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Abstract.
We present a novel root observation apparatus capable of measuring the mechanical evolution of both the root
network and the surrounding granular medium. The apparatus consists of 11 parallel growth frames, two of
them being shearable, where the roots grow inside a photo-elastic or glass granular medium sandwiched be-
tween two pieces of glass. An automated system waters the plant and image each frame periodically in white
light and between crossed polarisers. This makes it possible to follow (i) the root tips and (ii) the grain dis-
placements as well as (iii) their inner pressure. We show how a root networks evolve in a granular medium and
how it can mechanically stabilize it. This constitutes a model experiment to move forward in the understanding
of the complex interaction between root growth and surrounding soil mechanical evolution.

1 Introduction

When growing, plants and trees adapt their morphology
according to the mechanical and topological properties of
the surrounding soil. Conversely, they change the me-
chanical and chemical properties of this environment [1].
Depending on the soil density or confining pressure, on
the size and architecture of the voids between solid con-
stituents of the soil, the roots will be blocked or grow far-
ther [2–4], either by curving, changing their direction or by
stressing the soil material [5, 6]. Therefore, the competing
effects of soil mechanical impedance (mechanical prop-
erty) [7] and penetrating capacities of the plant (biological
property) lead to different strategies for the root develop-
ment which can be optimized, and which in return mod-
ifies differently the soil physical properties. Indeed, the
root system architecture (RSA) impacts plant fitness and
crop yield by facilitating efficient nutrient and water up-
take from the soil. A better understanding of the effects of
soil on RSA could improve crop productivity by matching
roots to their soil environment [8]. Conversely, roots can
change soil aeration, local packing fraction and constituent
organization [9, 10] but also its repartition of water and co-
hesion [11, 12]. Hence, the mechanism of root growth in
soil is a key issue to understand both how to improve plant
development and how to improve grounds properties like
stability for example. When a plant grows its roots have
an effect on the stress development in the surrounding soil
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considered as a granular material. Conversely the induced
pressure of the granular medium on the roots can affect the
root network growth. We want to understand this complex
root-grains, biological and mechanical, feedback loop be-
tween plant roots and soil structure and composition [13].

At the local scale, [5, 6] measured the force applied
by a growing root tip on an obstacle. At the same scale,
[1] have also studied the stress induced by a root when
it goes through the gap between 2 bidimensional photo-
elastic grains. At the global scale [14] attempted to ob-
serve the root network in a packing of such particles. But
root tip cannot initiate a path if there is no gap between
grains, which is the case for a 2D dense packing of cylin-
ders. From a numerical perspective, [11, 15] have mod-
elled root network architectures in different soils while
[16–18] have studied the tree anchorage and soil stabiliza-
tion phenomenons.

Still, no experimental studies have been carried out to
directly observe root network dynamics and surrounding
stress modification while imposing specific grain config-
urations and density or specific mechanical loadings. It
is therefore of primary importance to design a model ex-
periment to understand progressively the intricate soil-root
system from a mechanical point of view [1]. In this pa-
per, we present a novel set-up which permits to observe
the development of chickpea (cicer arietinum L.) root net-
works in a 2D granular material constituted of (i) home
made bidisperse photoelastic discs or of (ii) glass beads.
The photo-elastic particles (i) are molded with a groove on
their edges so that the root tips are able to initiate a path
between grains. Nevertheless the groove is small enough
to observe a photoelastic signal when the root get thicker.



The position of the grains, the inter-granular spacing as
well as the nature of the system confinement can be im-
posed in this set-up. The container of the granular mate-
rial can be (i) an open cell, (ii) a confined cell and even a
(iii) shearable cell. In this last case a slow shear loading
can be imposed during the root growth or at the end of the
development to test the stabilization effect on the granular
medium. In the automated experimental apparatus several
root development cells are treated in parallel to increase
the statistical meaning of the observations. For each cell,
each hour a picture is taken with and without polarized
light. Then the evolution of the root network is followed
as well as the position and pressure inside each particle by
mean of classical image processing [19] and photo-elastic
techniques [20, 21].

2 Experimental set-up

2.1 Growth frames

In the experimental set-up, we observe the growth of
chickpea root networks in quasi-2D granular materials.
Chickpea has been chosen because it is robust, the thick-
ness of the roots (∼ 1mm) is about the depth of the 2D
medium (4mm), the root network is not too dense, it grows
relatively rapidly (few weeks) and the seed is large enough
to feed the plant during the first cycle of the growth. In
a first configuration, these chickpeas are grown in simple
15cm2 cells between 2 pieces of glass separated by 4mm,
as presented in fig.1-A. In a second configuration, as pre-
sented in fig.1-B the left and right edges of the cell are
movable so that the whole system (grains and roots) can
be sheared by mean of a stepper motor once the root net-
work is fully developed. In both case the plants grow in
deionized water.

As shown in fig.1-A, to observe the growth, periodi-
cally (each hour) the cells are lit from the back with a flat
circularly polarized light and imaged from the front with a
20Mp CCD camera1 with and without a crossed polariser
in front of the camera lens. To observe the growth of sev-
eral plants at a time, in several configurations, and to in-
crease the statistical representativity of our results, 11 cells
are observed at the same time (2 of them being shearable).
As presented in fig.1-C the growth frames lay on a bar in
parallel and the imaging part of the device, moved by a
stepper motor, slides in front of each cell to take pictures.
The whole system, including the light control is automated
as well as a watering system which maintain the deionized
water level constant in each cell (not shown here).

2.2 Granular material

These chickpeas are grown either in bidisperse photo-
elastic discs (7 and 9mm in diameter) or in bidisperse glass
beads (2 and 4mm in diameter). In the first case to avoid
the problem with cylindrical particles pointed out by [14],
as presented in fig.2-C, we used particles with a 0.5mm2

1Canon R� 70D

Figure 1. Experimental set-up. A: Imaging principle. The plant
growths sandwiched between two pieces of glass in a 4mm thick
flat frame with 15cm width and 15cm height. The roots growth
in a 2D granular material constituted of bidisperse glass beads
or photo-elastic cylinders covered with deionized water. Period-
ically, the system is imaged by a front camera with a back-light
with and without cross polarisers. B: Shearable growth frame.
Some plants have been grown in frames equipped with a par-
allelogram mechanism to shear the granular medium when the
growth is ended. The mechanism is actuated by a stepper mo-
tor. C: Complete set-up. The whole set-up is constituted of 11
growth frame (2 shearable, 9 simple) laying in parallel. Periodi-
cally a robotic harm slides in front of each frame to image it with
and without polariser. Lighting is also controlled for pictures.

Figure 2. Photo-elastic grain molding. A: Aluminium counter
mold of a set of 34 bidisperse particles. Particles are 4mm
thick cylinders of diameter 7mm and 9mm with a 0.5mm deep
and 0.5mm wide groove on the edge (see C). B: Silicone mold
made from the aluminium counter mold. Colored polyurethane is
molded in each alveolus. C: Photo-elastic polyurethane particle.
D: Collection of compressed particles imaged between circular
cross polarisers. Colored regions of the particles show highly
stressed areas.



Figure 3. A, B, C: Development of a chickpea root network ci-
cer arietinum L. in a bi-disperse quasi-monolayer of glass beads
(2 and 4mm diameters). After the main root network growth (A
and B), a secondary one develops (C). Root oscillates betweens
the beads. C, D, and E: Development of two chickpea root net-
works in a bi-disperse layer of photo-elastic particles. G, H and
I: The system is then sheared quasistatically. The root networks
avoid the top grains to rearrange and make the granular medium
jammed. For A to F, pictures are taken only with back-lighting
while for pictures G to I the system is between crossed polarisers.

groove on the edge. Hence root tip can initiate a way be-
tween two adjacent grains and propagate deep inside the
granular medium. These grooved photo-elastic particles
are molded from polyurethane using the technique first in-
troduced by [19]. As shown in fig.2-A a counter mold is
machined out of aluminium. Then, a mold is made from
silicon rubber2 (see fig.2-B) and colored polyurethane3 is
molded in each hole. As shown in fig.2-D the photo-
elasticity of these particles is very good and classical tech-
niques for photo-elastic granular materials pioneered by
[20, 21] can by used.

3 Results and discussions

In fig.3-A, B and C we show the development of a chick-
pea root network in a bi-disperse quasi-monolayer of glass
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beads. After one day, the main root is already embedded in
the granular material and secondary roots appear at the ba-
sis of the seed. Two days later, the full main root network
is set and has moved the grains around the seed. After
one week, the RSA is at its maximum of expansion with-
out more nutriment. Secondary roots have grown from
the main network and we clearly observe the root tortu-
osity imposed by the granular arrangement. Experiment is
stopped and root dynamics can be studied.

In fig.3-D, E and F we show the development of two
chickpea root networks in a bi-disperse layer of photo-
elastic particles. Compared to the glass bead case the
growth is much slower and plants need to be fed: deion-
ized water is oxygenated and enriched. In this case it takes
more then 3 weeks for the RSA to be fully developed. Tor-
tuosity is also qualitatively lower since grains are larger
than glass beads. After 23 days, the system is slowly and
continuously sheared of 21% during 4 days. During this
process even if the granular system is opened on its top
and free to rearrange, a strong force network builds up.
We see in fig.3-G, H and I that the root networks prevent
the grains from rearranging and releasing stress. This cre-
ate force chains forming from top left to the bottom right
of the cell and from the left to the roots. This shows how
the chickpea RSA can stabilize a granular system.

As presented in fig.3-A to F the back light pictures per-
mit to observe the root network with a high contrast. This
makes the detection of the RSA easy by thresholding the
pictures. Hence, fig.4-A shows the position of the root net-
work between photo-elastic grains once the RSA is fully
developed. Just like already done in gels by [22], a home-
made code as been written to detect and track the root tips
during the development of the RSA. Blue and red lines in
the figure are two examples of the path followed by two
root tips. In both cases, we observe that the path does
not follow the final root architecture. This means the root
widely rearranges during its growing process either due
to granular displacement or to the growing of secondary
roots. Root-grain interaction is thus a dynamical process
which needs to be followed on the long term. From the
evolution of the root tip position, in fig.4-C, we plot the
root speed for the two selected roots of the two plants. We
see that the growth speed is not constant and not equiva-
lent for both plants. However, it is difficult to analyse if
this speed variation is due to biological or mechanical pa-
rameters. We also observed root tip circumnutation [23] in
2D (not shown here), how it is affected by the surrounding
granular medium, how it changes the granular local orga-
nization and how it creates the root tortuosity.

Finally, from the back light pictures (see fig.3-F for
instance), using image processing tools designed by [19],
we detect the grain positions and sizes, and from the po-
larized pictures (see fig.3-I for instance) we compute the
grain pressures in terms of G2 as explained in [19–21]. For
a system with a RSA fully developed and 21% sheared,
fig.4-B shows the pressure in each grains. We observe
force chains and measure the highest pressure near the root
network. This is another observation of the fact that the
RSA stabilizes the granular system.



Figure 4. A: Root tip path. The black and white back ground
shows the root networks of two chickpeas grown in photo-elastic
discs just before the system is sheared. Blue and red line shows
the path followed by two root tips (arbitrarily chosen). We see
that due to the rearrangement of the root and grains the final root
does not follow exactly the root tip path. B: Pressure measure-
ment. For the maximum strain, when the root networks are fully
developed, grain position has been tracked and pressure mea-
sured in each of them as G2 [20]. By sake of clarity, grains with
pressure lower than a certain value (2) are not presented. The
force chains show the stabilization effect of the root networks C:
Root tip speed. For root tips presented in blue en red in A, the
evolution of their speed is shown during the plant growth before
shearing the system. We see that the growth speed is not constant
and not equivalent for both plants.

4 Conclusion

We have described a novel experimental system that can
observe the growth of chickpea root networks in dif-
ferent granular materials (namely grooved photo-elastic
discs and glass beads) for different system confinements
(namely open frames and sheared frames). The growth
is observed both in white light and between crossed po-
larisers. This permits to measure the evolution of the RSA
and more specifically to follow the root tips. The grain
rearrangements and the evolution of their inner pressure
is also recorded. This constitutes a model experiment to
move forward in the understanding of the complex interac-
tion between root growth and surrounding soil mechanical
evolution.
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