W. S. Anglin, Using Pythagorean Triangles to Approximate Angles, The American Mathematical Monthly, vol.95, issue.6, pp.540-541, 1988.
DOI : 10.2307/2322760

K. Fredriksson, Rotation Invariant Template Matching, 2001.
DOI : 10.1007/978-3-540-24698-5_8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.114.410

A. I. Galarza and J. Seade, Introduction to Classical Geometries, Birkhäuser, 2007.

D. J. Hunter, Essentials of Discrete Mathematics, Second Edition, Jones & Bartlett Learning, 2010.

M. A. Jacob and E. Andres, On discrete rotations, 5th Int. Workshop on Discrete Geometry for Computer Imagery, pp.161-174, 1995.

B. Nouvel and E. Rémila, On Colorations Induced by Discrete Rotations, DGCI, Proceedings, Lecture Notes in Computer Science, pp.174-183, 2003.
DOI : 10.1007/978-3-540-39966-7_16

B. Nouvel and E. Rémila, Characterization of Bijective Discretized Rotations, IWCIA, Proceedings, Lecture Notes in Computer Science, pp.248-259
DOI : 10.1007/978-3-540-30503-3_19

B. Nouvel and E. Rémila, Configurations induced by discrete rotations: periodicity and quasi-periodicity properties, Discrete Applied Mathematics, vol.147, issue.2-3, pp.325-343, 2005.
DOI : 10.1016/j.dam.2004.09.018

URL : http://doi.org/10.1016/j.dam.2004.09.018

B. Nouvel and E. Rémila, Incremental and Transitive Discrete Rotations, In: IWCIA, Lecture Notes in Computer Science, vol.4040, pp.199-213, 2006.
DOI : 10.1007/11774938_16

URL : https://hal.archives-ouvertes.fr/hal-00016037

K. Pluta, G. Moroz, Y. Kenmochi, and P. Romon, Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image, In: CASC, Lecture Notes in Computer Science, vol.21, issue.11, pp.426-443, 2016.
DOI : 10.1007/978-3-319-32360-2_28

URL : https://hal.archives-ouvertes.fr/hal-01334257

K. Pluta, P. Romon, Y. Kenmochi, and N. Passat, Bijective Rigid Motions of the 2D Cartesian Grid, In: DGCI, Lecture Notes in Computer Science, vol.9647, pp.359-371, 2016.
DOI : 10.1007/978-3-319-32360-2_28

URL : https://hal.archives-ouvertes.fr/hal-01275598

T. Roussillon and D. Coeurjolly, Characterization of bijective discretized rotations by Gaussian integers URL https, Research report, LIRIS UMR CNRS, vol.5205, 2016.

Y. Thibault, Rotations in 2D and 3D discrete spaces, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00596947

Y. Thibault, Y. Kenmochi, and A. Sugimoto, Computing upper and lower bounds of rotation angles from digital images, Pattern Recognition, vol.42, issue.8, pp.1708-1717, 2009.
DOI : 10.1016/j.patcog.2008.12.027

URL : https://hal.archives-ouvertes.fr/hal-00622416

A. Yilmaz, O. Javed, and M. Shah, Object tracking, ACM Computing Surveys, vol.38, issue.4, 2006.
DOI : 10.1145/1177352.1177355

. Fig, 20 Neighborhood motion maps of G U 2 , as label maps, for ? ? (0, ? 1 ) Each label (i, j) corresponds to the frame f ? i, j . Neighborhood motion maps which correspond to non-injective zones are marked by brown, dashed, frames

. Fig, 21 Neighborhood motion maps G U 2 , as label maps, for ? ? (? 1 , ? 2 ) that differ from those for ? ? (0, ? 1 ) Each label (i, j) corresponds to the frame f ? i, j . Neighborhood motion maps which correspond to non-injective zones are marked by brown, dashed, pp.14-15

. Fig, 22 Neighborhood motion maps G U 2 , as label maps, for ? ? (? 2 , ? 3 ) that differ from those for ? ? (? 1 , ? 2 ) Each label (i, j) corresponds to the frame f ? i, j . Neighborhood motion maps which correspond to non-injective zones are marked by brown, dashed, frames, pp.4-4

. Fig, 23 Neighborhood motion maps G U 2 , as label maps, for ? ? (? 3 , ? 4 ) that differ from those for ? ? (? 2 , ? 3 ) Each label (i, j) corresponds to the frame f ? i, j . Neighborhood motion maps which correspond to non-injective zones are marked by brown, dashed, frames