used to measure the performance of methods are: NN, FT, ST,
E-measure, DCG, mAP and the Precision-and-Recall plot. For the
meaning of each measure, we refer the reader to [SMKF04].

Table 1 shows the method performances of all 31 runs. It is worth
pointing out that some methods perform quite well on this database.
By analysing particularly DCG, which is a very good and stable
measure for evaluating shape retrieval methods [LZC� 15], we can
see that three methods have DCG greater than 0.900 (BoW-RoPS-
DMF-3, BPHAPT and MFLO-FV-IWKS). Surprisingly, Tran's
methods have DCG values greater than 0.990. The method clearly
outperforms all other methods in the contest as evidenced by the
Precision-and-Recall plot in Figure 8. BoW-RoPS can de�nitely
capture the differences between classes and it seems robust to most
of the non-rigid deformations presented in this database. Curiously,
Tran's method uses asymmetric distance computation between de-
scriptors, which leads to distances between modelsi and j being
different from the distances between modelsj andi. This is clearly
evidenced by their dissimilarity matrices.

Considering all groups that have participated in this con-
test, half of them (4) computes local features (MFLO-FV-IWKS,
SQFD(WKS), CDSPF and BoW-RoPS-DMF-3) and the other half

Table 1: Six standard quantitative evaluation measures of all 31
runs computed for the PRoNTo dataset.

Participant Method NN FT ST E DCG mAP

Boulch SnapNet 0.8800 0.6633 0.8011 0.3985 0.8663 0.771

Giachetti POHAPT 0.9400 0.8300 0.9144 0.4156 0.9419 0.900

BPHAPT 0.9800 0.9111 0.9544 0.4273 0.9743 0.953

Li m3DSH-1 0.4000 0.1656 0.2778 0.1824 0.4802 0.297

m3DSH-2 0.4400 0.1867 0.2856 0.1932 0.4997 0.313

m3DSH-3 0.4400 0.1767 0.2878 0.1917 0.5039 0.314

m3DSH-4 0.4000 0.1511 0.2511 0.1712 0.4659 0.286

m3DSH-5 0.4200 0.1722 0.2767 0.1815 0.4930 0.304

m3DSH-6 0.4100 0.1700 0.2678 0.1712 0.4848 0.300

Limberger GL-FV-IWKS 0.8200 0.5756 0.7244 0.3595 0.8046 0.702

GL-SV-IWKS 0.7000 0.5267 0.6678 0.3327 0.7562 0.651

MFLO-FV-IWKS 0.8900 0.7911 0.8589 0.4024 0.9038 0.858

MFLO-SV-IWKS 0.9000 0.7100 0.7933 0.3702 0.8765 0.800

PCDL-FV-IWKS 0.8200 0.6656 0.7978 0.3976 0.8447 0.764

PCDL-SV-IWKS 0.8900 0.6656 0.7911 0.3732 0.8613 0.781

Sipiran SQFD(HKS) 0.2900 0.2244 0.3322 0.2176 0.5226 0.344

SQFD(WKS) 0.5400 0.3111 0.4467 0.2507 0.6032 0.427

SQFD(SIHKS) 0.2900 0.2533 0.4133 0.2590 0.5441 0.377

SQFD(WKS-SIHKS) 0.5000 0.3100 0.4500 0.2634 0.6000 0.425

SQFD(HKS-WKS-SIHKS) 0.3900 0.2844 0.4389 0.2624 0.5722 0.403

Tatsuma CDSPF 0.9200 0.6744 0.8156 0.4005 0.8851 0.794

Tran BoW-RoPS-1 1.0000 0.9744 0.9967 0.4390 0.9979 0.995

BoW-RoPS-2 1.0000 0.9778 0.9933 0.4385 0.9973 0.993

BoW-RoPS-DMF-3 1.0000 0.9778 0.9978 0.4390 0.9979 0.995

BoW-RoPS-DMF-4 1.0000 0.9778 0.9978 0.4390 0.9979 0.995

BoW-RoPS-DMF-5 1.0000 0.9733 0.9978 0.4390 0.9979 0.995

BoW-RoPS-DMF-6 1.0000 0.9733 0.9978 0.4390 0.9979 0.995

Velasco AlphaVol1 0.7900 0.5878 0.7578 0.3980 0.8145 0.707

AlphaVol2 0.7800 0.5122 0.6844 0.3751 0.7673 0.643

AlphaVol3 0.7700 0.4567 0.6467 0.3629 0.7364 0.600

AlphaVol4 0.7000 0.4356 0.6111 0.3454 0.7148 0.571

(4) computes global features (BPHAPT, SnapNet, m3DSH-3 and
AlphaVol1). Our �rst guess was that local features would be more
popular to represent non-rigid shapes, as evidenced by [LZC� 15].
Our guess was based on the fact that ideally local features should
be more similar than global features because same-class shapes
were captured originally from the same 3D object, and locally they
should be more similar than globally. For example, while a shape
can be in a totally different pose, locally only joint regions are de-
formed. However, we also need to consider local noise in the for-
mula, which does not affect global methods in the same level.

Tran's method is in the �rst place and uses local features. Clearly,
in the second place is Giachetti's method, which is based on global
features from 3D meshes created from the point clouds. In total,
3 groups use meshing procedures before computing the descriptors
(BPHAPT, SQFD(WKS) and SnapNet). Interestingly, two methods
use quadratic form distance to compute dissimilarities between de-
scriptors, one from a global descriptor (m3DSH-3) and other from
a local descriptor SQFD(WKS).

Even though no training set was available in this track, Boulch's
method uses a Convolutional Neural Network by employing an un-
supervised learning architecture where every model is considered
belonging to a different class. On the other hand, more methods
also adopt unsupervised learning algorithms to create dictionaries
using the Bag of Words encoding paradigm (BoW-RoPS-DMF-3
and MFLO-FV-IWKS) being these ranked �rst and third on this
contest, respectively, and showing that the BoW model is a good
way of representing local features. Furthermore, two other meth-
ods use histogram encoding (vector quantization) to create a unique
descriptor for each point cloud (BPHAPT and CDSPF).
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Figure 8: Precision-and-recall curves of the best runs of each group
evaluated for the PRoNTo dataset.

We also observed a couple of new other ideas applied to PRoNTo
dataset. For instance, Velasco uses alpha-shapes to represent point
clouds; by varying the alpha-shape radius he compares models
given their alpha-shape volume curve. Limberger's method uses a
new formulation to compute the Laplace-Beltrami operator of point
clouds, which leads to better results than the standard Graph Lapla-
cian. Tatsuma computes additional statistics of point features in ad-
dition to the geometric feature proposed by [WHH03]. Two groups
use matrix-fusion methods with different weights to improve the
performance of their methods (Tran and Sipiran), however, these
methods did not show a substantial improvement from the perfor-
mance of the original descriptors.

After analysing retrieval statistics of the methods, we concluded
that the easiest pose to retrieve was de�netelyDefault, followed by
Hands FrontandWalking. The most dif�cult pose to retrieve was
Tilted followed byStraight, which are the most different from the
others in respect to topology. Regarding classes, the easiest class
to retrieve by the participant methods wasTiger, folowed byBear,
while the most dif�cult wasSheep, followed byRatandTeddy.

For more information about this track, please refer to the of�cial
website [LW17] where the database, the corresponding evaluation
code and classi�cation �le are available for academic use.

7. Conclusion

In this paper, we have created a non-rigid point cloud dataset which
is derived from real toy objects. In the beginning, we discussed the
importance of this data to future researchers. Then, we explained
the dataset characteristics and we showed how the evaluation was
carried out. Afterwards, we introduced each one of the 8 groups
and their methods which competed on this track. In the end, we
presented quantitative measures of the 31 runs submitted by the
participants and analysed their results.

The interest in non-rigid shape retrieval is overwhelming and ev-
ident by the previous SHREC tracks. This track was not different. It
has attracted a large number of participants (8 groups and 31 runs)
given that it is the �rst time that a non-rigid point-cloud dataset is
used in the SHREC contest. We believe that the organization of this
track is just a beginning and it will encourage other researchers to
further investigate this important research topic.

Several research directions in point-cloud shape retrieval can
be pursuit from this work and are listed as follows: (1) Create a
larger dataset which contains more types of objects (not only hu-
man shaped toys) to better evaluate shape signatures. (2) Create
more discriminative local or global signatures for 3D point clouds.
(3) Employ state-of-the-art Deep Learning techniques which do not
depend on large training datasets.
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