. Mevislab, A development environment for medical image processing and visualization, 2006.

. Vcglib, Visualization and computer graphics library, pp.2017-2018, 2011.

H. Adams, A. Tausz, and M. Vejdemo-johansson, javaPlex: A Research Software Package for Persistent (Co)Homology, ICMS, 2014.
DOI : 10.1007/978-3-662-44199-2_23

J. Ahrens, B. Geveci, and C. Law, Paraview: An end-user tool for largedata visualization. The Visualization Handbook, pp.717-731, 2005.

D. Attali, M. Glisse, S. Hornus, F. Lazarus, and D. Morozov, Persistencesensitive simplification of functions on surfaces in linear time, 2009.

S. Bachthaler and D. Weiskopf, Continuous Scatterplots, IEEE Transactions on Visualization and Computer Graphics, vol.14, issue.6, 2008.
DOI : 10.1109/TVCG.2008.119

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. F. Banchoff, Critical Points and Curvature for Embedded Polyhedral Surfaces, The American Mathematical Monthly, vol.77, issue.5, 1970.
DOI : 10.2307/2317380

C. Batty, Simplexmesh: A simplicial mesh structure that supports general non-manifold meshes and associated data. https://github.com/ christopherbatty, pp.2017-2018

U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner, PHAT -persistent homology algorithms toolbox, ICMS, 2014.
DOI : 10.1016/j.jsc.2016.03.008

U. Bauer, C. Lange, and M. Wardetzky, Optimal Topological Simplification of Discrete Functions on Surfaces, Discrete & Computational Geometry, vol.33, issue.2, 2012.
DOI : 10.1007/s00454-004-1146-y

URL : http://arxiv.org/abs/1001.1269

J. Silva and . Freire, Vistrails: Enabling interactive multiple-view visualizations, IEEE VIS, 2005.

S. Biasotti, D. Giorgio, M. Spagnuolo, and B. Falcidieno, Reeb graphs for shape analysis and applications, Theoretical Computer Science, vol.392, issue.1-3, 2008.
DOI : 10.1016/j.tcs.2007.10.018

URL : http://doi.org/10.1016/j.tcs.2007.10.018

D. K. Blandford, G. E. Blelloch, D. E. Cardoze, and C. Kadow, COMPACT REPRESENTATIONS OF SIMPLICIAL MESHES IN TWO AND THREE DIMENSIONS, International Journal of Computational Geometry & Applications, vol.21, issue.01, pp.3-24, 2005.
DOI : 10.1007/PL00008262

J. Boissonnat and C. Maria, The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes, Algorithmica, vol.132, issue.23, pp.406-427, 2014.
DOI : 10.1063/1.3445267

URL : https://hal.archives-ouvertes.fr/hal-00707901

J. Boissonnat, C. S. Karthik, and S. Tavenas, Building Efficient and Compact Data Structures for Simplicial Complexes, Symp. on Comp. Geom, 2015.
DOI : 10.1145/253168.253192

URL : https://hal.archives-ouvertes.fr/hal-01145407

M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt, OpenMesh: A Generic and Efficient Polygon Mesh Data Structure, OpenSG, 2002.

R. L. Boyell and H. Ruston, Hybrid techniques for real-time radar simulation, Proceedings of the November 12-14, 1963, fall joint computer conference on XX, AFIPS '63 (Fall), 1963.
DOI : 10.1145/1463822.1463869

P. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day et al., Interactive exploration and analysis of large scale simulations using topologybased data segmentation, IEEE Trans. on Vis. and Comp. Graph, 2011.
DOI : 10.1109/tvcg.2010.253

URL : https://hal.archives-ouvertes.fr/hal-01211172

M. L. Brewer, L. F. Diachin, P. M. Knupp, T. Leurent, and D. J. Melander, The mesquite mesh quality improvement toolkit, IMR, 2003.

P. Bubenik and P. D?otko, A persistence landscapes toolbox for topological statistics, Journal of Symbolic Computation, vol.78, 2017.
DOI : 10.1016/j.jsc.2016.03.009

URL : https://hal.archives-ouvertes.fr/hal-01258875

G. Carlsson, V. D. Silva, and D. Morozov, Zigzag persistent homology and real-valued functions, Proceedings of the 25th annual symposium on Computational geometry, SCG '09, 2009.
DOI : 10.1145/1542362.1542408

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Carr, Z. Geng, J. Tierny, A. Chattopadhyay, and A. Knoll, Fiber Surfaces: Generalizing Isosurfaces to Bivariate Data, Computer Graphics Forum, vol.33, issue.3, 2015.
DOI : 10.1111/cgf.12371

URL : https://hal.archives-ouvertes.fr/hal-01198912

H. Carr, J. Snoeyink, and U. Axen, Computing contour trees in all dimensions, Computational Geometry, vol.24, issue.2, pp.918-926, 2000.
DOI : 10.1016/S0925-7721(02)00093-7

URL : http://doi.org/10.1016/s0925-7721(02)00093-7

H. Carr, J. Snoeyink, and M. Van-de-panne, Simplifying flexible isosurfaces using local geometric measures, IEEE Visualization 2004, 2004.
DOI : 10.1109/VISUAL.2004.96

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang, Vector field editing and periodic orbit extraction using morse decomposition, IEEE Trans. on Vis. and Comp. Graph, 2007.

H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern et al., VisIt, High Performance Visualization? Enabling Extreme-Scale Scientific Insight, pp.357-372, 2012.
DOI : 10.1201/b12985-21

H. Choi, W. Choi, T. M. Quan, D. G. Hildebrand, H. Pfister et al., Vivaldi: A Domain-Specific Language for Volume Processing and Visualization on Distributed Heterogeneous Systems, IEEE Transactions on Visualization and Computer Graphics, vol.20, issue.12, pp.2407-2416, 2014.
DOI : 10.1109/TVCG.2014.2346322

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli et al., MeshLab: an Open-Source Mesh Processing Tool, Eurographics Italian Chapter Conference The Eurographics Association, 2008.

D. Cohen-steiner, H. Edelsbrunner, and J. Harer, Stability of persistence diagrams, Symp. on Comp. Geom, 2005.
DOI : 10.1007/s00454-006-1276-5

L. De-floriani, U. Fugacci, F. Iuricich, and P. Magillo, Morse complexes for shape segmentation and homological analysis: discrete models and algorithms, Computer Graphics Forum, vol.32, issue.3, 2015.
DOI : 10.1017/CBO9780511546945

V. Silva, D. Morozov, and M. Vejdemo-johansson, Persistent cohomology and circular coordinates, Disc. Compu. Geom, 2011.

T. K. Dey, F. Fan, and Y. Wang, Computing Topological Persistence for Simplicial Maps, Annual Symposium on Computational Geometry, SOCG'14, 2014.
DOI : 10.1145/2582112.2582165

URL : http://arxiv.org/abs/1208.5018

S. Dillard, A contour tree library, 2007.

H. Doraiswamy and V. Natarajan, Output-Sensitive Construction of Reeb Graphs, IEEE Transactions on Visualization and Computer Graphics, vol.18, issue.1, 2012.
DOI : 10.1109/TVCG.2011.37

H. Doraiswamy and V. Natarajan, Computing Reeb Graphs as a Union of Contour Trees, IEEE Transactions on Visualization and Computer Graphics, vol.19, issue.2, 2013.
DOI : 10.1109/TVCG.2012.115

H. Doraiswamy and V. Natarajan, Recon (Reeb graph computation ), 2014.

H. Doraiswamy, A. Sood, and V. Natarajan, LibRG (Reeb graph computation )

H. Edelsbrunner and J. Harer, Jacobi sets of multiple morse functions, Foundations of Computational Mathematics, 2004.

H. Edelsbrunner and J. Harer, Computational Topology: An Introduction, 2009.
DOI : 10.1090/mbk/069

H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, Morse-smale complexes for piecewise linear 3-manifolds, Proceedings of the nineteenth conference on Computational geometry , SCG '03, 2003.
DOI : 10.1145/777792.777846

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Edelsbrunner, J. Harer, and A. K. Patel, Reeb spaces of piecewise linear mappings, Proceedings of the twenty-fourth annual symposium on Computational geometry , SCG '08, 2008.
DOI : 10.1145/1377676.1377720

H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and simplification, Disc. Compu. Geom, 2002.
DOI : 10.1007/s00454-002-2885-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Edelsbrunner, D. Morozov, and V. Pascucci, Persistence-sensitive simplification functions on 2-manifolds, Proceedings of the twenty-second annual symposium on Computational geometry , SCG '06, 2006.
DOI : 10.1145/1137856.1137878

H. Edelsbrunner and E. P. Mucke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, ACM Trans. on Graph, 1990.

B. T. Fasy, J. Kim, F. Lecci, and C. Maria, Introduction to the R package TDA
URL : https://hal.archives-ouvertes.fr/hal-01113028

G. Favelier, C. Gueunet, and J. Tierny, Visualizing ensembles of viscous fingers, IEEE SciVis Contest, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01359694

L. D. Floriani and A. Hui, Data structures for simplicial complexes: An analysis and A comparison, EG Symp. on Geom. Proc, 2005.

R. Forman, A user's guide to discrete Morse theory, Adv. in Math, 1998.

S. Gerber, P. Bremer, V. Pascucci, and R. Whitaker, Visual Exploration of High Dimensional Scalar Functions, IEEE Transactions on Visualization and Computer Graphics, vol.16, issue.6, 2010.
DOI : 10.1109/TVCG.2010.213

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099238

S. Gerber, K. Potter, and O. , msr: Morse-smale approximation, regression and visualization. https://cran.r-project, 2015.
DOI : 10.1080/10618600.2012.657132

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653333

D. Guenther, R. Alvarez-boto, J. Contreras-garcia, J. Piquemal, and J. Tierny, Characterizing Molecular Interactions in Chemical Systems, IEEE Transactions on Visualization and Computer Graphics, vol.20, issue.12, 2014.
DOI : 10.1109/TVCG.2014.2346403

URL : https://hal.archives-ouvertes.fr/hal-01146475

D. Guenther, J. Salmon, and J. Tierny, Mandatory Critical Points of 2D Uncertain Scalar Fields, Computer Graphics Forum, vol.3, issue.3, 2014.
DOI : 10.1615/Int.J.UncertaintyQuantification.2012003956

URL : https://hal.archives-ouvertes.fr/hal-01206152

C. Gueunet, P. Fortin, J. Jomier, and J. Tierny, Contour forests: Fast multi-threaded augmented contour trees, 2016 IEEE 6th Symposium on Large Data Analysis and Visualization (LDAV), 2016.
DOI : 10.1109/LDAV.2016.7874333

URL : https://hal.archives-ouvertes.fr/hal-01355328

V. Guillemin and A. Pollack, Differential Topology, 1974.
DOI : 10.1090/chel/370

T. Gurung, D. E. Laney, P. Lindstrom, and J. Rossignac, SQuad: Compact Representation for Triangle Meshes, Computer Graphics Forum, vol.24, issue.3, 2011.
DOI : 10.1145/1073204.1073278

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Gurung, M. Luffel, P. Lindstrom, and J. Rossignac, Zipper: A compact connectivity data structure for triangle meshes, Computer-Aided Design, vol.45, issue.2, 2013.
DOI : 10.1016/j.cad.2012.10.009

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Gyulassy, P. Bremer, R. Grout, H. Kolla, J. Chen et al., Stability of Dissipation Elements: A Case Study in Combustion, Computer Graphics Forum, vol.608, issue.10, 2014.
DOI : 10.1017/S0022112008002139

A. Gyulassy, P. T. Bremer, B. Hamann, and V. Pascucci, A Practical Approach to Morse-Smale Complex Computation: Scalability and Generality, IEEE Transactions on Visualization and Computer Graphics, vol.14, issue.6, 2008.
DOI : 10.1109/TVCG.2008.110

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Gyulassy, P. T. Bremer, and V. Pascucci, Computing Morse-Smale Complexes with Accurate Geometry, IEEE Transactions on Visualization and Computer Graphics, vol.18, issue.12, 2012.
DOI : 10.1109/TVCG.2012.209

A. Gyulassy, D. Guenther, J. A. Levine, J. Tierny, and V. Pascucci, Conforming Morse-Smale Complexes, IEEE Transactions on Visualization and Computer Graphics, vol.20, issue.12, 2014.
DOI : 10.1109/TVCG.2014.2346434

URL : https://hal.archives-ouvertes.fr/hal-01146478

A. Gyulassy, A. Knoll, K. Lau, B. Wang, P. Bremer et al., Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials, IEEE Transactions on Visualization and Computer Graphics, vol.22, issue.1, 2015.
DOI : 10.1109/TVCG.2015.2467432

A. Gyulassy, V. Natarajan, M. Duchaineau, V. Pascucci, E. Bringa et al., Topologically Clean Distance Fields, IEEE Transactions on Visualization and Computer Graphics, vol.13, issue.6, 2007.
DOI : 10.1109/TVCG.2007.70603

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De-floriani et al., A Survey of Topology-based Methods in Visualization, Computer Graphics Forum, vol.11, issue.4, 2016.
DOI : 10.1109/TVCG.2005.67

L. Hüttenberger, C. Heine, H. Carr, G. Scheuermann, and C. Garth, Towards Multifield Scalar Topology Based on Pareto Optimality, Computer Graphics Forum, vol.12, issue.2, pp.341-350, 2013.
DOI : 10.1109/TVCG.2006.164

C. Jamin, S. Pion, and M. Teillaud, 3D triangulation data structure, CGAL User and Reference Manual, 2016.

K. I. Joy, J. Legakis, and R. Maccracken, Data Structures for Multiresolution Representation of Unstructured Meshes, Hierarchical and Geometrical Methods in Scientific Visualization, 2003.
DOI : 10.1007/978-3-642-55787-3_9

G. Kindlmann, C. Chiw, N. Seltzer, L. Samuels, and J. Reppy, Diderot: a Domain-Specific Language for Portable Parallel Scientific Visualization and Image Analysis, IEEE Transactions on Visualization and Computer Graphics, vol.22, issue.1, 2016.
DOI : 10.1109/TVCG.2015.2467449

P. Klacansky, J. Tierny, H. Carr, and Z. Geng, Fast and Exact Fiber Surfaces for Tetrahedral Meshes, IEEE Transactions on Visualization and Computer Graphics, vol.23, issue.7, 2016.
DOI : 10.1109/TVCG.2016.2570215

URL : https://hal.archives-ouvertes.fr/hal-01206120

D. E. Laney, P. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci, Understanding the Structure of the Turbulent Mixing Layer in Hydrodynamic Instabilities, IEEE Transactions on Visualization and Computer Graphics, vol.12, issue.5, 2006.
DOI : 10.1109/TVCG.2006.186

M. Luffel, T. Gurung, P. Lindstrom, and J. Rossignac, Grouper: A Compact, Streamable Triangle Mesh Data Structure, IEEE Transactions on Visualization and Computer Graphics, vol.20, issue.1, pp.84-98, 2014.
DOI : 10.1109/TVCG.2013.81

C. Maria, J. Boissonnat, M. Glisse, and M. Yvinec, The Gudhi Library: Simplicial Complexes and Persistent Homology, ICMS, 2014.
DOI : 10.1007/978-3-662-44199-2_28

URL : https://hal.archives-ouvertes.fr/hal-01005601

P. Mccormick, J. Inman, J. Ahrens, J. Mohd-yusof, G. Roth et al., Scout: a data-parallel programming language for graphics processors, Parallel Computing, vol.33, issue.10-11, pp.648-662, 2007.
DOI : 10.1016/j.parco.2007.09.001

K. Mischaikow and V. Nanda, Morse Theory for Filtrations and Efficient Computation of Persistent Homology, Discrete & Computational Geometry, vol.37, issue.10, 2013.
DOI : 10.2307/1968689

K. Moreland, A survey of visualization pipelines Accessed, IEEE Trans. on Vis. and Comp. Graph, pp.2016-2025, 2010.

V. Nanda, Perseus, the persistent homology software, pp.2016-2025

S. Parsa, A deterministic o(m log m) time algorithm for the reeb graph, Symp. on Comp. Geom, 2012.

V. Pascucci, G. Scorzelli, P. T. Bremer, and A. Mascarenhas, Robust on-line computation of Reeb graphs: simplicity and speed, ACM Trans. on Graph, 2007.
DOI : 10.1145/1239451.1239509

S. Pion and M. Yvinec, 2D triangulation data structure, CGAL User and Reference Manual. CGAL Editorial Board, 2016.

P. Rautek, S. Bruckner, M. E. Gröller, and M. Hadwiger, ViSlang: A System for Interpreted Domain-Specific Languages for Scientific Visualization, IEEE Transactions on Visualization and Computer Graphics, vol.20, issue.12, 2014.
DOI : 10.1109/TVCG.2014.2346318

G. Reeb, Sur les points singuliers d'une forme de Pfaffcompì etement intégrable ou d'une fonction numérique, Acad. des Sci, 1946.

V. Robins, P. Wood, and A. Sheppard, Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.8, 2011.
DOI : 10.1109/TPAMI.2011.95

W. J. Schroeder, F. Bertel, M. Malaterre, D. Thompson, P. P. Pebay et al., Methods and framework for visualizing higher-order finite elements, IEEE Transactions on Visualization and Computer Graphics, vol.12, issue.4, 2006.
DOI : 10.1109/TVCG.2006.74

W. J. Schroeder, K. Martin, and W. E. Lorensen, The Visualization Toolkit
DOI : 10.1016/B978-012387582-2/50032-0

S. Institute, SCIRun: A Scientific Computing Problem Solving Environment, Scientific Computing and Imaging Institute (SCI), Download from, 2016.

N. Shivashankar, Morse-Smale Complexes: Computation and Applications, Indian Institute of Science, 2014.

N. Shivashankar, S. Maadasamy, and V. Natarajan, Parallel Computation of 2D Morse-Smale Complexes, IEEE Transactions on Visualization and Computer Graphics, vol.18, issue.10, 2012.
DOI : 10.1109/TVCG.2011.284

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Shivashankar and V. Natarajan, Parallel computation of 3d morsesmale complexes, Comp. Graph. For, 2012.
DOI : 10.1111/j.1467-8659.2012.03089.x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Shivashankar and V. Natarajan, Efficient Software for Programmable Visual Analysis Using Morse-Smale Complexes, TopoInVis, 2015.
DOI : 10.1111/j.1365-2966.2011.18394.x

N. Shivashankar, P. Pranav, V. Natarajan, R. Van-de-weygaert, E. P. Bos et al., Felix: A Topology Based Framework for Visual Exploration of Cosmic Filaments, IEEE Transactions on Visualization and Computer Graphics, vol.22, issue.6, 2016.
DOI : 10.1109/TVCG.2015.2452919

D. Sieger and M. Botsch, Design, implementation, and evaluation of the surface mesh data structure, IMR, 2011.

G. Singh, F. Mémoli, and G. E. Carlsson, Topological methods for the analysis of high dimensional data sets and 3d object recognition, SPBG, pp.91-100, 2007.

P. Skraba, P. Rosen, B. Wang, G. Chen, H. Bhatia et al., Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion, IEEE Transactions on Visualization and Computer Graphics, vol.22, issue.6, 2016.
DOI : 10.1109/TVCG.2016.2534538

B. S. Sohn and C. L. Bajaj, Time-varying contour topology, IEEE Transactions on Visualization and Computer Graphics, vol.12, issue.1, 2006.
DOI : 10.1109/TVCG.2006.16

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703823

T. Sousbie, The persistent cosmic web and its filamentary structure - I. Theory and implementation, Monthly Notices of the Royal Astronomical Society, vol.414, issue.1, 2011.
DOI : 10.1111/j.1365-2966.2011.18394.x

URL : http://arxiv.org/abs/1009.4014

S. Tarasov and M. Vyali, ) steps, Proceedings of the fourteenth annual symposium on Computational geometry , SCG '98, 1998.
DOI : 10.1145/276884.276892

D. M. Thomas and V. Natarajan, Multiscale Symmetry Detection in Scalar Fields by Clustering Contours, IEEE Transactions on Visualization and Computer Graphics, vol.20, issue.12, 2014.
DOI : 10.1109/TVCG.2014.2346332

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Tierny and H. Carr, Jacobi Fiber Surfaces for Bivariate Reeb Space Computation, IEEE Transactions on Visualization and Computer Graphics, vol.23, issue.1, 2016.
DOI : 10.1109/TVCG.2016.2599017

URL : https://hal.archives-ouvertes.fr/hal-01349907

J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux, The Topology ToolKit. https
URL : https://hal.archives-ouvertes.fr/hal-01499905

J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci, Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees, IEEE Transactions on Visualization and Computer Graphics, vol.15, issue.6, 2009.
DOI : 10.1109/TVCG.2009.163

URL : https://hal.archives-ouvertes.fr/hal-01211176

J. Tierny and V. Pascucci, Generalized Topological Simplification of Scalar Fields on Surfaces, IEEE Transactions on Visualization and Computer Graphics, vol.18, issue.12, 2012.
DOI : 10.1109/TVCG.2012.228

URL : https://hal.archives-ouvertes.fr/hal-01206877

M. Van-kreveld, R. Van-oostrum, C. Bajaj, V. Pasucci, and D. Schikore, Contour trees and small seed sets for isosurface traversal, Proceedings of the thirteenth annual symposium on Computational geometry , SCG '97, 1997.
DOI : 10.1145/262839.269238

A. Vintescu, F. Dupont, G. Lavoué, P. Memari, and J. Tierny, Conformal factor persistence for fast hierarchical cone extraction, Eurographics, p.2017
URL : https://hal.archives-ouvertes.fr/hal-01508966

G. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann, Topologycontrolled volume rendering, IEEE TVCG, 2007.

K. Weiler, Edge-based data structures for solid modeling in curvedsurface environments, IEEE Computer Graphics and Applications, 1985.
DOI : 10.1109/mcg.1985.276271

K. Weiss, L. D. Floriani, R. Fellegara, and M. Velloso, The PR-star octree, Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS '11, 2011.
DOI : 10.1145/2093973.2093987

K. Weiss, F. Iuricich, R. Fellegara, and L. D. Floriani, A primal/dual representation for discrete Morse complexes on tetrahedral meshes, Computer Graphics Forum, vol.30, issue.8, 2013.
DOI : 10.1111/j.1467-8659.2011.01853.x

A. Zomorodian, The tidy set, Proceedings of the 2010 annual symposium on Computational geometry, SoCG '10, 2010.
DOI : 10.1145/1810959.1811004

A. Zomorodian and G. Carlsson, Computing persistent homology, Disc. Compu. Geom, 2005.
DOI : 10.1145/997817.997870

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Fig, Discrete gradient pairing obtained with Alg. 1 in 3D in the star of a PL 1-saddle (left), 2-saddle (center) and maximum (right) Vertex-edge, edge-triangle and triangle-tetrahedron pairs are shown with blue, white and green balls-and-sticks. Only a few pairs is shown to avoid occlusion