E. Ichi, S. Leon, F. Vossier, L. Marchandin, H. Errachid et al., Microconductometric immunosensor for label-free and sensitive detection of Gram-negative bacteria, Biosensors and Bioelectronics, vol.54, pp.378-384, 2014.
DOI : 10.1016/j.bios.2013.11.016

URL : https://hal.archives-ouvertes.fr/hal-00915124

E. Eltzov and R. Marks, in a Single Step, Analytical Chemistry, vol.88, issue.12, pp.6441-6449, 2016.
DOI : 10.1021/acs.analchem.6b01034

E. Eltzov and R. Marks, Colorimetric stack pad immunoassay for bacterial identification, Biosensors and Bioelectronics, vol.87, pp.572-578, 2017.
DOI : 10.1016/j.bios.2016.08.044

B. Olsen, V. Munster, A. Wallensten, J. Waldenstrom, A. Osterhaus et al., Global Patterns of Influenza A Virus in Wild Birds, Science, vol.29, issue.4, pp.384-388, 2006.
DOI : 10.7589/0090-3558-29.4.568

S. Morse, J. Mazet, M. Woolhouse, C. Parrish, D. Carroll et al., Prediction and prevention of the next pandemic zoonosis, The Lancet, vol.380, issue.9857, pp.1956-1965, 2012.
DOI : 10.1016/S0140-6736(12)61684-5

D. Swayne, Avian influenza, 2009.
DOI : 10.1002/9780813818634

URL : https://hal.archives-ouvertes.fr/hal-01290641

M. Khanna, P. Kumar, K. Choudhary, B. Kumar, and V. Vijayan, Emerging influenza virus: A global threat, Journal of Biosciences, vol.13, issue.4, pp.475-482, 2008.
DOI : 10.1007/s12038-008-0066-z

A. Vasin, O. Temkina, V. Egorov, S. Klotchenko, M. Plotnikova et al., Molecular mechanisms enhancing the proteome of influenza A viruses: An overview of recently discovered proteins, Virus Research, vol.185, pp.53-63, 2014.
DOI : 10.1016/j.virusres.2014.03.015

B. Jagger, H. Wise, J. Kash, K. Walters, N. Wills et al., An Overlapping Protein-Coding Region in Influenza A Virus Segment 3 Modulates the Host Response, Science, vol.88, issue.8, pp.199-204, 2012.
DOI : 10.1099/vir.0.82809-0

Y. Muramoto, T. Noda, E. Kawakami, R. Akkina, and Y. Kawaoka, Identification of Novel Influenza A Virus Proteins Translated from PA mRNA, Journal of Virology, vol.87, issue.5, pp.2455-2462, 2013.
DOI : 10.1128/JVI.02656-12

M. Selman, S. Dankar, N. Forbes, J. Jia, and E. Brown, Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing, Emerging Microbes & Infections, vol.333, issue.11, p.42, 2012.
DOI : 10.1126/science.1222213

H. Wise, A. Foeglein, J. Sun, R. Dalton, S. Patel et al., A Complicated Message: Identification of a Novel PB1-Related Protein Translated from Influenza A Virus Segment 2 mRNA, Journal of Virology, vol.83, issue.16, pp.8021-8031, 2009.
DOI : 10.1128/JVI.00826-09

C. Chang, C. Lebarbenchon, M. Gauthier?clerc, L. Bohec, C. Beaune et al., Molecular surveillance for avian influenza A virus in king penguins (Aptenodytes patagonicus), Polar Biology, vol.80, issue.4, pp.663-665, 2009.
DOI : 10.1007/s00300-009-0587-4

URL : https://hal.archives-ouvertes.fr/hal-00496146

C. Chiou, T. Chen, K. Tsao, S. Shih, C. Huang et al., Detection of pandemic (H1N1) 2009 influenza virus by allele discrimination, Clinica Chimica Acta, vol.411, issue.15-16, pp.1080-1083, 2010.
DOI : 10.1016/j.cca.2010.04.002

. Vidic, Advanced biosensors for detection of pathogens related to livestock and poultry, Veterinary Research, vol.410, issue.1, p.11, 2017.
DOI : 10.1016/j.ab.2010.11.033

URL : https://hal.archives-ouvertes.fr/hal-01499743

C. Tseng, H. Tsai, and C. Chang, A Complete Molecular Diagnostic Procedure for Applications in Surveillance and Subtyping of Avian Influenza Virus, BioMed Research International, vol.185, issue.10, supplement, p.653056, 2014.
DOI : 10.1016/j.jviromet.2008.01.001

C. Baas, I. Barr, R. Fouchier, A. Kelso, and A. Hurt, Clinical severity of human infections with avian influenza 2013, Eurosurveillance, vol.18, p.20487, 2013.

C. Cho, M. Woo, J. Kim, S. Cheong, C. Lee et al., Evaluation of five rapid diagnostic kits for influenza A/B virus, Journal of Virological Methods, vol.187, issue.1, pp.51-56, 2013.
DOI : 10.1016/j.jviromet.2012.09.003

S. Hideshima, H. Hinou, D. Ebihara, R. Sato, S. Kuroiwa et al., Attomolar Detection of Influenza A Virus Hemagglutinin Human H1 and Avian H5 Using Glycan-Blotted Field Effect Transistor Biosensor, Analytical Chemistry, vol.85, issue.12, pp.5641-5644, 2013.
DOI : 10.1021/ac401085c

K. Hidari, S. Shimada, Y. Suzuki, and T. Suzuki, Binding kinetics of influenza viruses to sialic acid-containing carbohydrates, Glycoconjugate Journal, vol.254, issue.9, pp.583-590, 2007.
DOI : 10.1007/s10719-007-9055-y

E. Suenaga, H. Mizuno, and K. Penmetcha, Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance, Biosensors and Bioelectronics, vol.32, issue.1, pp.195-201, 2012.
DOI : 10.1016/j.bios.2011.12.003

S. Gopinath, K. Awazu, M. Fujimaki, and K. Shimizu, Neu5Ac??2,6Gal and Neu5Ac??2,3Gal receptor specificities on influenza viruses determined by a waveguide-mode sensor, Acta Biomaterialia, vol.9, issue.2, pp.5080-5087, 2013.
DOI : 10.1016/j.actbio.2012.09.027

T. Takahashi, S. Kawagishi, M. Masuda, and T. Suzuki, Binding kinetics of sulfatide with influenza A virus hemagglutinin, Glycoconjugate Journal, vol.9, issue.7, pp.709-716, 2013.
DOI : 10.1007/s10719-013-9477-7

C. Lee, M. Gaston, A. Weiss, and P. Zhang, Colorimetric viral detection based on sialic acid stabilized goldnanoparticles, Biosensors and Bioelectronics, vol.42, pp.236-241, 2013.
DOI : 10.1016/j.bios.2012.10.067

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964789

H. Dinh, X. Zhang, J. Sweeney, Y. Yang, Y. He et al., Glycan based Detection and Drug Susceptibility of Influenza Virus, Analytical Chemistry, vol.86, issue.16, pp.8238-8244, 2014.
DOI : 10.1021/ac501624v

M. Sajid, A. Kawde, and M. Daud, Designs, formats and applications of lateral flow assay: A literature review, Journal of Saudi Chemical Society, vol.19, issue.6, pp.689-705, 2015.
DOI : 10.1016/j.jscs.2014.09.001

X. Huang, Z. Aguilar, H. Xu, W. Lai, and Y. Xiong, Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review, Biosensors and Bioelectronics, vol.75, pp.166-180, 2016.
DOI : 10.1016/j.bios.2015.08.032

X. Li, D. Lu, Z. Sheng, K. Chen, X. Guo et al., A fast and sensitive immunoassay of avian influenza virus based on label-free quantum dot probe and lateral flow test strip, Talanta, vol.100, pp.1-6, 2012.
DOI : 10.1016/j.talanta.2012.08.041

F. Wu, H. Yuan, C. Zhou, M. Mao, Q. Liu et al., Multiplexed detection of influenza A virus subtype H5 and H9 via quantum dot-based immunoassay, Biosensors and Bioelectronics, vol.77, pp.464-470, 2016.
DOI : 10.1016/j.bios.2015.10.002

A. El-wahed, A. Weidmann, M. Hufert, and F. , Diagnostics-in-a-Suitcase: Development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus, Journal of Clinical Virology, vol.69, pp.16-21, 2015.
DOI : 10.1016/j.jcv.2015.05.004

D. Nidzworski, P. Pranszke, M. Grudniewska, E. Krol, and B. Gromadzka, Universal biosensor for detection of influenza virus, Biosensors and Bioelectronics, vol.59, pp.239-242, 2014.
DOI : 10.1016/j.bios.2014.03.050

T. Hewa, G. Tannock, D. Mainwaring, S. Harrison, and J. Fecondo, The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance, Journal of Virological Methods, vol.162, issue.1-2, pp.14-21, 2009.
DOI : 10.1016/j.jviromet.2009.07.001

A. Miodek, H. Sauriat?dorizon, C. Chevalier, B. Delmas, J. Vidic et al., Direct electrochemical detection of PB1-F2 protein of influenza A virus in infected cells, Biosensors and Bioelectronics, vol.59, pp.6-13, 2014.
DOI : 10.1016/j.bios.2014.02.037

A. Miodek, J. Vidic, H. Sauriat?dorizon, C. Richard, L. Goffic et al., Electrochemical Detection of the Oligomerization of PB1-F2 Influenza A Virus Protein in Infected Cells, Analytical Chemistry, vol.86, issue.18, pp.9098-9105, 2014.
DOI : 10.1021/ac5018056

L. Su, C. Chang, Y. Tseng, Y. Chang, Y. Li et al., Rapid and Highly Sensitive Method for Influenza A (H1N1) Virus Detection, Analytical Chemistry, vol.84, issue.9, pp.3914-3920, 2012.
DOI : 10.1021/ac3002947

Y. Fu, Z. Callaway, J. Lum, R. Wang, J. Lin et al., Exploiting Enzyme Catalysis in Ultra-Low Ion Strength Media for Impedance Biosensing of Avian Influenza Virus Using a Bare Interdigitated Electrode, Analytical Chemistry, vol.86, issue.4, pp.1965-1971, 2014.
DOI : 10.1021/ac402550f

R. Wang, J. Zhao, T. Jiang, Y. Kwon, H. Lu et al., Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1, Journal of Virological Methods, vol.189, issue.2, pp.362-369, 2013.
DOI : 10.1016/j.jviromet.2013.03.006

Z. Cui, Q. Ren, H. Wei, Z. Chen, J. Deng et al., Quantum dot???aptamer nanoprobes for recognizing and labeling influenza A virus particles, Nanoscale, vol.114, issue.6, pp.2454-2457, 2011.
DOI : 10.1039/c1nr10218d

C. Cheng, J. Dong, L. Yao, A. Chen, R. Jia et al., Potent inhibition of human influenza H5N1 virus by oligonucleotides derived by SELEX, Biochemical and Biophysical Research Communications, vol.366, issue.3, pp.670-674, 2008.
DOI : 10.1016/j.bbrc.2007.11.183

S. Jeon, B. Kayhan, T. Ben?yedidia, and R. Arnon, A DNA Aptamer Prevents Influenza Infection by Blocking the Receptor Binding Region of the Viral Hemagglutinin, Journal of Biological Chemistry, vol.279, issue.46, pp.48410-48419, 2004.
DOI : 10.1074/jbc.M409059200

J. Li, S. Chen, and D. Evans, Typing and Subtyping Influenza Virus Using DNA Microarrays and Multiplex Reverse Transcriptase PCR, Journal of Clinical Microbiology, vol.39, issue.2, pp.696-704, 2001.
DOI : 10.1128/JCM.39.2.696-704.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC87799

N. Kessler, O. Ferraris, K. Palmer, W. Marsh, and A. Steel, Use of the DNA Flow-Thru Chip, a Three-Dimensional Biochip, for Typing and Subtyping of Influenza Viruses, Journal of Clinical Microbiology, vol.42, issue.5, pp.2173-2185, 2004.
DOI : 10.1128/JCM.42.5.2173-2185.2004

D. Wang, L. Coscoy, M. Zylberberg, P. Avila, H. Boushey et al., Nonlinear partial differential equations and applications: Microarray-based detection and genotyping of viral pathogens, Proceedings of the National Academy of Sciences, vol.16, issue.2, pp.15687-15692, 2002.
DOI : 10.1006/mcpr.2001.0397

M. Townsend, E. Dawson, M. Mehlmann, J. Smagala, D. Dankbar et al., Experimental Evaluation of the FluChip Diagnostic Microarray for Influenza Virus Surveillance, Journal of Clinical Microbiology, vol.44, issue.8, pp.2863-2871, 2006.
DOI : 10.1128/JCM.00134-06

R. Liu, M. Lodes, T. Nguyen, T. Siuda, M. Slota et al., Validation of A Fully Integrated Microfluidic Array Device for Influenza A Subtype Identification and Sequencing, Analytical Chemistry, vol.78, issue.12, pp.4184-4193, 2006.
DOI : 10.1021/ac060450v

J. Caswell and M. Archambault, Mycoplasma bovis pneumonia in cattle, Animal Health Research Reviews, vol.145, issue.02, pp.161-186, 2007.
DOI : 10.1099/00221287-142-9-2463

J. Moon, A. Lee, H. Kang, E. Lee, Y. Joo et al., Antibiogram and Coagulase Diversity in Staphylococcal Enterotoxin-Producing Staphylococcus aureus from Bovine Mastitis, Journal of Dairy Science, vol.90, issue.4, pp.1716-1724, 2007.
DOI : 10.3168/jds.2006-512

J. Sargeant, K. Leslie, J. Shirley, B. Pulkrabek, and G. Lim, Sensitivity and Specificity of Somatic Cell Count and California Mastitis Test for Identifying Intramammary Infection in Early Lactation, Journal of Dairy Science, vol.84, issue.9, pp.2018-2024, 2001.
DOI : 10.3168/jds.S0022-0302(01)74645-0

R. Pemberton, J. Hart, and T. Mottram, An assay for the enzyme N-acetyl-????-d-glucosaminidase (NAGase) based on electrochemical detection using screen-printed carbon electrodes (SPCEs), The Analyst, vol.126, issue.11, pp.1866-1871, 2001.
DOI : 10.1039/b104874k

M. Akerstedt, L. Bjorck, P. Waller, K. Sternesjo, and A. , Biosensor assay for determination of haptoglobin in bovine milk, Journal of Dairy Research, vol.73, issue.03, pp.299-305, 2006.
DOI : 10.1017/S0022029906001774

P. Fu, Z. Sun, Z. Yu, Y. Zhang, J. Shen et al., in Serum, Analytical Chemistry, vol.86, issue.3, pp.1701-1709, 2014.
DOI : 10.1021/ac4042203

URL : https://hal.archives-ouvertes.fr/hal-00614896

M. Koskinen, J. Holopainen, S. Pyorala, P. Bredbacka, A. Pitkala et al., Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens, Journal of Dairy Science, vol.92, issue.3, pp.952-959, 2009.
DOI : 10.3168/jds.2008-1549

G. Pisoni, P. Moroni, S. Genini, A. Stella, P. Boettcher et al., Differentially expressed genes associated with Staphylococcus aureus mastitis in dairy goats, Veterinary Immunology and Immunopathology, vol.135, issue.3-4, pp.208-217, 2010.
DOI : 10.1016/j.vetimm.2009.11.016

K. Lee, J. Lee, S. Wang, L. Liu, M. Lee et al., Development of a Novel Biochip for Rapid Multiplex Detection of Seven Mastitis-Causing Pathogens in Bovine Milk Samples, Journal of Veterinary Diagnostic Investigation, vol.36, issue.4, pp.463-471, 2008.
DOI : 10.1046/j.1472-765x.2002.01074.x

L. Mujawar, A. Moers, W. Norde, and A. Van-amerongen, Rapid mastitis detection assay on porous nitrocellulose membrane slides, Analytical and Bioanalytical Chemistry, vol.278, issue.2, pp.7469-7476, 2013.
DOI : 10.1007/s00216-013-7192-7

M. Braiek, K. Rokbani, A. Chrouda, B. Mrabet, A. Bakhrouf et al., An Electrochemical Immunosensor for Detection of Staphylococcus aureus Bacteria Based on Immobilization of Antibodies on Self-Assembled Monolayers-Functionalized Gold Electrode, Biosensors, vol.7, issue.4, pp.417-426, 2012.
DOI : 10.1039/b313761a

M. Gibert, C. Jolivet?renaud, and M. Popoff, Beta2 toxin, a novel toxin produced by Clostridium perfringens, Gene, vol.203, issue.1, pp.65-73, 1997.
DOI : 10.1016/S0378-1119(97)00493-9

L. Petit, M. Gibert, and M. Popoff, Clostridium perfringens: toxinotype and genotype, Trends in Microbiology, vol.7, issue.3, pp.104-110, 1999.
DOI : 10.1016/S0966-842X(98)01430-9

F. Uzal, J. Vidal, B. Mcclane, and A. Gurjar, Clostridium Perfringens Toxins Involved in Mammalian Veterinary Diseases, The Open Toxinology Journal, vol.3, issue.1, p.24, 2010.
DOI : 10.2174/1875414701003010024

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917546

A. Keyburn, J. Boyce, P. Vaz, T. Bannam, M. Ford et al., NetB, a New Toxin That Is Associated with Avian Necrotic Enteritis Caused by Clostridium perfringens, PLoS Pathogens, vol.29, issue.2, p.26, 2008.
DOI : 0147-619X(1993)029[0233:CPCSVT]2.0.CO;2

L. Timbermont, F. Haesebrouck, R. Ducatelle, and F. Van-immerseel, Necrotic enteritis in broilers: an updated review on the pathogenesis, Avian Pathology, vol.16, issue.4, pp.341-347, 2011.
DOI : 10.1080/03079450500112195

P. Banerjee and A. Bhunia, Cell-based biosensor for rapid screening of pathogens and toxins, Biosensors and Bioelectronics, vol.26, issue.1, pp.99-106, 2010.
DOI : 10.1016/j.bios.2010.05.020

N. Sergeev, M. Distler, S. Courtney, S. Al?khaldi, D. Volokhov et al., Multipathogen oligonucleotide microarray for environmental and biodefense applications, Biosensors and Bioelectronics, vol.20, issue.4, pp.684-698, 2004.
DOI : 10.1016/j.bios.2004.04.030

S. Al?khaldi, D. Villanueva, and V. Chizhikov, Identification and characterization of Clostridium perfringens using single target DNA microarray chip, International Journal of Food Microbiology, vol.91, issue.3, pp.289-296, 2004.
DOI : 10.1016/j.ijfoodmicro.2003.07.009

A. Loy and L. Bodrossy, Highly parallel microbial diagnostics using oligonucleotide microarrays, Clinica Chimica Acta, vol.363, issue.1-2, pp.106-119, 2006.
DOI : 10.1016/j.cccn.2005.05.041

D. Volokhov, H. Kong, K. Herold, V. Chizhikov, and A. Rasooly, Oligonucleotide Microarrays for Identification of Microbial Pathogens and Detection of Their Virulence-Associated or Drug-Resistance Determinants, Methods Mol Biol, vol.671, pp.55-94, 2011.
DOI : 10.1007/978-1-59745-551-0_3

A. Palaniappan, W. Goh, D. Fam, G. Rajaseger, C. Chan et al., Label-free electronic detection of bio-toxins using aligned carbon nanotubes, Biosensors and Bioelectronics, vol.43, pp.143-147, 2013.
DOI : 10.1016/j.bios.2012.12.019

A. Sperlova and D. Zendulkova, Bluetongue: a review, Vet Med Czech, vol.56, pp.430-452, 2011.

W. Tabachnick, and Bluetongue-Virus Epidemiology in the United States, Annual Review of Entomology, vol.41, issue.1, pp.23-43, 1996.
DOI : 10.1146/annurev.en.41.010196.000323

I. Schwartz?cornil, P. Mertens, V. Contreras, B. Hemati, F. Pascale et al., Bluetongue virus: virology, pathogenesis and immunity, Veterinary Research, vol.39, issue.5, p.46, 2008.
DOI : 10.1051/vetres:2008023

URL : https://hal.archives-ouvertes.fr/hal-00902945

W. Wilson, P. Daniels, E. Ostlund, D. Johnson, R. Oberst et al., Diagnostic Tools for Bluetongue and Epizootic Hemorrhagic Disease Viruses Applicable to North American Veterinary Diagnosticians, Vector-Borne and Zoonotic Diseases, vol.15, issue.6, pp.364-373, 2015.
DOI : 10.1089/vbz.2014.1702

A. Weis, F. Liang, J. Gao, R. Barnard, and C. S. , RNA and DNA diag? nostics on microspheres: current and emerging methods, RNA DNA diagnostics, pp.205-224, 2015.
DOI : 10.1007/978-3-319-17305-4_10

J. Hanon, V. Vandenberge, M. Deruelle, D. Leeuw, I. et al., Inter-laboratory evaluation of the performance parameters of a Lateral Flow Test device for the detection of Bluetongue virus-specific antibodies, Journal of Virological Methods, vol.228, pp.140-150, 2016.
DOI : 10.1016/j.jviromet.2015.12.001

A. Danielli, N. Porat, A. A. Ehrlich, and M. , Rapid homogenous detection of the Ibaraki virus NS3 cDNA at picomolar concentrations by magnetic modulation, Biosensors and Bioelectronics, vol.25, issue.4, pp.858-863, 2009.
DOI : 10.1016/j.bios.2009.08.047

S. Frölich, J. Farhat, and M. Wallach, Designing strategies for the control of coccidiosis in chickens on poultry farms using modern diagnostic tools, Rep Parasitol, vol.3, pp.1-10, 2013.

C. Helmboldt and E. Bryant, The Pathology of Necrotic Enteritis in Domestic Fowl, Avian Diseases, vol.15, issue.4, pp.775-780, 1971.
DOI : 10.2307/1588866

A. Arakawa, E. Baba, and T. Fukata, Eimeria tenella Infection Enhances Salmonella typhimurium Infection in Chickens, Poultry Science, vol.60, issue.10, pp.2203-2209, 1981.
DOI : 10.3382/ps.0602203

E. Baba, T. Fukata, and A. Arakawa, Establishment and persistence of Salmonella typhimurium infection stimulated by Eimeria tenella in chickens, Res Vet Sci, vol.33, pp.95-98, 1982.

R. Gasser, W. Woods, J. Wood, L. Ashdown, G. Richards et al., Automated, fluorescence-based approach for the specific diagnosis of chicken coccidiosis, ELECTROPHORESIS, vol.83, issue.16, pp.3546-3550, 2001.
DOI : 10.1002/1522-2683(200109)22:16<3546::AID-ELPS3546>3.0.CO;2-8

S. Fernandez, A. Pagotto, M. Furtado, A. Katsuyama, A. Madeira et al., A multiplex PCR assay for the simultaneous detection and discrimination of the seven Eimeria species that infect domestic fowl, Parasitology, vol.127, issue.4, pp.317-325, 2003.
DOI : 10.1017/S0031182003003883

F. Carvalho, A. Wenceslau, M. Teixeira, and G. Albuquerque, Molecular diagnosis of Eimeria species affecting naturally infected Gallus gallus, Genetics and Molecular Research, vol.10, issue.2, pp.996-1005, 2011.
DOI : 10.4238/vol10-2gmr1043

G. Morris and R. Gasser, Biotechnological advances in the diagnosis of avian coccidiosis and the analysis of genetic variation in Eimeria, Biotechnology Advances, vol.24, issue.6, pp.590-603, 2006.
DOI : 10.1016/j.biotechadv.2006.06.001

H. Beck, D. Blake, M. Dardé, I. Felger, S. Pedraza?díaz et al., Molecular approaches to diversity of populations of apicomplexan parasites, International Journal for Parasitology, vol.39, issue.2, pp.175-189, 2009.
DOI : 10.1016/j.ijpara.2008.10.001

URL : https://hal.archives-ouvertes.fr/hal-00602917

V. Vrba, D. Blake, and M. Poplstein, Quantitative real-time PCR assays for detection and quantification of all seven Eimeria species that infect the chicken, Veterinary Parasitology, vol.174, issue.3-4, pp.183-190, 2010.
DOI : 10.1016/j.vetpar.2010.09.006

T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe et al., Loop-mediated isothermal amplification of DNA, Nucleic Acids Research, vol.28, issue.12, pp.63-63, 2000.
DOI : 10.1093/nar/28.12.e63

C. Barkway, R. Pocock, V. Vrba, and D. Blake, Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens, BMC Veterinary Research, vol.7, issue.1, p.67, 2011.
DOI : 10.1016/S0020-7519(01)00234-X

C. Barkway, R. Pocock, V. Vrba, and D. Blake, Loop?mediated isother? mal amplification (LAMP) assays for the species?specific detection of Eimeria that infect chickens, J Vis Exp, vol.96, p.52552, 2015.

T. Knight?jones and J. Rushton, The economic impacts of foot and mouth disease ??? What are they, how big are they and where do they occur?, Preventive Veterinary Medicine, vol.112, issue.3-4, pp.161-173, 2013.
DOI : 10.1016/j.prevetmed.2013.07.013

S. Jamal and G. Belsham, Foot-and-mouth disease: past, present and future, Veterinary Research, vol.44, issue.1, p.116, 2013.
DOI : 10.1016/j.vaccine.2008.09.021

K. Gorna, A. Relmy, A. Romey, S. Zientara, S. Blaise?boisseau et al., Establishment and validation of two duplex one-step real-time RT-PCR assays for diagnosis of foot-and-mouth disease, Journal of Virological Methods, vol.235, pp.168-175, 2016.
DOI : 10.1016/j.jviromet.2016.03.020

V. Fowler, J. Bashiruddin, G. Belsham, C. Stenfeldt, A. Bøtner et al., Characteristics of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion in experimentally infected cattle, Veterinary Microbiology, vol.169, issue.1-2, pp.58-66, 2014.
DOI : 10.1016/j.vetmic.2013.12.008

S. Reid, N. Ferris, A. Brüning, G. Hutchings, Z. Kowalska et al., Development of a rapid chromatographic strip test for the pen-side detection of foot-and-mouth disease virus antigen, Journal of Virological Methods, vol.96, issue.2, pp.189-202, 2001.
DOI : 10.1016/S0166-0934(01)00334-2

R. Waters, V. Fowler, B. Armson, N. Nelson, J. Gloster et al., Preliminary Validation of Direct Detection of Foot-And-Mouth Disease Virus within Clinical Samples Using Reverse Transcription Loop-Mediated Isothermal Amplification Coupled with a Simple Lateral Flow Device for Detection, PLoS ONE, vol.147, issue.8, p.105630, 2014.
DOI : 10.1371/journal.pone.0105630.s001

C. Friedman, J. Neimann, H. Wegener, and R. Tauxe, Epidemiol? ogy of Campylobacter jejuni infections in the United States and other industrialized nations. Campylobacter, pp.121-138, 2000.

J. Lin, Control in Poultry, Foodborne Pathogens and Disease, vol.6, issue.7, pp.755-765, 2009.
DOI : 10.1089/fpd.2008.0247

J. Buzby, B. Allos, and T. Roberts, Guillain???Barr?? Syndrome, The Journal of Infectious Diseases, vol.176, issue.s2, pp.192-197, 1997.
DOI : 10.1086/513785

J. Buzby and T. Roberts, Economic costs and trade impacts of micro? bial foodborne illness, World Health Stat Q, vol.50, pp.57-66, 1996.

P. Wangroongsarb, C. Jittaprasatsin, S. Suwannasing, K. Suthivarakom, and T. Khamthalang, Identification of genus Campylobacter and four enteropathogenic Campylobacter species by PCR, J Trop Med Parasitol, vol.34, pp.17-29, 2011.

F. Barletta, E. Mercado, A. Lluque, J. Ruiz, T. Cleary et al., Multiplex Real-Time PCR for Detection of Campylobacter, Salmonella, and Shigella, Journal of Clinical Microbiology, vol.51, issue.9, pp.2822-2829, 2013.
DOI : 10.1128/JCM.01397-13

F. Cecchini, M. Manzano, Y. Mandabi, E. Perelman, and R. Marks, Chemiluminescent DNA optical fibre sensor for Brettanomyces bruxellensis detection, Journal of Biotechnology, vol.157, issue.1, pp.25-30, 2012.
DOI : 10.1016/j.jbiotec.2011.10.004

K. Jia, T. Toury, and R. Ionescu, Fabrication of an atrazine acoustic immunosensor based on a drop?deposition procedure, IEEE Trans Ultrason Ferroelectr Freq Control, vol.59, pp.2015-2021, 2012.

T. Kubi?árová, M. Fojta, J. Vidic, M. Tomschik, D. Suznjevic et al., Voltammetric and Chronopotentiometric Measurements with Nucleic Acid-Modified Mercury Film on a Glassy Carbon Electrode, Electroanalysis, vol.12, issue.17, pp.1390-1396, 2000.
DOI : 10.1002/1521-4109(200011)12:17<1390::AID-ELAN1390>3.0.CO;2-G

L. Lu and S. Jun, Evaluation of a microwire sensor functionalized to detect Escherichia coli bacterial cells, Biosensors and Bioelectronics, vol.36, issue.1, pp.257-261, 2012.
DOI : 10.1016/j.bios.2012.04.033

M. Manzano, P. Vizzini, K. Jia, P. Adam, and R. Ionescu, Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine, Sensors and Actuators B: Chemical, vol.223, pp.295-300, 2016.
DOI : 10.1016/j.snb.2015.09.099

M. Manzano, F. Cecchini, M. Fontanot, L. Iacumin, G. Comi et al., OLED-based DNA biochip for Campylobacter spp. detection in poultry meat samples, Biosensors and Bioelectronics, vol.66, pp.271-276, 2015.
DOI : 10.1016/j.bios.2014.11.042

L. Zhang, O. Wang, Z. Cheng, and T. Huang, Silica?coated magne? tostrictive biosensors for real?time detection of Campylobacter jejuni in washing water, In: Meeting abstracts, p.1832, 2015.

D. Wei, O. Oyarzabal, T. Huang, S. Balasubramanian, S. Sista et al., Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni, Journal of Microbiological Methods, vol.69, issue.1, pp.78-85, 2007.
DOI : 10.1016/j.mimet.2006.12.002

T. Gnanaprakasa, O. Oyarzabal, E. Olsen, V. Pedrosa, and A. Simonian, Tethered DNA scaffolds on optical sensor platforms for detection of hipO gene from Campylobacter jejuni, Sensors and Actuators B: Chemical, vol.156, issue.1, pp.304-311, 2011.
DOI : 10.1016/j.snb.2011.04.037

M. Wadl, T. Pölzler, G. Flekna, L. Thompson, J. Slaghuis et al., Easy-to-Use Rapid Test for Direct Detection of Campylobacter spp. in Chicken Feces, Journal of Food Protection, vol.72, issue.12, pp.2483-2488, 2009.
DOI : 10.4315/0362-028X-72.12.2483

S. Alcaine, Y. Soyer, L. Warnick, W. Su, S. Sukhnanand et al., Multilocus 519 sequence typing supports the hypothesis that cow?and human?associated Salmonella 520 isolates represent distinct and overlapping populations, Appl Environ Microbiol, vol.521, pp.7575-7585, 2006.

V. Jasson, L. Jacxsens, P. Luning, A. Rajkovic, and M. Uyttendaele, Alternative microbial methods: An overview and selection criteria, Food Microbiology, vol.27, issue.6, pp.710-730, 2010.
DOI : 10.1016/j.fm.2010.04.008

K. Lee, M. Runyon, T. Herrman, R. Phillips, and J. Hsieh, Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety, Food Control, vol.47, pp.264-276, 2015.
DOI : 10.1016/j.foodcont.2014.07.011

Y. Chai, S. Li, S. Horikawa, M. Park, V. Vodyanoy et al., Rapid and Sensitive Detection of Salmonella Typhimurium on Eggshells by Using Wireless Biosensors, Journal of Food Protection, vol.75, issue.4, pp.631-636, 2012.
DOI : 10.4315/0362-028X.JFP-11-339

O. Bulut, Development of nucleic acid based lateral flow immu? nochromatographic test platform for salmonella detection, 2014.

Z. Fang, W. Wu, X. Lu, and L. Zeng, Lateral flow biosensor for DNA extraction-free detection of salmonella based on aptamer mediated strand displacement amplification, Biosensors and Bioelectronics, vol.56, pp.192-197, 2014.
DOI : 10.1016/j.bios.2014.01.015

G. Kim, J. Moon, C. Moh, and J. Lim, A microfluidic nano-biosensor for the detection of pathogenic Salmonella, Biosensors and Bioelectronics, vol.67, pp.243-247, 2015.
DOI : 10.1016/j.bios.2014.08.023

Z. Cai, Y. Song, Y. Wu, Z. Zhu, C. Yang et al., An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA, Biosensors and Bioelectronics, vol.41, pp.783-788, 2013.
DOI : 10.1016/j.bios.2012.10.002

M. Rochelet, S. Solanas, C. Grossiord, P. Maréchal, C. Résa et al., A thin layer-based amperometric enzyme immunoassay for the rapid and sensitive diagnosis of respiratory syncytial virus infections, Talanta, vol.100, pp.139-144, 2012.
DOI : 10.1016/j.talanta.2012.07.088

J. Perez, E. Vargis, P. Russ, F. Haselton, and D. Wright, Detection of respiratory syncytial virus using nanoparticle amplified immuno-polymerase chain reaction, Analytical Biochemistry, vol.410, issue.1, pp.141-148, 2011.
DOI : 10.1016/j.ab.2010.11.033