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Effective limit theorems for
Markov chains with a spectral gap

Benoît R. Kloeckner *

November 30, 2017

Applying quantitative perturbation theory for linear operators, we prove
non-asymptotic limit theorems for Markov chains whose transition kernel has
a spectral gap in an arbitrary Banach algebra of functions X . The main
results are concentration inequalities and Berry-Esseen bounds, obtained as-
suming neither reversibility nor “warm start” hypothesis: the law of the first
term of the chain can be arbitrary. The spectral gap hypothesis is basically a
uniform X -ergodicity hypothesis, and when X consist in regular functions
this is weaker than uniform ergodicity. We show on a few examples how
the flexibility in the choice of function space can be used. The constants
are completely explicit and reasonable enough to make the results usable in
practice, notably in MCMC methods.

1 Introduction

General framework. Let (𝑋𝑘)𝑘≥0 be a Markov chain taking value in a general state
space Ω, and let 𝜙 : Ω → R be a function (the “observable”). Under rather general
assumptions, there is a unique stationary measure 𝜇0 and it can be proved that almost
surely1

1

𝑛

𝑛∑︁
𝑘=1

𝜙(𝑋𝑘) → 𝜇0(𝜙) (1)

Then a natural question is to ask at what speed this convergence occurs. In many cases,
one can prove a Central Limit Theorem, showing that the convergence has the order

*Université Paris-Est, Laboratoire d’Analyse et de Matématiques Appliquées (UMR 8050), UPEM,
UPEC, CNRS, F-94010, Créteil, France

1Here and in the sequel, we write indifferently 𝜇(𝑓) or
∫︀
𝑓 d𝜇 for the integral of 𝑓 with respect to the

measure 𝜇.
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1/
√
𝑛. But this is again an asymptotic result, and one is led to ask for non-asymptotic

bounds, both for the Law of Large Numbers (1) (“concentration inequalities”) and for
the CLT (“Berry-Esseen bounds”).

A word on effectivity. In this paper, the emphasis will be on effective bounds, i.e.
given an explicit sample size 𝑛, one should be able to deduce from the bound that the
quantity being considered lies in some explicit interval around its limit with at least
some explicit probability. In other words, the result should be non-aymptotic and all
constants should be made explicit. The motivations for this are at least twofold.

First, in practical applications of the Markov chain Monte-Carlo (MCMC) method,
where one uses (1) to estimate the integral 𝜇0(𝜙), effective results are needed to obtain
proven convergence of a given precision. MCMC methods are important when the mea-
sure of interest is either unknown, or difficult to sample independently (e.g. uniform
in a convex set in large dimension), but happens to be the stationary measure for an
easily simulated Markov chain. The Metropolis-Hastings algorithm for example makes
it possible to deal with an absolutely continuous measure whose density is only known
up to the normalization constant.

A second, more theoretical motivation is that the constants appearing in limit theorem
depend on a number of parameters (e.g. the mixing speed of the Markov chain, the law
of 𝑋0, etc.). When the constants are not made explicit, one may not be able to deduce
from the result how the convergence speed changes when some parameter approaches
the limit of the domain where the result is valid (e.g. when the spectral gap tend to 0).

There are very many works proving concentration inequalities and (to a lesser extent)
Berry-Esseen bounds for Markoc chains, under a variety of assumptions, and we will
only mention a small number of them. To explain the purpose of this article, let us
discuss briefly three directions.

Previous works (1): total variation convergence. The first direction is mainly mo-
tivated by MCMC; we refer to [RR+04] for a detailed introduction to the topic.

The Markov chains being considered are usually ergodic (either uniformly, which in
the setting of this paper corresponds to a spectral gap on 𝐿∞, or geometrically); one
measures difference between probability measure using the total variation distance, and
the limit theorems are typically obtained for 𝐿∞ observables 𝜙 (the emphasis here is not
on the boundedness, but on the lack of regularity assumption). Effective concentration
inequalities have been obtained in this setting, for example in [GO02] and [KLMM05]
which we shall discuss below. Berry-Esseen bounds have been proved in [Bol82], but
effective results are less common.

Previous works (2): the spectral method. The second direction grew from the “Na-
gaev method” [Nag57, Nag61], a functional approach where perturbative spectral theory
enables one to adapt the classical Fourier proofs of limit theorems, from independent
identically distributed random variable to suitable Markov chains. This approach is
described in [HH01] in a quite general setting, and is especially popular in dynamical
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systems (the statistical properties of certain dynamical systems can be studied more eas-
ily by reversing time, and considering a Markov chain jumping randomly along backward
orbits).

There, the Markov chain being considered are often not ergodic in the total variation
sense, but instead their transition kernel has a spectral gap in a space X made of regular
functions (one sometimes say such a Markov chain is X -ergodic). The limit theorems
are then restricted to observables 𝜙 ∈ X , and the speed of convergence is driven by the
regularity of 𝜙 as much as by its magnitude. Due to the use of perturbation theory of
operator, in most cases this method has not yielded effective results.

Note that the spectral method can be applied without regularity assumptions, taking
e.g. X = 𝐿2(𝜇0) or X = 𝐿∞(Ω) (or variants, see [KM12]), thus the present direction
intersects the previous one.

There are (at least) two exceptions to the aforementioned lack of effectiveness. When
X is a Hilbert space, by symetrization of the transition kernel one can use well-known
effective perturbation results. In this way, Lezaud obtains effective concentration in-
equalities and Berry-Esseen bounds [Lez98, Lez01], see also [Pau15]. Both work in
𝐿2(𝜇0), restricting accordingly the Markov chains that can be considered. Second Dubois
[Dub11] gave what seems to be the first effective Berry-Esseen inequality in a dynamical
context, and we shall compare the present Berry-Esseen inequality with his.

Previous works (3): optimal transportation. The third direction is quite recent:
Joulin and Ollivier [JO10] used ideas from optimal transportation to prove very effi-
ciently effective concentration results under a positive curvature hypothesis; this corre-
sponds to a spectral gap with constant 1 on the space X = Lip of Lipschitz functions.
Paulin [Pau16] extended this method to a spectral gap “with arbitrary constant” in the
terminology set up below.

This method is very appealing, but is restricted to a single, pretty restrictive function
space constraining both the Markov chains and the observables that can be considered;
we will see in examples below that being able to change the function space can be useful
to get good constants even when [JO10] can be applied. Moreover, this method seems
unable to provide higher-order limit theorem such as the CLT or Berry-Esseen bounds.

Contributions of this work. The goal of this article is to combine recent effective
perturbation results [Klo17b] with the Nagaev method to obtain effective concentra-
tion inequalities and Berry-Esseen bounds for a wealth of Markov chains. Our main
hypothesis will be a spectral gap on some function space X , with the sole restriction
that we need X to be a Banach algebra (this will in particular restrict us to bounded
observables). We obtain three main results:

∙ a general concentration inequality (Theorem A),

∙ a variant which, under a bound on the dynamical variance of (𝜙(𝑋𝑘))𝑘≥0, gives an
optimal rate for small enough deviations (Theorem B),

∙ a general Berry-Esseen bound (Theorem C).

3



Let us give a few examples where our results apply:

∙ taking X = 𝐿∞(Ω), our assumptions essentially reduce to uniform ergodicity of
the Markov chain and boundedness of the observable, a very classical case. We
obtain a convergence rate proportional to the spectral gap, improving on [GO02,
KLMM05] where the rate is proportional to the square of the spectral gap (see
Section 3.2 and especially Theorem 3.3),

∙ taking X = Lip(Ω), our assumptions essentially reduce to positively curved
Markov chains (in the sense of Ollivier) and bounded Lipschitz observables. This
for example applies to contracting Iterated Function Systems and backward ran-
dom walks of expanding maps. We shall see (Section 3.3) that in the toy case of
the discrete hypercube and observables with small Lipschitz constant, Theorem A
is less powerful than [JO10] but that for larger Lipschitz constants, Theorem B
can improve on [JO10],

∙ when Ω is a graph, we propose a functional space of functions with small “local
total variations” and show on an example that it can improve on [JO10] (also in
Section 3.3),

∙ taking X = BV(𝐼) where 𝐼 is an interval, we show that our results apply to a
natural Markov chains related to Bernoulli convolutions, and allowing observables
of bounded variation makes our result applicable to e.g. characteristic functions
of intervals,

∙ more generally, when Ω is a domain of R𝑑 some natural Markov chains are BV(Ω)-
ergodic and our results apply to functions of bounded variation, e.g. characteristic
functions of sets of finite perimeter – but we will not consider this case here, since
it needs a somewhat sophisticated setup,

∙ Another direction we do not explore here is to take X = Hol𝛼(Ω), the space of
𝛼-Hölder functions, or in case Ω = 𝐼 is an interval, X = BV𝑝(𝐼), the space of 𝑝-
bounded variation functions. These enables one to consider more general functions
than Lip(Ω) or respectively BV(Ω); even for Lipschitz of BV functions, using these
spaces can be useful because they tend to give regular observables a much lower
norm.

To my knowledge, no effective result was known in the setting of bounded variation
functions (and while the usual spectral method could have been used in this case, I do
not know of previous asymptotic results either); no effective result could give optimal
rate for moderate deviation as Theorem B does; and the effective Berry-Esseen bound
seems new in most of the above cases.

Possible follow-ups. While we shall take some time discussing examples, we are far
from having exhausted the domain of applicability of our results. Finding other cases
to which they apply is a natural direction to pursue.
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One limitation of this work is that we ask for a spectral gap with constant 1, i.e. the
averaging operator defined by the transition kernel should be contracting on the kernel
of the stationary measure. Extending to spectral gaps with arbitrary constants (i.e.
eventual exponential contractivity) is possible in principle with the methods used here,
but would be very technical. It could improve the rate of convergence in many cases, by
replacing 𝛿0 (defined so that 1 − 𝛿0 is the contraction constant) by the real spectral gap
𝛿 (while 𝛿0 is a lower bound on the spectral gap). In practical applications, this is not
crucial since one can always extract a sub-Markov chain (𝑋ℓ𝑘)𝑘≥0: for ℓ large enough
one gets 𝛿0 close to 𝛿 (see Remark 2.6).

It appears from the numerical comparison with previous results that our improvement
are in several case asymptotically strong but numerically modest (the improvements are
large only in relatively extreme ranges of the parameters), and this seems in part due
to the restriction to Banach algebra, and the ensuing necessity to combine ‖·‖∞ with a
semi-norm (see Section 3). It would be interesting to dispense from this necessity, for
example by making effective the Keller-Liverani theorem [KL99].

Structure of the article. In Section 2 we state notation and the main results. Section
3 explains in detail the aforementioned examples and comparison with previous results.
In Section 4 we recall how perturbation theory can be used to prove limit theorems, and
state the perturbation results we need to carry out this method in a effective manner.
In Section 5 we prove the core estimates to be used thereafter, while Section 6 carries
out the proof of the concentration inequalities. Section 7 is devoted to the proof of the
Berry-Esseen inequality.

2 Assumptions and main results

Let Ω be a polish metric space endowed with its Borel algebra and denote by 𝒫(Ω) the
set of probability measures on Ω. We consider a transition kernel M = (𝑚𝑥)𝑥∈Ω on Ω,
i.e. 𝑚𝑥 ∈ 𝒫(Ω) for each 𝑥 ∈ Ω, and a Markov chain (𝑋𝑘)𝑘≥0 following the kernel M, i.e.
P(𝑋𝑘+1 | 𝑋𝑘 = 𝑥) = 𝑚𝑥. We do not ask the Markov chain to be stationary: the law of
𝑋0 is arbitrary (“cold start”); in some cases of interest, the law of each 𝑋𝑘 will even be
singular with respect to the stationary measure 𝜇0.

We shall study the behavior of (𝑋𝑘)𝑘≥0 by comparing the empirical mean to the
stationary mean:

𝜇̂𝑛(𝜙) :=
1

𝑛

𝑛∑︁
𝑘=1

𝜙(𝑋𝑘) vs. 𝜇0(𝜙)

for an arbitrary “observable” 𝜙 ∈ X , where X is a space of functions Ω → R (or
Ω → C).

2.1 Assumptions

Standing assumption 2.1. In all the paper, we assume X satisfies the following:
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i. its norm ‖·‖ dominates the uniform norm: ‖·‖ ≥ ‖·‖∞,

ii. X is a Banach algebra, i.e. for all 𝑓, 𝑔 ∈ X we have ‖𝑓𝑔‖ ≤ ‖𝑓‖‖𝑔‖,

iii. X contain the constant functions and ‖1‖ = 1 (where 1 denotes the constant
function with value 1).

The first hypothesis ensures integrability with respect to arbitrary probability mea-
sure, which is important for cold-start Markov chains; it also implies that every probabil-
ity measure can be seen as a continuous linear form acting on X . The second hypothesis
will prove very important in our method where products abound (and can be replaced
by the more lenient ‖𝑓𝑔‖ ≤ 𝐶‖𝑓‖‖𝑔‖ up to multiplying the norm by a constant), and
the hypothesis on ‖1‖ is a mere matter of convenience and could be removed at the cost
of more complicated formulas.

Remark 2.2. This setting may seem restrictive at first: the Banach algebra hypothesis
notably excludes 𝐿𝑝 spaces, while classically one only makes moment assumptions on
the observable. This is quite unavoidable given that we will work with more than
one equivalence class of measures, and we want to allow cold start at a given position
(𝑋0 ∼ 𝛿𝑥0). The measures 𝑚𝑥 may be singular with respect to the stationary measure
𝜇0, and as a matter of fact in the dynamical applications 𝑚𝑥 will be purely atomic
while 𝜇0 will often be atomless. It may thus happen that for 𝜙 an 𝐿𝑝(𝜇0) observable,
𝜙(𝑋𝑗) is undefined with positive probability, or is extremely large even if 𝜙 has small
moments with respect to 𝜇0. Our framework ensures enough regularity to prevent such
phenomenons.

To the transition kernel M is associated an averaging operator acting on X :

L0𝑓(𝑥) =

∫︁
Ω

𝑓(𝑦) d𝑚𝑥(𝑦).

Since each 𝑚𝑥 is a probability measure, L0 has 1 as eigenvalue, with eigenfunction 1.

Standing assumption 2.3. In all the article we assume M satisfies the following:

i. L0 acts as a bounded operator from X to itself, and its operator norm ‖L0‖ is
equal to 1.

ii. L0 has a spectral gap with constant 1 and size 𝛿0 > 0, i.e. there is an hyperplane
𝐺0 ⊂ X such that

‖L0𝑓‖ ≤ (1 − 𝛿0)‖𝑓‖ ∀𝑓 ∈ 𝐺0,

The first hypothesis could be relaxed, considering operators of arbitrary norm, at the
cost of (much) more complicated formulas. The second hypothesis is the main one, and
implies in particular that 1 is a simple isolated eigenvalue.
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Remark 2.4. This second hypothesis ensures that up to scalar factors there is a unique
continuous linear form 𝜑0 acting on X such that 𝜑0 ∘ L0 = 𝜑0; since any stationary
measure of M satisfy this, all stationary measures coincide on X . They might not be
unique (e.g. if X contains only constants), but since we consider the 𝜙(𝑋𝑘) with 𝜙 ∈ X ,
this will not matter. We will thus denote an arbitrary stationary measure by 𝜇0, and
identify it with 𝜑0 (observe that 𝐺0 is then equal to ker𝜇0). In most cases, X will be
dense in the space of continuous function endowed with the uniform norm, ensuring that
two measures coinciding on X are equal, and then the spectral gap hypothesis ensures
the uniqueness of the stationary measure.

Remark 2.5. There are numerous examples where assumptions 2.1 and 2.3 are satisfied;
we will discuss a few of them in Section 3. Typically, X has a norm of the form
‖·‖ = ‖·‖∞ + 𝑉 (·) where 𝑉 is a seminorm measuring the regularity in some sense (e.g.
Lipschitz constant, 𝛼-Hölder constant, total variation, total 𝑝-variation...) and satisfying
𝑉 (𝑓𝑔) ≤ ‖𝑓‖∞𝑉 (𝑔) + 𝑉 (𝑓)‖𝑔‖∞. This inequality ensures that X is a Banach Algebra,
and ‖1‖ = 1 holds as soon as 𝑉 (1) = 0. Since averaging operators necessarily satisfy
‖L0𝑓‖∞ ≤ ‖𝑓‖∞, it is sufficient that L contracts 𝑉 (i.e. 𝑉 (L0𝑓) ≤ 𝜃𝑉 (𝑓) for some
𝜃 ∈ (0, 1) and all 𝑓 ∈ X ) to ensure that ‖L0‖ = 1. We will prove in Lemma 3.1 that in
many cases, the contraction also implies a spectral gap of explicit size and constant 1.
In fact, all examples considered here are of this kind, but it seemed better to state our
main results in terms of the hypotheses we use directly in the proof. This is done at the
expense of some sharpness: indeed we could improve our constants under the hypotheses
of Lemma 3.1, by estimating with more precision ‖𝜋0‖ below. The method is similar to
the proof of Lemma 3.1, and is carried out in two examples in [Klo17a].

Remark 2.6. In some cases, one gets a spectral gap with a constant greater than 1, i.e.

‖L𝑛
0𝑓‖ ≤ 𝐶(1 − 𝛿0)

𝑛‖𝑓‖ ∀𝑓 ∈ 𝐺0

for all 𝑛 ∈ N and some 𝐶 > 1. In this case, all our result apply to the Markov chains
𝑌𝑚 = 𝑋𝑛0+𝑚𝑘 where 𝑛0 is arbitrary and 𝑘 is such that 𝐶(1 − 𝛿0)

𝑛 < 1. This can be also
used when 𝐶 = 1, in cases where the spectral gap is small. In numerical computations,
this can be especially useful when the simulation of the random walk is much cheaper
than the evaluation of the observable.

2.2 A general concentration inequality

Our first result is a concentration inequality, featuring the expected dichotomy between
a Gaussian regime and an exponential regime.

Theorem A. For all 𝑛 ≥ 60/𝛿0 and all 𝑎 > 0, it holds

P𝜇

[︁
|𝜇̂𝑛(𝜙) − 𝜇0(𝜙)| ≥ 𝑎

]︁
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2.5 exp

(︁
− 𝑛𝑎2

‖𝜙‖2
𝛿0

13.44 𝛿0 + 8.324

)︁
if

𝑎

‖𝜙‖
≤ 𝛿0/3

2.7 exp
(︀
− 𝑛𝑎

‖𝜙‖
· 0.009 𝛿20

)︀
otherwise

7



Remark 2.7. In Theorem A we made a compromise between precision and simplicity;
we in fact obtain slightly better front constants, a slightly relaxed range for 𝑛, and a
more precise rate in the exponential regime (see Theorems 6.3 and 6.4).

See Section 3 for several applications and comparisons with previous results. Let
us stress right away that the main strength of the present result is its broadness: we
need no warm-start hypothesis, no reversibility, and we can apply it in many functional
spaces. In particular, this makes our results broader than those of [Lez98, Lez01] which
assume ergodicity. Lezaud also gets a front constant proportional to the 𝐿2(𝜇0)-norm of
the density of the distribution of 𝑋0 with respect to the stationary distribution, which
would be infinite in many of our cases of applicability; even in the case of a finite state
space he then gets a large front constant 𝑋0 ∼ 𝛿𝑥. The approach of Joulin and Ollivier
enabled them to get rid of this constant in some test cases, and we compare our results
to theirs in Section 3.3.

In some cases, Theorem A can improve on previous results by allowing one to choose
the functional space most suited to the situation at hand; an example is treated in detail
in Section 3.3.3.

While our constants are certainly not optimal, we get what seems the correct depen-
dence in the spectral gap, at least in the Gaussian regime (rate proportional to 𝛿0); in
the case of Markov chains satisfying the Doeblin minorization condition, this improves
on the rate proportional to 𝛿20 in [KLMM05] (see Section 3.2).

2.3 Concentration under a variance bound

The spectral method gives us access to higher-order estimates, enabling us to improve
the Gaussian regime bound as soon as we have a good control over the “dynamical
variance” (also called “asymptotic variance”). This quantity is defined as

𝜎2(𝜙) = 𝜇0(𝜙
2) − (𝜇0𝜙)2 + 2

∑︁
𝑘≥1

𝜇0(𝜙L𝑘
0𝜙)

where 𝜙 = 𝜙−𝜇0(𝜙). The dynamical variance is precisely the variance appearing in the
CLT for (𝜙(𝑋𝑘))𝑘≥0.

Theorem B. If 𝑈 ∈ [0,+∞) is a upper bound for 𝜎2(𝜙), then for all 𝑎 ≤ 𝑈𝛿20
26‖𝜙‖

and

all 𝑛 ≥ 60/𝛿0 it holds

P𝜇

[︀
|𝜇̂𝑛(𝜙) − 𝜇0(𝜙)| ≥ 𝑎

]︀
≤ 2.7 exp

(︁
− 𝑛𝑎2

2𝑈
+

𝑛𝑎3‖𝜙‖3

𝑈3
10(1 + 𝛿−1

0 )2
)︁

For small enough 𝑎, the positive term in the exponential is negligible, and the leading
term is exactly the best we can expect given the available knowledge: since (𝜙(𝑋𝑘))𝑘
satisfies a Central Limit Theorem with variance 𝜎2(𝜙), any better value would necessarily
imply a better bound on 𝜎2(𝜙).

Remark 2.8. Again we actually prove a slightly more precise result, see Section 6.3.
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In Section 3.3.3, we show on an example how Theorem B can improve on Theorem
A. However obtaining a good estimation on the dynamical variance can be difficult; in
practical applications, one could use other tools to estimate it, and then apply Theorem
B.

2.4 A Berry-Esseen bound

Our third main result, proven in section 7, quantifies the speed of convergence in the
Central Limit Theorem.

Theorem C. Assume 𝜎2(𝜙) > 0 and let 𝜙 := 𝜙−𝜇0(𝜙)
𝜎(𝜙)

be the reduced centered version
of 𝜙, and denote by 𝐺,𝐹𝑛 the distribution functions of the reduced centered normal law
and of 1√

𝑛
(𝜙(𝑋1) + · · · + 𝜙(𝑋𝑛)), respectively.

For all 𝑛 ≥ (60/𝛿0)
2 it holds

‖𝐹𝑛 −𝐺‖∞ ≤ 177
(𝛿−1

0 + 1.13)2 max{‖𝜙‖, ‖𝜙‖3}√
𝑛

Remark 2.9. The hypothesis on 𝑛 is pretty harmless: if ‖𝜙‖ ≃ ‖𝜙3‖ ≃ 1 then for
𝑛 ≤ (60/𝛿0)

2 the right hand side is much larger than 1, and the inequality is void. As
before, a slightly more precise result can be obtained (see Section 7).

Remark 2.10. Note that 𝜎2(𝜙) is always non-negative, as it can be rewritten as

lim
𝑛→∞

1

𝑛
Var𝜇0

(︀ 𝑛∑︁
𝑘=1

𝜙(𝑋𝑘)
)︀

(where the 𝜇0 subscript means that the assumption 𝑋0 ∼ 𝜇0 is made). However, 𝜎2(𝜙)
can vanish even when 𝜙 is not constant modulo 𝜇0, as is the case in a dynamical setting
when 𝑚𝑥 is supported on 𝑇−1(𝑥) for some map 𝑇 : Ω → Ω, and 𝜙 is a coboundary:
𝜙 = 𝑔 − 𝑔 ∘ 𝑇 for some 𝑔. One can for example see details [GKLMF15], where 𝜎2 is
interpreted as a semi-norm. Whenever 𝜎2(𝜙) = 0, one can use the present method to
obtain stronger non-asymptotic concentration inequalities, giving small probability to
deviations 𝑎 such that 𝑎/‖𝜙‖ ≫ 1/𝑛2/3 instead of 𝑎/‖𝜙‖ ≫ 1/

√
𝑛.

There are numerous works on Berry-Esseen bounds. In the case of independent iden-
tically distributed random variables, the optimal constant is not yet known (the best
known constant is, to my knowledge, given by Tyurin [Tyu11]). Berry-Esseen bounds
for Markov chains go back to [Bol82], but I know only of two previous effective result,
by Dubois [Dub11] and by Lezaud [Lez01].

The scope of Dubois’ result is quite narrower than ours, as it is only written for
uniformly expanding maps of the interval and Lipschitz observables (though the method
is expected to have wider application), and our numerical constant is much better:
while the dependences on the parameters of the system are stated differently and thus
somewhat difficult to compare, Dubois has a front constant of 11460 which is quite large
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for practical applications (the order of convergence being 1/
√
𝑛, this constant has a

squared effect on the number of iterations needed to achieve a given precision).
The scope of Lezaud’s Berry-Esseen bound is also restricted, to ergodic reversible

Markov chains. Moreover he gets a front constant proportional to the 𝐿2(𝜇0)-norm
of the density of the distribution of 𝑋0 with respect to the stationary distribution; in
comparison, our result is insensitive to the distribution of 𝑋0.

Application to dynamical systems As is well-known, limit theorems for Markov chain
also apply in a dynamical setting; let us give some details.

Given a 𝑘-to-one map 𝑇 : Ω → Ω, one defines the transfer operator of a potential
𝐴 ∈ X by

L𝑇,𝐴𝑓(𝑥) =
∑︁

𝑦∈𝑇−1(𝑥)

𝑒𝐴(𝑦)𝑓(𝑦).

One says that 𝐴 is normalized when L𝑇,𝐴1 = 1. This condition exactly means that
𝑚𝑥 =

∑︀
𝑦∈𝑇−1(𝑥) 𝑒

𝐴(𝑦)𝛿𝑦 is a probability measure for all 𝑥, making L𝑇,𝐴 the averaging
operator of a transition kernel. We could consider more general maps 𝑇 , considering a
transition kernel that is supported on its inverse branches.

If the transfer operator has a spectral gap, then the stationary measure 𝜇0 is unique,
and readily seen to be 𝑇 -invariant. We shall denote it by 𝜇𝐴 to stress the dependence
on the potential. The corresponding stationary Markov chain (𝑌𝑘)𝑘∈N satisfies all results
presented above; but for each 𝑛, the time-reversed process defined by 𝑋𝑘 = 𝑌𝑛−𝑘 (where
0 ≤ 𝑘 ≤ 𝑛) satisfies 𝑋𝑘+1 = 𝑇 (𝑋𝑘): all the randomness lies in 𝑋0 = 𝑌𝑛. Having taken
𝑌𝑛 stationary makes the law of 𝑌𝑛, i.e. 𝑋0, independent of the choice of 𝑛. It follows:

Corollary 2.11. For all normalized 𝐴 ∈ X such that L𝑇,𝐴 has a spectral gap with
constant 1 and size 𝛿0, for all 𝜙 ∈ X , Theorems A, B and C hold for the random
process (𝑋𝑘)𝑘∈N defined by 𝑋0 ∼ 𝜇𝐴 and 𝑋𝑘+1 = 𝑇 (𝑋𝑘).

In this context, spectral gap was proved in many cases under the impetus of Ruelle,
see e.g. the books [Bal00, Rue04], the recent works [BT08, CV13, CS09], and refer-
ences therein. Let me finally mention [Klo17a] (which is based on the same effective
perturbation theory as the present paper) and [Klo17c] (which is my initial motivation
to consider the spectral method for limit theorems).

3 Examples

3.1 Preliminary lemma

In each example below we will use the following lemma which, in the spirit of Doeblin-
Fortet and Lasota-Yorke inequalities, enables to turn an exponential contraction in the
“regularity part” of a functional norm into a spectral gap.

Lemma 3.1. Consider a normed space X of (Borel measurable, bounded) functions
Ω → R, with norm ‖·‖ = ‖·‖∞ +𝑉 (·) where 𝑉 is a semi-norm (usually quantifying some
regularity of the argument, such as Lip or BV).
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Assume that for some constant 𝐶 > 0, for all probability 𝜇 on Ω and for all 𝑓 ∈ X
such that 𝜇(𝑓) = 0, ‖𝑓‖∞ ≤ 𝐶𝑉 (𝑓).

Let L0 ∈ B(X ) and assume that for some 𝜃 ∈ (0, 1) and all 𝑓 ∈ X :

‖L0𝑓‖∞ ≤ ‖𝑓‖∞ and 𝑉 (L0𝑓) ≤ 𝜃𝑉 (𝑓)

and having eigenvalue 1 with an eigenprobability 𝜇0, i.e. L*
0𝜇0 = 𝜇0.

Then L0 has a spectral gap (for the eigenvalue 1, the contraction being on the stable
space ker𝜇0) with constant 1, of size

𝛿0 =
1 − 𝜃

1 + 𝐶𝜃

The condition ‖𝑓‖∞ ≤ 𝐶𝑉 (𝑓) is often valid in practice (assuming Ω has finite diameter
for spaces such as Lip(Ω)): the condition that 𝜇(𝑓) = 0 implies that 𝑓 vanishes (if
functions in X are continuous) or at least takes both non-positive and non-negative
values, and 𝑉 (𝑓) usually bounds the variations of 𝑓 , implying a bound on its uniform
norm.

Proof. Let 𝑓 ∈ ker𝜇0; then ‖L0𝑓‖∞ ≤ ‖𝑓‖∞ and L0𝑓 ∈ ker𝜇0, so that ‖L0𝑓‖∞ ≤
𝐶𝑉 (L0𝑓) ≤ 𝐶𝜃𝑉 (𝑓).

Denote by 𝑡 ∈ [0, 1] the number such that ‖𝑓‖∞ = 𝑡‖𝑓‖ (and therefore 𝑉 (𝑓) =
(1 − 𝑡)‖𝑓‖). The above two controls on ‖L0(𝑓)‖∞ can then be written as ‖L0(𝑓)‖∞ ≤
min

(︀
𝑡, 𝐶𝜃(1 − 𝑡)

)︀
‖𝑓‖ and using 𝑉 (L0𝑓) ≤ 𝜃𝑉 (𝑓) again we get

‖L0(𝑓)‖ ≤ min
(︀
𝑡 + 𝜃(1 − 𝑡), (𝐶 + 1)𝜃(1 − 𝑡)

)︀
‖𝑓‖

‖(L0)| ker𝜇0‖ ≤ max
𝑡∈[0,1]

min
(︀
𝑡 + 𝜃(1 − 𝑡), (𝐶 + 1)𝜃(1 − 𝑡)

)︀
.

The maximum is reached when 𝑡+𝜃(1− 𝑡) = (𝐶 +1)𝜃(1− 𝑡), i.e. when 𝑡 = 𝐶𝜃/(1+𝐶𝜃),
at which point the value in the minimum is (𝐶 + 1)𝜃/(𝐶𝜃 + 1) ∈ (0, 1). Therefore there
is a spectral gap with constant 1 and size 1 − (𝐶 + 1)𝜃/(𝐶𝜃 + 1), as claimed.

3.2 Chains with Doeblin’s minorization

The simplest example of a Banach Algebra of functions is 𝐿∞(Ω), the set of measurable
bounded functions.2 To fit our framework, we will need to endow 𝐿∞(Ω) with the
following norm:

‖𝑓‖𝑆 = ‖𝑓‖∞ + sup
𝑥,𝑦∈Ω

|𝑓(𝑥) − 𝑓(𝑦)|

Of course, this norm is equivalent to the uniform norm, and it is easily checked what we
still get a Banach Algebra. The point of this is that the semi-norm

𝑆(𝑓) = sup
𝑥,𝑦∈Ω

|𝑓(𝑥) − 𝑓(𝑦)| = sup 𝑓 − inf 𝑓

2We do not have a single reference measure here, which is why we consider genuinely bounded functions
rather than essentially bounded functions.
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measures how “spread out” 𝑓 is, wich we need to manage separately from the magnitude
of 𝑓 .

Observe that convergence of measures in duality to 𝐿∞(Ω) is convergence in total
variation, and the most usual normalization is

𝑑TV(𝜇, 𝜈) := sup
𝑆(𝑓)=1

⃒⃒
𝜇(𝑓) − 𝜈(𝑓)

⃒⃒
For a transition kernel M, having an averaging operator L0 with a spectral gap is a very
strong condition, called uniform ergodicity.

Glynn and Ormoneit [GO02] and Kontoyiannis, Lastras-Montaño and Meyn [KLMM05]
gave explicit concentration results for such chains, using the characterization of uniform
ergodicity by the Doeblin minorization condition: there exist an integer ℓ ≥ 1, a positive
number 𝛽 and a probability measure 𝜔 on Ω such that for all 𝑥 ∈ Ω and all Borel set
𝐵 ⊂ Ω:

𝑚ℓ
𝑥(𝐵) ≥ 𝛽𝜔(𝐵) (2)

where 𝑚ℓ
𝑥 is the law of 𝑋ℓ conditionally to 𝑋0 = 𝑥.

We shall look at the case ℓ = 1, which fits better in our context. For arbitrary value
of ℓ, one can in practice apply the result to each extracted chain (𝑋𝑘0+𝑘ℓ)𝑘≥0.

Lemma 3.2. If M satisfies Doeblin’s minorization condition (2) with ℓ = 1, then its
averaging operator L0 has a spectral gap on 𝐿∞(Ω) with constant 1 and size 𝛽/(2 − 𝛽).

Proof. This is simply the classical maximal coupling method in a functional guise. For
each 𝑥 ∈ Ω decompose 𝑚𝑥 into 𝛽𝜔 and 𝑟𝑥 := 𝑚𝑥 − 𝛽𝜔 (which is a positive measure of
mass 1−𝛽). Recall that we denote by 𝜇0 the stationary measure of M. For all 𝑓 ∈ 𝐿∞(Ω)
we have:

L0𝑓(𝑥) = 𝛽𝜔(𝑓) + 𝑟𝑥(𝑓)

L0𝑓(𝑥) − L0𝑓(𝑦) =

∫︁
(𝑟𝑥(𝑓) − 𝑟𝑦(𝑓)) d𝜇0(𝑦)⃒⃒

L0𝑓(𝑥) − L0𝑓(𝑦)
⃒⃒
≤

∫︁
(1 − 𝛽)𝑆(𝑓) d𝜇0(𝑦)

𝑆(L0𝑓) ≤ (1 − 𝛽)𝑆(𝑓).

We can thus apply Lemma 3.1 with 𝐶 = 1 and 𝜃 = 1 − 𝛽, obtaining a spectral gap of
size 𝛽/(2 − 𝛽).

Theorem 3.3. If M satisfies Doeblin’s minorization condition (2) with ℓ = 1 and 𝜙 :
Ω → [−1, 1], for all 𝑛 ≥ 120/𝛽 and all 𝑎 ≤ 𝛽/2 it holds

P𝜇

[︁
|𝜇̂𝑛(𝜙) − 𝜇0(𝜙)| ≥ 𝑎

]︁
≤ 2.5 exp

(︀
− 𝑛𝑎2 · 𝛽

150 + 47𝛽

)︀
Proof. We have here ‖𝜙‖𝑆 ≤ 2 and, by Lemma 3.2, 𝛿0 ≥ 𝛽/(2 − 𝛽) ≥ 𝛽/2. It then
suffices to apply Theorem A.
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Runtime 𝑛 to ensure error below 𝑎 with probability ≥ 0.99

Value of 𝑎 Theorem 6.3 Theorem B [GO02] & [KLMM05]

0.001 2.76 × 1011 NA 1.18 × 1012

0.00003 3.07 × 1014 8.3 × 1012 1.3 × 1015

Table 1: Comparison with [GO02, KLMM05] for ℓ = 1, 𝛽 = 0.003, and observable
𝜙 : Ω → [0, 1].

The constant 150 in the rate is not so great, but we obtain a major improvement
over [GO02, KLMM05] when 𝛽 is small (and 𝑎 in the Gaussian window): their rate is
proportional to 𝛽2 instead of the correct order 𝛽 which we obtain.

Let us give some concrete numerical estimates, sumed up in Table 1. For 𝑎 = 0.001,
𝛽 = 0.003 and a 99% certainty, we need to take 𝑛 ≃ 2.76×1011 while [GO02, KLMM05]
need 𝑛 ≃ 1.18 × 1012.

For larger 𝑎, our exponential regime has a factor 𝛽2 but then we gain a factor of 𝑎.
For very small 𝑎 we can appeal to Theorem B to obtain a much better rate. For this,
one only has to observe that 𝑆(L𝑘

0𝜙) ≤ (1− 𝛽)𝑘𝑆(𝜙) to bound 𝜎2(𝜙) by any 𝑈 ≥ 1 + 4
𝛽
.

The smaller is 𝑈 , the best is the leading term in the rate (up to a best of −𝑛𝑎2𝛽/4) but
the smaller is the allowed window (down to 𝑎 . 𝛽/72); for say 𝑎 = 0.00003 it suffices to
take 𝑛 = 8.3 × 1012.

As a matter of illustration, for 𝜙 : Ω → [−1, 1], 𝑎 = 0.00003 and 𝛽 = 0.003 Theorem
B ensures that when 𝑛 ≃ 8.3 × 1012, the probability to get an error more than 𝑎 is less
than 1/100. Meanwhile, [GO02, KLMM05] need at least 𝑛 ≃ 1.18× 1015 so we gain two
orders of magnitude, at the boundary of feasibility for cheaply simulated chains.

3.3 Discrete hypercube

Let us start with the same toy example as Joulin and Ollivier [JO10], the lazy random
walk (aka Gibbs sampler, aka Glauber dynamics) on the discrete hypercube {0, 1}𝑁 : the
transition kernel M chooses randomly uniformly a slot 𝑖 ∈ {1, . . . , 𝑁} and replaces it
with the result of a fair coin toss, i.e.

𝑚𝑥 =
1

2
𝛿𝑥 +

∑︁
𝑦∼𝑥

1

2𝑁
𝛿𝑦.

We consider two kind of observables: the “polarization”𝜌 : {0, 1}𝑁 → R giving the
proportion of 1’s in its argument, and the characteristic function 1𝑆 of a subset 𝑆 ⊂
{0, 1}𝑁 . In this second example, we will in particular consider the simple case

𝑆 = [0] := {(0, 𝑥2, . . . , 𝑥𝑁) : 𝑥𝑖 ∈ {0, 1}}.

We state in Table 2 the estimates only in the level of details that enables to compare
with Joulin and Ollivier’s result. One sees that we obtain a weaker estimate in the case
of 𝜌, but a better one in the case of 1[0] if we are careful enough.
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Runtime to ensure error below 𝑎 with good probability

Observable Theorem A
with Lip. norm

Our best result Joulin-Ollivier

1
𝑁

-Lip maps such as 𝜌 𝑂
(︀
𝑁
𝑎2

)︀
𝑂
(︀
𝑁
𝑎2

)︀
𝑂
(︀
𝑁 + 1

𝑎2

)︀
1[0] 𝑂

(︀
𝑁2

𝑎2

)︀
𝑂
(︀
𝑁
𝑎2

)︀
𝑂
(︀
𝑁2

𝑎2

)︀
1𝑆 where 𝑆 is “scrambled” 𝑂

(︀
𝑁2

𝑎2

)︀
𝑂
(︀

1
𝑎2

)︀
𝑂
(︀
𝑁2

𝑎2

)︀
Table 2: Comparison with [JO10], always assuming 𝑎 small enough.

The rest of this subsection explains how to get these estimates from our results.

3.3.1 Notation and functional spaces

The discrete hypercube {0, 1}𝑁 is endowed with the Hamming metric: if 𝑥 = (𝑥1, . . . , 𝑥𝑁)
and 𝑦 = (𝑦1, . . . , 𝑦𝑁), then 𝑑(𝑥, 𝑦) is the number of indexes 𝑖 such that 𝑥𝑖 ̸= 𝑦𝑖. Two
elements at distance 1 are said to be adjacent, denoted by 𝑥 ∼ 𝑦.

We denote by 𝐸 the set of tuples 𝜖 = (𝜖𝑖)1≤𝑖≤𝑁 such that exactly one of the 𝜖𝑖 is 1.
Identifying {0, 1} with Z/2Z, an edge thus writes (𝑥, 𝑥 + 𝜖) for some 𝑥 ∈ {0, 1}𝑁 and
some 𝜖 ∈ 𝐸.

We shall consider several function spaces to showcase the flexibility of the spectral
method; since the space {0, 1}𝑁 is finite, we always consider the space of all functions
{0, 1}𝑁 → R, and it is the considered norm which will matter. Let us define:

∙ ‖𝑓‖𝐿 = ‖𝑓‖∞ + Lip(𝑓): this is the standard Lipschitz norm;

∙ ‖𝑓‖𝑑𝐿 = ‖𝑓‖∞+𝑁 Lip(𝑓): this is the Lipschitz norm with a weigth to the regularity
part equal to the diameter;

∙ ‖𝑓‖𝑊 = ‖𝑓‖∞ + 𝑊 (𝑓) where

𝑊 (𝑓) = sup
𝑥∈{0,1}𝑁

∑︁
𝜖∈𝐸

|𝑓(𝑥 + 𝜖) − 𝑓(𝑥)|;

this norm stays small for functions having large variations only in few directions
(small “local total variation”).

Proposition 3.4. Each of the norm ‖·‖𝐿, ‖·‖𝑑𝐿 and ‖·‖𝑊 turns the space of all functions
{0, 1}𝑁 → R into a Banach algebra where 1 has norm 1.

Moreover the averaging operator L0 of the transition kernel M has operator norm 1,
and spectral gap with constant 1 and respective size 1/𝑁2, 1/(2𝑁 − 1) and 1/(4𝑁 − 1)
in the norms ‖·‖𝐿, ‖·‖𝑑𝐿 and ‖·‖𝑊 .

Proof. That the norms define Banach Algebras is proven as indicated in Remark 2.5.
All the other properties but the spectral gap are trivial.
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To prove the spectral gaps, we simply apply Lemma 3.1. First, it is well-known that
for all 𝜙 : {0, 1}𝑁 → R,

Lip(L0𝜙) ≤ (1 − 1/𝑁) Lip(𝜙)

(in the parlance of [Oll09], M is positively curved with 𝜅 = 1/𝑁).
In the case of ‖·‖𝐿, we get 𝜃 = 1 − 1/𝑁 and 𝐶 = 𝑁 (since a function of vanishing

average must take positive and negative values, and diam{0, 1}𝑁 = 𝑁), hence a spectral
gap of size 1/𝑁2. In the case of ‖·‖𝑑𝐿, the normalizing factor gives 𝐶 = 1 (and we still
have 𝜃 = 1 − 1/𝑁), hence a spectral gap of size 1/(2𝑁 − 1).

To deal with ‖·‖𝑊 , we first show that in Lemma 3.1 we can take 𝜃 = 1 − 1/(2𝑁).

𝑊 (L0𝜙) = sup
𝑥

∑︁
𝜖∈𝐸

⃒⃒⃒⃒
1

2
𝜙(𝑥 + 𝜖) +

1

2𝑁

∑︁
𝜂∈𝐸

𝜙(𝑥 + 𝜂 + 𝜖) − 1

2
𝜙(𝑥) − 1

2𝑁

∑︁
𝜂∈𝐸

𝜙(𝑥 + 𝜂)

⃒⃒⃒⃒
= sup

𝑥

∑︁
𝜖∈𝐸

⃒⃒⃒⃒(︁1

2
− 1

2𝑁

)︁
𝜙(𝑥 + 𝜖) +

1

2𝑁

∑︁
𝜂 ̸=𝜖

𝜙(𝑥 + 𝜂 + 𝜖)

−
(︁1

2
− 1

2𝑁

)︁
𝜙(𝑥) − 1

2𝑁

∑︁
𝜂 ̸=𝜖

𝜙(𝑥 + 𝜂)

⃒⃒⃒⃒
≤ sup

𝑥

𝑁 − 1

2𝑁

∑︁
𝜖∈𝐸

|𝜙(𝑥 + 𝜖) − 𝜙(𝑥)| +
1

2𝑁

∑︁
𝜖∈𝐸

∑︁
𝜂 ̸=𝜖

|𝜙(𝑥 + 𝜖 + 𝜂) − 𝜙(𝑥 + 𝜂)|

≤ 𝑁 − 1

2𝑁
𝑊 (𝜙) +

1

2𝑁
sup
𝑥

∑︁
𝑦∼𝑥

∑︁
𝜖∈𝐸

|𝜙(𝑦 + 𝜖) − 𝜙(𝑦)|

𝑊 (L0𝜙) ≤
(︀
1 − 1

2𝑁

)︀
𝑊 (𝜙)

Then Lemma 3.5 below shows that we can take 𝐶 = 1, providing a spectral gap of size
1/(4𝑁 − 1)

The following optimal estimate and its proof where provided by Fedor Petrov on
MathOverflow.

Lemma 3.5 (Fedor Petrov [Pet17]). For all 𝑓 : {0, 1}𝑁 → R we have

max 𝑓 − min 𝑓 ≤ 𝑊 (𝑓).

Proof. Without lost of generality, we can assume 𝑊 (𝑓) ≤ 1 and 𝑓(0, 0, . . . , 0) = 0, and
reduce to proving 𝑓(1, 1, . . . , 1) ≤ 1.

Define the cost of a path 𝑥0, 𝑥2, . . . , 𝑥𝑘 as the number
∑︀𝑘−1

𝑖=0 |𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)|, and let
Σ be the sum of the costs of all paths of length 𝑁 from (0, 0, . . . , 0) to (1, 1, . . . , 1). We
shall prove that Σ ≤ 𝑁 !, and since there are 𝑁 ! such paths one of them will have cost
at most 1, proving the lemma.

We call “level” of 𝑥 ∈ {0, 1}𝑁 the number of 1s among the coordinates of 𝑥, and denote
it by |𝑥|. For each 𝑖 ∈ {0, 1, . . . , 𝑁 − 1}, define 𝑝𝑖 = 𝑖!(𝑁−𝑖)!

𝑁+1
. Then all 𝑝𝑖 are positive and

𝑝𝑖 + 𝑝𝑖+1 = 𝑖!(𝑁 − 𝑖− 1)! is precisely the number of paths that use any given edge from
level 𝑖 to level 𝑖 + 1.
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The contribution to Σ of an edge (𝑥, 𝑥 + 𝜖) from level 𝑖 to level 𝑖 + 1 is thus 𝑖!(𝑁 −
𝑖− 1)!|𝑓(𝑥+ 𝜖)− 𝑓(𝑥)|, which we split into two parts, one 𝑝𝑖|𝑓(𝑥+ 𝜖)− 𝑓(𝑥)| attributed
to 𝑥 and the other 𝑝𝑖+1|𝑓(𝑥 + 𝜖) − 𝑓(𝑥)| to 𝑥 + 𝜖. It follows

Σ ≤
∑︁

𝑥∈{0,1}𝑁
𝑝|𝑥|𝑊 (𝑓) ≤

𝑁∑︁
𝑖=0

𝑝𝑖

(︂
𝑁

𝑖

)︂
=

𝑁−1∑︁
𝑖=0

(𝑝𝑖 + 𝑝𝑖+1)

(︂
𝑁 − 1

𝑖

)︂
= 𝑁(𝑁 − 1)! = 𝑁 !

as desired.

3.3.2 Polarization

Consider the “polarization” observable 𝜌 : {0, 1}𝑁 → R, where 𝜌(𝑥) is the proportion of
1’s in the word 𝑥. We have

‖𝜌‖𝐿 = 1 +
1

𝑁
, ‖𝜌‖𝑑𝐿 = 2, ‖𝜌‖𝑊 = 2.

To use Theorem A with optimal efficiency, assuming 𝑎 will be small enough, we need
to maximize 𝛿0/‖𝜌‖2. Here, we shall thus use the norm ‖·‖𝑑𝐿. For 𝑎 . 𝑁 , Theorem
A shows that we need at most 𝑂(𝑁/𝑎2) iterations to have a good convergence to the
actual mean; meanwhile Joulin and Ollivier only need 𝑂(1/𝑎2), but for concentration
around the expectancy of the empiric process, not around the expectancy with respect
to the stationary measure. Without burn-in, one also needs to bound the bias, which
approaches zero in time 𝑂(𝑁/𝑎) according to the bound of Joulin and Ollivier, for a
total run time of 𝑂(𝑁/𝑎 + 1/𝑎2). With burn-in, they need a run time of 𝑂(𝑁 + 1/𝑎2).

For 1/𝑁 . 𝑎 . 1, we enter our exponential regime while staying inside Joulin-Ollivier’s
Gaussian window; Theorem A shows we need no more than 𝑂(𝑁2/𝑎) iterations, while
[JO10] still gives a bound of 𝑂(𝑁 + 1/𝑎2).

In this example, Joulin and Ollivier get a sharper result; this seems to be explained
in one part by the fact that we do not get to decouple the bias from the convergence
of expectancies, and in another part by our need to have a Banach algebra, hence to
include the uniform norm in our norm.

3.3.3 Observable with small variance or small local total variation

Consider now the potential 1𝑆, the indicator function for a (non-trivial) set 𝑆. This
function is only 1-Lipschitz, so that we have ‖1𝑆‖𝐿 = 2 and ‖1𝑆‖𝑑𝐿 = 1 + 𝑁 . If we
insist on using a Lipschitz norm, the unormalized one is thus better and with 𝛿0 = 1/𝑁2

Theorem A shows that we need (in the Gaussian regime) 𝑂(𝑁2/𝑎2) iterations to ensure
the error is probably less than 𝑎, which is the same order of magnitude than given by
[JO10] with a worse constant, ∼ 34 instead of 8. But here we have two ways to improve
on this bound.

The first one is to use Theorem B. When

𝑆 = [0] := {0𝑥2𝑥3 · · ·𝑥𝑁 ∈ {0, 1}𝑁},
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the dynamical variance can be computed explicitly (distinguish the cases when the first
digit has been changed an odd or even number of times, and observe that at each step
the probability of changing the first digit is 1/2𝑁):

𝜇0(1
2
[0]) − (𝜇01[0])

2 = 1/4 and
∑︁
𝑘≥1

𝜇0(1[0]L
𝑘
01̄[0]) =

1

4

∑︁
𝑘≥1

(︁𝑁 − 1

𝑁

)︁𝑘

=
𝑁 − 1

4

This gives 𝜎2(1𝑆) ≃ 𝑁/2. Switching back to the norm ‖·‖𝑑𝐿, when 𝑎 . 1/𝑁2 (see Remark
2.8) and 𝑛 ≥ 60𝑁2, in Theorem B the positive term in the exponential is negligible
compared to the main term which is −𝑛𝑎2/𝑁 . In particular 𝑂(𝑁/𝑎2) iterations suffice
to get a small probability for a deviation at least 𝑎: compared to Joulin and Ollivier, we
gain one power of 𝑁 in this regime (and the optimal constant 1 in the leading term of
the rate) but only for very small values of 𝑎.3 This choice of 𝑆 might seem very specific,
but for less regular 𝑆 the gain should be greater for sufficiently smaller 𝑎. For example,
if 𝑆 contains half the vertices and every vertex 𝑥 ∈ {0, 1}𝑁 has exactly 2𝑁𝑝 neighbors
with the same 1𝑆 value, the above computation of variance gives 𝜎2(1𝑆) = 1

4
+ 1−2𝑝

4𝑝
.

“Scrambled” sets with 𝑝 independent of 𝑁 get 𝜎2(1𝑆) ≃ 1 and taking 𝑛 = 𝑂(1/𝑎2) is
sufficient.

The second way to improve our first estimate is to use the norm ‖·‖𝑊 in Theorem
A. Then ‖1[0]‖𝑊 = 2 and 𝛿0 ≃ 1/𝑁 . For 𝑎 . 1/𝑁 , Theorem A ensures that we
need only 𝑂(𝑁/𝑎2) iterations to have a good convergence to the actual mean, which is
again the optimal order of magnitude (since it corresponds to the CLT) but obtained
on a much larger window than with Theorem B. This extends to all observables with
𝑊 (𝜙) . 1; observe that this domain of applicability is quite complementary to the
domain of applicability of the previous paragraph.

3.4 Bernoulli convolutions and observables of bounded variation

The MCMC method is often used in high dimension, where it can be very difficult to
simulate independent random variables of a given law. Let us give an example showing
that even in dimension 1, using Markov chains can be efficient.

We consider the “Bernoulli convolution” of parameter 𝜆 ∈ (0, 1), defined as the law 𝛽𝜆

of the random variable ∑︁
𝑘≥1

𝜖𝑘𝜆
𝑘

where the 𝜖𝑘 are independent Bernoulli variables with parameter 1/2, i.e. 𝜖𝑘 is 1 with
probability 1/2 and −1 with probability 1/2.

When 𝜆 < 1/2, the support of 𝛽𝜆 is a Cantor set of zero Lebesgue measure, so that 𝛽𝜆

is singular4. When 𝜆 = 1/2, 𝛽𝜆 is the uniform measure on [−1, 1]. But when 𝜆 ∈ (1/2, 1)

3If we want to consider 𝑎 of the order of 1/𝑁 , we can then take 𝑈 ≃ 𝑁2 to enlarge the window, at the
cost of a weaker leading term. We get a bound similar to the one of Joulin-Ollivier, possibly with a
smaller constant (depending on the value of 𝑎).

4Unless explicitly mentioned, in this subsection “singular” and “absolutely continuous” will always be
meant with respect to Lebesgue measure.
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(a) 𝜆 =
√
5−1
2 ≃ 0.618 (b) 𝜆 = 𝑒

4 ≃ 0.680 (c) 𝜆 = 2
3 ≃ 0.667

Figure 1: Histogram of the empirical distribution of the Markov chain associated to
(𝑇0, 𝑇1), with 𝑋0 = 0, binned in 500 subintervals (averaged image over 30
independent runs of 106 points each). Parameter 𝜆 is the inverse of a Pisot
number on the left, a very well approximable irrational at the center, rational
on the right.

(which we assume from now on), the question of the absolute continuity of 𝛽𝜆 is very
difficult, and fascinating. It was proved by Erdös [Erd39] that if 𝜆 is the inverse of
a Pisot number, then 𝛽𝜆 is singular, and a while later Solomyak discovered that for
Lebesgue-almost all 𝜆, 𝛽𝜆 is absolutely continuous [Sol95]; see Figure 1 for illustration.
Important open questions are to find an explicit 𝜆 such that 𝛽𝜆 is absolutely continuous,
and to find an explicit 𝜆, not the inverse of a Pisot number, such that 𝛽𝜆 is singular; see
[PSS00] for more information on these questions.

Finding an expression for the density of 𝛽𝜆 when it exists seems of course even further
from reach; but of course, there is an obvious way to simulate 𝛽𝜆: draw the 𝜖𝑘 up to
some rank 𝐾. To achieve a precision of 𝑝 on the result, one needs 𝐾 ≃ log 1/𝑝

log 1/𝜆
random

bits for each independent sample.
One can also realize naturally 𝛽𝜆 as the stationary law of the Markov transition kernel

M = (𝑚𝑥)𝑥∈R defined by

𝑚𝑥 =
1

2
𝛿𝑇0(𝑥) +

1

2
𝛿𝑇1(𝑥)

where 𝑇0(𝑥) = 𝜆𝑥 − 𝜆 and 𝑇1(𝑥) = 𝜆𝑥 + 𝜆 (this is a particular case of an Iterated
Function System (IFS)).

In order to evaluate 𝛽𝜆(𝜙) by a MCMC method, one cannot use the methods developed
for ergodic Markov chains since, conditionally to 𝑋0 = 𝑥, the law 𝑚𝑘

𝑥 of 𝑋𝑘 is atomic
and thus singular with respect to 𝛽𝜆: 𝑑TV(𝑚𝑘

𝑥, 𝛽𝜆) = 1 for all 𝑘. The convergence only
holds for observables satisfying some regularity assumption, and it is natural to ask what
regularity is needed.

For a Lipschitz observable 𝜙 one only need to observe that M has positive curvature
in the sense of Ollivier (this is easy using the coupling 1

2
𝛿(𝑇0(𝑥),𝑇0(𝑦)) + 1

2
𝛿(𝑇1(𝑥),𝑇1(𝑦)) of

𝑚𝑥 and 𝑚𝑦) and apply [JO10]. But what if 𝜙 is not Lipschitz (or has large Lipschitz
constant)? We shall consider observables of bounded variation, a regularity which has
the great advantage over Lipschitz to include the characteristic functions of intervals.
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Definition 3.6. Given an interval 𝐼 ⊂ R, we consider the Banach space BV(𝐼) of
bounded variation functions 𝐼 → R, defined by the norm ‖·‖BV = ‖·‖∞ + var(·, 𝐼) where

var(𝑓, 𝐼) := sup
𝑥0<𝑥1<···<𝑥𝑝∈𝐼

𝑝∑︁
𝑗=1

|𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|

(the uniform norm is usually replaced by the 𝐿1 norm, but when 𝐼 is bounded our choice
is equivalent up to a constant, it does not single out the Lebesgue measure, and most
importantly it ensures that BV(𝐼) is a Banach algebra).

Important features of total variation are:

∙ its extensiveness: var(𝑓, 𝐼) ≥ var(𝑓, 𝐽) + var(𝑓,𝐾) whenever 𝐽,𝐾 are disjoint
subintervals of 𝐼,

∙ its invariance under monotonic maps: var(𝑓 ∘ 𝑇, 𝐼) = var(𝑓, 𝑇 (𝐼)) whenever 𝑇 is
monotonic.

The averaging operator L0 of the transition kernel M has a spectral gap for all 𝜆, but
not with constant 1 when 𝜆 > 1/2. This only means that we will deal with an extracted
Markov chain (𝑋ℓ𝑘)𝑘≥0 for some ℓ.

Let 𝐼𝜆 be the attractor of the IFS (𝑇0, 𝑇1), i.e. the interval whose endpoints are the
fixed points of 𝑇0 and 𝑇1:

𝐼𝜆 =
[︀ −𝜆

1 − 𝜆
,

𝜆

1 − 𝜆

]︀
.

Given a word 𝜔 = 𝜔1𝜔2 . . . 𝜔𝑘 in the letters 0 and 1, we define

𝑇𝜔 = 𝑇𝜔1 ∘ 𝑇𝜔2 ∘ · · · ∘ 𝑇𝜔𝑘
: 𝐼𝜆 → 𝐼𝜆.

Proposition 3.7. If 𝜆ℓ < 1
2
, then Lℓ

0 has a spectral gap on BV(𝐼𝜆) of size 1/(2ℓ+1 − 1)
and constant 1.

Proof. Let 𝐼−𝜆 , 𝐼
+
𝜆 be the left and right halves of 𝐼𝜆, i.e.

𝐼−𝜆 =
[︀ −𝜆

1 − 𝜆
, 0
)︀

𝐼+𝜆 =
(︀
0,

𝜆

1 − 𝜆

]︀
.

Let 𝑓 ∈ BV(𝐼𝜆) and observe that the condition 𝜆ℓ < 1
2

ensures that 𝑇00...0(𝐼𝜆) and
𝑇11...1(𝐼𝜆) are disjoint (they have length < 1

2
|𝐼𝜆| and each contains an endpoint of 𝐼𝜆).

Then:

var(L0𝑓, 𝐼𝜆) ≤ 1

2ℓ

∑︁
𝜔∈{0,1}ℓ

var(𝑓 ∘ 𝑇𝜔, 𝐼𝜆)

≤ 1

2ℓ

∑︁
𝜔∈{0,1}ℓ

var(𝑓, 𝑇𝜔(𝐼𝜆))
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≤ 1

2ℓ

(︁
var(𝑓, 𝑇00...0(𝐼𝜆)) + var(𝑓, 𝑇11...1(𝐼𝜆) +

∑︁
𝜔 ̸=00...0
̸=11...1

var(𝑓, 𝐼𝜆)
)︁

≤ 1

2ℓ

(︀
var(𝑓, 𝐼𝜆) + (2ℓ − 2) var(𝑓, 𝐼𝜆)

)︀
var(L0𝑓, 𝐼𝜆) ≤ (1 − 2−ℓ) var(𝑓, 𝐼𝜆).

Applying Lemma 3.1 with 𝐶 = 1 and 𝜃 = 1 − 2−ℓ yields the claim.

This enables us to apply our result to estimate 𝛽𝜆(𝜙) for any 𝜙 of bounded variation.
For example, Theorem A yields the following (where we only state the Gaussian regime,
with the slightly better constant of Theorem 6.3).

Theorem 3.8. Let 𝜆 ∈ (1
2
, 1) and let ℓ be the smallest integer such that 𝜆ℓ < 1

2
. Consider

a Markov chain (𝑋𝑘)𝑘≥0 with transition probability 2−ℓ from 𝑥 ∈ 𝐼𝜆 to 𝑇𝜔(𝑥), for each
𝜔 ∈ {0, 1}ℓ. For any starting distribution 𝑋0 ∼ 𝜇, any 𝜙 ∈ BV(𝐼𝜆), any positive
𝑎 < ‖𝜙‖BV/3(2ℓ+1 − 1) and any 𝑛 ≥ 120 · 2ℓ we have

P𝜇

[︁
|𝜇̂𝑛(𝜙) − 𝜇0(𝜙)| ≥ 𝑎

]︁
≤ 2.488 exp

(︁
− 𝑛𝑎2

‖𝜙‖2BV(16.65 · 2ℓ + 5.12)

)︁
To the best of our knowledge, this example could not be handled effectively by previ-

ously known results. For example [GD12] needs the observable to be at least 𝐶2 to have
explicit estimates, and they do not give a concentration inequality.

For the sake of concreteness, fix any 𝜆 ∈ (1
2
, 1√

2
) so that the above applies with ℓ = 2.

Consider as observable a characteristic function 1𝐽 where 𝐽 ⊂ 𝐼𝜆 is an (open, say)
interval. We have ‖1𝐽‖BV = 3. The Gaussian window is very large; for all 𝑎 ∈ (0, 1/7),
to ensure an error at least 𝑎 occurs with probability less than 1/100 it is sufficient to
take 𝑛 = 3561/𝑎2, i.e. 7122/𝑎2 random bits. The constant is somewhat large, and could
probably be improved by taking a larger ℓ, finding more disjoint pairs of intervals in the
proof of the spectral gap, enabling one to get a much smaller 𝜃 in Lemma 3.1.

Of course, to estimate 𝛽𝜆(1𝐽) one could be tempted to use Hoeffding’s inequality (we
would need only 𝑛 = 2.65/𝑎2 independent samples); but for any given random point
𝑌 with distribution 𝛽𝜆, it is very difficult to determine a priori which precision will
ensure a correct value for 1𝐽(𝑌 ), and thus how many 𝜖𝑘 should be drawn. One can
easily construct a stopping time (waiting for the distance between the current value and
the boundary of the interval to be larger than

∑︀
𝑘>𝐾 𝜆𝑘), but since 𝛽𝜆 might be a very

irregular measure, it seems quite difficult to control this stopping time a priori.
One could also be tempted to bound 1𝐽 from below and above by Lipschitz functions

in order to apply [JO10], but one would need to ensure that these bounding functions are
𝐿1(𝛽𝜆)-close one to another. For this one would need them to have very large Lipschitz
constants (of the order of 1/𝑎 if one very conservatively assumes that 𝛽𝜆 is absolutely
continuous with bounded density), making the total runtime of the order of 1/𝑎4 in the
best case.
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4 Connection with perturbation theory

To any 𝜙 ∈ X (sometimes called a “potential” in this role) is associated a weighted
averaging operator, called a transfer operator in the dynamical context:

L𝜙𝑓(𝑥) =

∫︁
Ω

𝑒𝜙(𝑦)𝑓(𝑦) d𝑚𝑥(𝑦).

The classical guiding idea for the present work combines two observations. First, we
have

L2
𝜙𝑓(𝑥0) =

∫︁
Ω

𝑒𝜙(𝑥1)L𝜙𝑓(𝑥1) d𝑚𝑥0(𝑥1) =

∫︁
Ω×Ω

𝑒𝜙(𝑥1)𝑒𝜙(𝑥2)𝑓(𝑥2) d𝑚𝑥1(𝑥2) d𝑚𝑥0(𝑥1)

and by a direct induction, denoting by d𝑚𝑛
𝑥0

(𝑥1, . . . , 𝑥𝑛) the law of 𝑛 steps of a Markov
chain following the transition M and starting at 𝑥0, we have

L𝑛
𝜙𝑓(𝑥0) =

∫︁
Ω𝑛

𝑒𝜙(𝑥1)+···+𝜙(𝑥𝑛)𝑓(𝑥𝑛) d𝑚𝑛
𝑥0

(𝑥1, . . . , 𝑥𝑛).

In particular, applying to the function 𝑓 = 1, we get

L𝑛
𝜙1(𝑥0) =

∫︁
Ω𝑛

𝑒𝜙(𝑥1)+···+𝜙(𝑥𝑛) d𝑚𝑛
𝑥0

(𝑥1, . . . , 𝑥𝑛) = E𝑥0

[︀
𝑒𝜙(𝑋1)+···+𝜙(𝑋𝑛)

]︀
where (𝑋𝑘)𝑘≥0 is a Markov chain with transitions M and the subscript on expectancy
and probabilities specify the initial distribution (𝑥0 being short for 𝛿𝑥0).

It follows by linearity that if the Markov chain is started with 𝑋0 ∼ 𝜇 where 𝜇 is any
probability measure, then setting 𝜇̂𝑛𝜙 := 1

𝑛
𝜙(𝑋1) + · · · + 1

𝑛
𝜙(𝑋𝑛) we have

E𝜇

[︀
exp(𝑡𝜇̂𝑛𝜙)

]︀
=

∫︁
L𝑛

𝑡
𝑛
𝜙1(𝑥) d𝜇(𝑥) (3)

This makes a strong connection between the transfer operators and the behavior of 𝜇̂𝑛𝜙.
Second, when the potential is small (e.g. 𝑡

𝑛
𝜙 with large 𝑛), the transfer operator is a

perturbation of L0, and their spectral properties will be closely related. This is the part
that has to be made quantitative to obtain effective limit theorems.

We will state the perturbation results we need after introducing some notation. The
letter L will always denote a bounded linear operator, and ‖·‖ will be used both for the
norm in X and for the operator norm. From now on it is assumed that L0 has a spectral
gap of size 𝛿0 and constant 1. In [Klo17b] the leading eigenvalue of L0 is denoted by 𝜆0,
an eigenvector is denoted by 𝑢0, and an eigenform (eigenvector of L*

0) is denoted by 𝜑0

(similarly the eigenvalue of an operator L close to L0 is denoted by 𝜆L).
Two quantities appear in the perturbation results below. The first one is the condition

number 𝜏0 := ‖𝜑0‖‖𝑢0‖
|𝜑0(𝑢0)| . To define the second one, we need to introduce 𝜋0, the projection

on 𝐺0 along ⟨𝑢0⟩, which here writes 𝜋0(𝑓) = 𝑓 −𝜇0(𝑓), and observe that by the spectral
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hypothesis (L0 − 𝜆0) is invertible when acting on 𝐺0. Then the spectral isolation is
defined as

𝛾0 := ‖(L0 − 𝜆0)
−1
|𝐺0

𝜋0‖.

We shall denote by P0 the projection on ⟨𝑢0⟩ along 𝐺0, and set R0 = L0 ∘𝜋0. We then
have the expression

L0 = 𝜆0P0 + R0

with P0R0 = R0P0 = 0. This decomposition will play a role below, and can be done for
all L with a spectral gap: we denote by 𝜆L, 𝜋L,PL,RL the corresponding objects for L,
and by 𝜆, 𝜋,P,R we mean the corresponding maps L ↦→ 𝜆L, etc.

Last, the notation 𝑂𝐶(·) is the Landau notation with an explicit constant 𝐶, i.e.
𝑓(𝑥) = 𝑂𝐶(𝑔(𝑥)) means that for all 𝑥, |𝑓(𝑥)| ≤ 𝐶|𝑔(𝑥)|.

Theorem 4.1 (Theorems 2.3 and 2.6 and Proposition 5.1 (viii) of [Klo17b]). All L

such that ‖L− L0‖ <
1

6𝜏0𝛾0
have a simple isolated eigenvalue; 𝜆, 𝜋,P,R are defined and

analytic on this ball.

Given any 𝐾 > 1, whenever ‖L − L0‖ ≤ 𝐾 − 1

6𝐾𝜏0𝛾0
we have

𝜆L = 𝜆0 + 𝑂𝜏0+
𝐾−1

3

(︀
‖L − L0‖

)︀
𝜆L = 𝜆0 + 𝜑0(L − L0)𝑢0 + 𝑂𝐾𝜏0𝛾0

(︀
‖L − L0‖2

)︀
𝜆L = 𝜆0 + 𝜑0(L − L0)𝑢0 + 𝜑0(L − L0)S0(L − L0)𝑢0 + 𝑂2𝐾2𝜏20 𝛾

2
0

(︁
‖L − L0‖3

)︁
PL = P0 + 𝑂2𝐾𝜏0𝛾0(‖L − L0‖)

𝜋L = 𝜋0 + 𝑂𝜏0+
𝐾−1

3
(‖L − L0‖)⃦⃦⃦

𝐷
[︁1

𝜆
R
]︁
L

⃦⃦⃦
≤ 1

|𝜆L|
+

𝜏0 + 𝐾−1
3

|𝜆L|2
‖L‖ + 2𝐾𝜏0𝛾0.

Theorem 4.2 (Corollaire 2.12 from [Klo17b]). In the case 𝜆0 = ‖L0‖ = 1, all L such
that

‖L − L0‖ ≤ 𝛿0(𝛿0 − 𝛿)

6(1 + 𝛿0 − 𝛿)𝜏0‖𝜋0‖
have a spectral gap of size 𝛿 below 𝜆L, with constant 1.

Since we will apply these results to the averaging operator L0, we need to evaluate
the parameters in this case.

We have 𝜆0 = 1, 𝑢0 = 1 and 𝜑0 is identified with the stationary measure 𝜇0. It first
follows that

𝜏0 = 1.

Indeed ‖𝑢0‖ = 1 by hypothesis, ‖𝜑0‖ = 1 since ‖·‖ ≥ ‖·‖∞ and 𝜑0 is a probability
measure, and |𝜑0(𝑢0)| = |𝜇0(1)| = 1.

Then we have
‖𝜋0‖ ≤ 2
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since for all 𝑓 ∈ X , we have 𝜋0(𝑓) = 𝑓 − 𝜇0(𝑓) and ‖𝜇0(𝑓)1‖ = |𝜇0(𝑓)| ≤ ‖𝑓‖∞ ≤ ‖𝑓‖.
In general this trivial bound can hardly be improved without more information, notably
on 𝜇0: it may be the case that 𝜇0 is concentrated on a specific region of the space, and
then 𝑓 − 𝜇0(𝑓) could have norm close to twice the norm of 𝑓 .

Last, from the Taylor expansion (1 − L0)
−1 =

∑︀
𝑘≥0 L𝑘

0, the spectral gap 𝛿0, and the
upper bound on ‖𝜋0‖ we deduce

𝛾0 ≤ 2/𝛿0.

5 Main estimates

Standing assumption 2.3 ensures that for all small enough 𝜙 we can apply the above
perturbation results; recall that 𝜇0 is the stationary measure, so that for all 𝑓 ∈ X we
have

∫︀
L0𝑓 d𝜇0 =

∫︀
𝑓 d𝜇0.

We will first apply Theorem 4.2 with 𝛿 = 𝛿0/13; this is somewhat arbitrary, but the
exponential decay will be strong enough compared to other quantities that we don’t need
𝛿 to be large. Taking it quite small allow for a larger radius where the result applies.

As a consequence of this choice, the following smallness assumption will often be
needed:

‖𝜙‖ ≤ log
(︁

1 +
𝛿20

13 + 12𝛿0

)︁
. (4)

We will often use 𝜙 instead of L𝜙 in subscripts: for example 𝜆𝜙 is the main eigenvalue
of L𝜙 and 𝜋𝜙 is linear projection on its eigendirection along the stable complement
appearing in the definition of the spectral gap.

Lemma 5.1. We have

L𝜙(·) = L0

(︁∑︁
𝑗≥0

𝜙𝑗

𝑗!
·
)︁

and ‖L𝜙 − L0‖ ≤ 𝑒‖𝜙‖ − 1.

If (4) holds, then we have

‖L𝜙 − L0‖ ≤ 𝛿20
13 + 12𝛿0

≤ 1

25

L𝜙 = L0 + 𝑂1.02(‖𝜙‖)

= L0 + L0(𝜙·) + 𝑂0.507(‖𝜙‖2)

= L0

(︀
(1 + 𝜙 +

1

2
𝜙2) ·

)︀
+ 𝑂0.169(‖𝜙‖3),

‖𝜋𝜙‖ ≤ 2.053

Assumption (4) is in particular sufficient to apply Theorem 4.2 with 𝛿 = 𝛿0/13 and
Theorem 4.1 with 𝐾 = 1 + 12𝛿0/13.

Proof. The first formula is a rephrasing of the definition of L𝜙; observe then that thanks
to the assumption that X is a Banach algebra, we have

‖L𝜙 − L0‖ = ‖L0

(︀
(𝑒𝜙 − 1) ·

)︀
‖
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≤ ‖L0‖
⃦⃦⃦ ∞∑︁

𝑗=1

𝜙𝑗

𝑗!

⃦⃦⃦
≤

∞∑︁
𝑗=1

‖𝜙‖𝑗

𝑗!

‖L𝜙 − L0‖ ≤ 𝑒‖𝜙‖ − 1

Observing that 𝑥 ↦→ 𝑥2/(13 + 12𝑥) is increasing from 0 to 1/25 as 𝑥 varies from 0 to
1 completes the uniform bound of ‖L𝜙 − L0‖ and gives ‖𝜙‖ ≤ log(1 + 1/25) := 𝑏. By
convexity, we deduce that

𝑒‖𝜙‖ − 1 ≤ (𝑒𝑏 − 1)
‖𝜙‖
𝑏

≤ 1.02‖𝜙‖

and the zeroth order Taylor formula follow.
The higher-order estimates are obtained similarly:

L𝜙 = L0

(︀
(1 + 𝜙 + (𝑒𝜙 − 𝜙− 1)) ·

)︀
= L0 + L0(𝜙·) + 𝑂‖L0‖(𝑒

𝜙 − 𝜙− 1)

and using the triangle inequality, the convexity of 𝑒𝑥−𝑥−1
𝑥

and the bound on 𝜙:

‖𝑒𝜙 − 𝜙− 1‖ ≤ 𝑒‖𝜙‖ − ‖𝜙‖ − 1

‖𝜙‖
‖𝜙‖ ≤ 𝑒𝑏 − 𝑏− 1

𝑏2
‖𝜙‖2 ≤ 0.507‖𝜙‖2.

The second order remainder is bounded by

‖𝑒𝜙 − 1

2
𝜙2 − 𝜙− 1‖ ≤

𝑒𝑏 − 1
2
𝑏2 − 𝑏− 1

𝑏3
‖𝜙‖3 ≤ 0.169‖𝜙‖3

and finally, we have

‖𝜋𝜙‖ ≤ ‖𝜋0‖ +
(︀
1 +

4𝛿0
13

)︀
‖L𝜙 − L0‖ ≤ 2 +

(︀
1 +

4

13

)︀ 1

25
≤ 2.053.

Lemma 5.2. Under (4) we have

|𝜆𝜙 − 1| ≤ 0.0524

𝜆𝜙 = 1 + 𝑂1.334(‖𝜙‖)

𝜆𝜙 = 1 + 𝜇0(𝜙) + 𝑂2.43+2.081𝛿−1
0

(‖𝜙‖2)

𝜆𝜙 = 1 + 𝜇0(𝜙) +
1

2
𝜇0(𝜙

2) +
∑︁
𝑘≥1

𝜇0(𝜙L𝑘
0(𝜙)) + 𝑂7.41+17.75𝛿−1

0 +8.49𝛿−2
0

(‖𝜙‖3)

Proof. With 𝐾 = 1 + 12𝛿0/13 we have 𝜏0 + 𝐾−1
3

= 1 + 4𝛿0/13 and by the Theorem 4.1,
L ↦→ 𝜆L has Lipschitz constant at most 1+4/13 = 17/13. We get |𝜆𝜙−𝜆0| ≤ 17

13
‖L𝜙−L0‖

from which we deduce both

|𝜆𝜙 − 1| ≤ 17

13 × 25
≤ 0.0524
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and |𝜆𝜙 − 1| ≤ 17

13
1.02‖𝜙‖ ≤ 1.334‖𝜙‖

Now we use the first-order Taylor formula for 𝜆, using 𝐾𝜏0𝛾0 ≤ 2𝛿−1
0 (1 + 12𝛿0/13) =

24
13

+ 2𝛿−1
0 :

𝜆𝜙 = 1 + 𝜇0

(︀
(L𝜙1− L01)

)︀
+ 𝑂 24

13
+2𝛿−1

0
(‖L𝜙 − L0‖2),

then using L𝜙1− L01 = L0(𝜙) + 𝑂0.507(‖𝜙‖2) from Lemma 5.1 we get

𝜇0(L𝜙1− L01) = 𝜇0(L0(𝜙)) + 𝑂0.507(‖𝜙‖2) = 𝜇0(𝜙) + 𝑂0.507(‖𝜙‖2).

Using ‖L𝜙 − L0‖ ≤ 1.02‖𝜙‖ gives the following constant in the final 𝑂(‖𝜙‖2) of the
first-order formula:

0.507 + (1.02)2(
24

13
+ 2𝛿−1

0 ) ≤ 2.43 + 2.081𝛿−1
0 .

Then we apply the second-order Taylor formula:

𝜆𝜙 = 1 + 𝜇0(L𝜙1− L01) + 𝜇0

(︁
(L𝜙 − L0)S0(L𝜙1− L01)

)︁
+ 𝑂8𝐾2𝛿−2

0
(‖L𝜙 − L0‖3).

Using L𝜙1− L01 = L0(𝜙 + 1
2
𝜙2) + 𝑂0.169(‖𝜙‖3) from Lemma 5.1 we first get

𝜇0(L𝜙1− L01) = 𝜇0(𝜙) +
1

2
𝜇0(𝜙

2) + 𝑂0.169(‖𝜙‖3).

To simplify the second term, we recall that L𝜙 − L0 = L0(𝜙·) + 𝑂0.507(‖𝜙‖2) and

S0 = (1 − L0)
−1𝜋0 =

(︀∑︁
𝑘≥0

L𝑘
0

)︀
𝜋0

where 𝜋0 is the projection on ker𝜇0 along ⟨1⟩, i.e. 𝜋0(𝑓) = 𝑓 − 𝜇0(𝑓) =: 𝑓 , and has
norm at most 2. We thus have (noticing that in the second line both the main term and
the remainder term belong to ker𝜇0):

𝜋0(L𝜙1− L01) = 𝜋0

(︀
L0(𝜙) + 𝑂0.507(‖𝜙‖2)

)︀
= L0(𝜙) + 𝑂1.014(‖𝜙‖2)

S0(L𝜙1− L01) =
∑︁
𝑘≥1

L𝑘
0(𝜙) + 𝑂1.014𝛿−1

0
(‖𝜙‖2).

We also have
‖S0(L𝜙1− L01)‖ ≤ 2

𝛿0
‖L𝜙1− L01‖ ≤ 2.04

𝛿0
‖𝜙‖.

It then comes

(L𝜙 − L0)S0(L𝜙1− L01) = L0

(︀
𝜙
∑︁
𝑘≥1

L𝑘
0(𝜙)

)︀
+ 𝑂1.014𝛿−1

0
(‖L𝜙 − L0‖‖𝜙‖2)

+ 𝑂0.507(‖𝜙‖2‖S0(L𝜙1− L01)‖)
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= L0

(︀
𝜙
∑︁
𝑘≥1

L𝑘
0(𝜙)

)︀
+ 𝑂2.07𝛿−1

0
(‖𝜙‖3)

𝜇0(L𝜙 − L0)S0(L𝜙1− L01) =
∑︁
𝑘≥1

𝜇0(𝜙L𝑘
0(𝜙)) + 𝑂2.07𝛿−1

0
(‖𝜙‖3)

where the reversal of sum and integral is enabled by normal convergence.
Last, we observe

8𝐾2𝛿−2
0 = 8(

12

13
+ 𝛿−1

0 )2 ≤ 6.82 + 14.77𝛿−1
0 + 8𝛿−2

0 ,

and we gather all what precedes:

𝜆𝜙 = 1 + 𝜇0(L𝜙1− L01) + 𝜇0

(︁
(L𝜙 − L0)S0(L𝜙1− L01)

)︁
+ 𝑂8𝐾2𝛿−2

0
(‖L𝜙 − L0‖3)

= 1 + 𝜇0(𝜙) +
1

2
𝜇0(𝜙

2) + 𝑂0.169(‖𝜙‖3) +
∑︁
𝑘≥1

𝜇0(𝜙L𝑘
0(𝜙)) + 𝑂2.07𝛿−1

0
(‖𝜙‖3)

+ 𝑂(6.82+14.77𝛿−1
0 +8𝛿−2

0 )1.023(‖𝜙‖
3)

= 1 + 𝜇0(𝜙) +
1

2
𝜇0(𝜙

2) +
∑︁
𝑘≥1

𝜇0(𝜙L𝑘
0(𝜙)) + 𝑂7.41+17.75𝛿−1

0 +8.49𝛿−2
0

(‖𝜙‖3)

Under assumption (4), we know that L𝜙 has a spectral gap of size 𝛿0/13 with constant
1, and we can write

L𝜙 = 𝜆𝜙P𝜙 + R𝜙

where P𝜙 is the projection to the eigendirection along the stable complement and R𝜙 =
L𝜙𝜋𝜙 is the composition of the projection to the stable complement and L𝜙. Then it
holds P𝜙R𝜙 = R𝜙P𝜙 = 0, so that for all 𝑛 ∈ N:

L𝑛
𝜙 = 𝜆𝑛

𝜙P𝜙 + R𝑛
𝜙.

Lemma 5.3. Under assumption (4), it holds⃦⃦(︁ 1

𝜆𝜙

R𝜙

)︁𝑛

1
⃦⃦
≤ (6.388 + 4.08𝛿−1

0 )(1 − 𝛿0/13)𝑛−1‖𝜙‖

P𝜙1 = 1 + 𝑂3.77+4.08𝛿−1
0

(‖𝜙‖).

Proof. At any L = L𝜙 where 𝜙 satisfies (4) we have:⃦⃦
𝐷
[︁1

𝜆
R
]︁
L

⃦⃦
≤ 1

|𝜆L|
+

17/13

|𝜆L|2
|L| + 2𝐾𝜏0𝛾0

≤ 1

0.9476
+

17

13 × 0.94762
× 1.04 +

48

13
+

4

𝛿0

≤ 6.263 +
4

𝛿0
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so that ⃦⃦ 1

𝜆𝜙

R𝜙1− 1

𝜆0

R01
⃦⃦
≤ (6.263 +

4

𝛿0
)‖L𝜙 − L0‖‖1‖⃦⃦ 1

𝜆𝜙

R𝜙1− 0
⃦⃦
≤ 1.02(6.263 +

4

𝛿0
)‖𝜙‖⃦⃦ 1

𝜆𝜙

R𝜙1
⃦⃦
≤ (6.388 + 4.08𝛿−1

0 )‖𝜙‖.

Moreover since RL takes its values in 𝐺L where 𝜋L acts as the identity, we have

‖R𝑛
𝜙1‖ ≤ 𝜆𝑛−1

𝜙 (1 − 𝛿0/13)𝑛−1‖RL1‖

from which the first inequality follows.
Then we have P𝜙 = P0 + 𝑂2𝐾𝜏0𝛾0(‖L𝜙 − L0‖), which yields the claimed result using

𝐾 = 1 + 12𝛿0/13, 𝜏0 = 1, 𝛾0 ≤ 2𝛿−1
0 and ‖L𝜙 − L0‖ ≤ 1.02‖𝜙‖.

This control of P𝜙 and R𝜙 can be then be used to reduce the estimation of L𝑛
𝜙1 to the

estimation of 𝜆𝑛
𝜙.

Corollary 5.4. Under assumptions (4) and

𝑛 ≥ 1 +
log 100

− log(1 − 𝛿0/13)
(5)

it holds

L𝑛
𝜙1 = 𝜆𝑛

𝜙

(︀
1 + 𝑂3.834+4.121𝛿−1

0
(‖𝜙‖)

)︀
𝜆𝑛
𝜙 = exp

(︀
𝑛𝜇0(𝜙) + 𝑂3.36+2.081𝛿−1

0
(𝑛‖𝜙‖2)

)︀
𝜆𝑛
𝜙 = exp

(︀
𝑛𝜇0(𝜙) +

1

2
𝑛𝜎2(𝜙) + 𝑂10.89+20.04𝛿−1

0 +8.577𝛿−2
0

(𝑛‖𝜙‖3)
)︀

Proof. Assuming (4), we first appeal to Lemma 5.3 to write:

L𝑛
𝜙1 = 𝜆𝑛

𝜙P𝜙1 + R𝑛
𝜙1

= 𝜆𝑛
𝜙

(︁
1 + 𝑂3.77+4.08𝛿−1

0
(‖𝜙‖) + 𝑂6.388+4.08𝛿−1

0

(︀
(1 − 𝛿0/13)𝑛−1‖𝜙‖

)︀)︁
(6)

The second factor of (6) is easily controlled if we ask (5), under which we have

𝐴 := 1 + 𝑂3.77+4.08𝛿−1
0

(‖𝜙‖) + 𝑂6.388+4.08𝛿−1
0

(︀
(1 − 𝛿0/13)𝑛−1‖𝜙‖

)︀
= 1 + 𝑂3.77+4.08𝛿−1

0
(‖𝜙‖) + 𝑂0.064+0.041𝛿−1

0
(‖𝜙‖)

= 1 + 𝑂3.834+4.121𝛿−1
0

(‖𝜙‖)

The first estimate for 𝜆𝑛
𝜙 is obtained through the first-order Taylor formula. We use

the monotony and convexity of 𝑥 ↦→ (log(1 +𝑥)−𝑥)/𝑥 and set 𝑥 = 𝜆𝜙− 1 ∈ [−𝑏, 𝑏] with
𝑏 = 0.0524 to evaluate log(𝜆𝜙):⃒⃒⃒ log(1 + 𝑥) − 𝑥

𝑥

⃒⃒⃒
≤ log(1 − 𝑏) + 𝑏

−𝑏

|𝑥|
𝑏
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≤ 0.52|𝑥|
log(𝜆𝜙) = log(1 + 𝜆𝜙 − 1)

= 𝜆𝜙 − 1 + 𝑂0.52(|𝜆𝜙 − 1|2)
= 𝜆𝜙 − 1 + 𝑂0.52×1.3342(‖𝜙‖2)
= 𝜆𝜙 − 1 + 𝑂0.926(‖𝜙‖2).

and then using 𝜆𝜙 = 1 + 𝜇0(𝜙) + 𝑂2.43+2.081𝛿−1
0

(‖𝜙‖2) from Lemma 5.2:

𝜆𝑛
𝜙 = exp

(︀
𝑛 log(𝜆𝜙)

)︀
= exp

(︀
𝑛(𝜆𝜙 − 1) + 𝑂0.926(𝑛‖𝜙‖2)

)︀
= exp

(︀
𝑛𝜇0(𝜙) + 𝑂3.36+2.081𝛿−1

0
(𝑛‖𝜙‖2)

)︀
.

The second estimate for 𝜆𝑛
𝜙 is obtained, of course, from the second-order formula given

in Lemma 5.2:

𝜆𝜙 = 1 + 𝜇0(𝜙) +
1

2
𝜇0(𝜙

2) +
∑︁
𝑘≥1

𝜇0(𝜙L𝑘
0(𝜙)) + 𝑂7.41+17.75𝛿−1

0 +8.49𝛿−2
0

(‖𝜙‖3).

Here, it is somewhat tedious to use a convexity argument and we instead use the slightly
less precise Taylor formula: for 𝑥 ∈ [−𝑏, 𝑏] (where again 𝑏 = 0.0524) we have⃒⃒⃒1

6

d3

d𝑥3
log(1 + 𝑥)

⃒⃒⃒
≤ 2

6(1 − 0.0524)3
≤ 0.392

so that
log(1 + 𝑥) = 𝑥− 1

2
𝑥2 + 𝑂0.392(𝑥

3)

and therefore (using at one step |𝜇0(𝜙)| ≤ ‖𝜙‖):

log(𝜆𝜙) = (𝜆𝜙 − 1) − 1

2
(𝜆𝜙 − 1)2 + 𝑂0.392((𝜆𝜙 − 1)3)

= 𝜇0(𝜙) +
1

2
𝜇0(𝜙

2) +
∑︁
𝑘≥1

𝜇0(𝜙L𝑘
0𝜙) + 𝑂7.41+17.75𝛿−1

0 +8.49𝛿−2
0

(‖𝜙‖3)

− 1

2

(︀
𝜇0(𝜙) + 𝑂2.43+2.081𝛿−1

0
(‖𝜙‖2)

)︀2
+ 𝑂0.392×1.3343(‖𝜙‖3)

= 𝜇0(𝜙) +
1

2
𝜎2(𝜙) + 𝑂10.771+19.831𝛿−1

0 +8.49𝛿−2
0

(‖𝜙‖3) + 𝑂2.953+5.06𝛿−1
0 +2.166𝛿−2

0
(‖𝜙‖4)

Now assumption (4) ensures ‖𝜙‖ ≤ 0.04, so that we can combine the two error terms
into 𝑂𝑎(‖𝜙‖3) with

𝑎 = 10.771 + 19.831𝛿−1
0 + 8.49𝛿−2

0 + 0.04(2.953 + 5.06𝛿−1
0 + 2.166𝛿−2

0 )

≤ 10.89 + 20.04𝛿−1
0 + 8.577𝛿−2

0
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6 Concentration inequalities

We will in this section apply Corollary 5.4 to 𝑡
𝑛
𝜙 instead of 𝜙, which we can do as soon

as 𝑛 is large enough with respect to 𝑡 and ‖𝜙‖ in the sense that

𝑛 ≥ ‖𝑡𝜙‖

log
(︁

1 +
𝛿20

12+13𝛿0

)︁ and 𝑛 ≥ 1 +
log 100

− log(1 − 𝛿0/13)
, (7)

Remark 6.1. The first condition can be replaced by any of the following stronger but
simpler conditions

𝑛 ≥ (13.3𝛿−1
0 + 12.3𝛿−2

0 )‖𝑡𝜙‖ or 𝑛 ≥ 26
‖𝑡𝜙‖
𝛿20

Similarly, by an elementary function analysis the second condition can be replaced by

𝑛 ≥ 60

𝛿0
.

Under these conditions, we obtain our first control of the moment generating function
of the empiric mean

𝜇̂𝑛(𝜙) :=
1

𝑛
𝜙(𝑋1) + · · · +

1

𝑛
𝜙(𝑋𝑛)

by plugging the first-order estimate of Corollary 5.4 in (3):

E𝜇

[︀
exp(𝑡𝜇̂𝑛(𝜙))

]︀
exp(𝑡𝜇0(𝜙))

= 𝑒−𝑡𝜇0(𝜙)

∫︁
L𝑛

𝑡
𝑛
𝜙1(𝑥) d𝜇(𝑥)

=
(︀
1 + 𝑂3.834+4.121𝛿−1

0
(
𝑡

𝑛
‖𝜙‖)

)︀
exp(𝑂3.36+2.081𝛿−1

0
(
𝑡2

𝑛
‖𝜙‖2))

By the classical Chernov bound, it follows that for all 𝑎, 𝑡 > 0:

P𝜇

[︀
|𝜇̂𝑛(𝜙) − 𝜇0(𝜙)| ≥ 𝑎

]︀
≤

(︀
2 + (7.668 + 8.242𝛿−1

0 )
𝑡

𝑛
‖𝜙‖

)︀
exp

(︀
− 𝑎𝑡 + (3.36 + 2.081𝛿−1

0 )
𝑡2

𝑛
‖𝜙‖2)

)︀
(8)

6.1 Gaussian regime

Our first concentration inequality is obtained by choosing 𝑡 to optimize the argument of
the exponential in (8), i.e. taking

𝑡 =
𝑛𝑎

2(3.36 + 2.081𝛿−1
0 )‖𝜙‖2

.

This choice can be made as soon as 𝑎 is small enough: indeed the first condition on 𝑛
then reads

𝑛 ≥ 𝑛𝑎

2(3.36 + 2.081𝛿−1
0 ) log

(︁
1 +

𝛿20
12+13𝛿0

)︁
‖𝜙‖
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i.e.
𝑎 ≤ (6.72 + 4.162𝛿−1

0 ) log
(︁

1 +
𝛿20

12 + 13𝛿0

)︁
‖𝜙‖.

Let us find a simpler lower bound for the right-hand side:

(6.72 + 4.162𝛿−1
0 ) log

(︁
1 +

𝛿20
12 + 13𝛿0

)︁
≥ (6.72 + 4.162𝛿−1

0 ) · 0.98
𝛿20

12 + 13𝛿0

≥ 6.58𝛿0 + 4

13𝛿0 + 12
𝛿0

≥ 𝛿0
3

so that a sufficient condition to make the above choice for 𝑡 is

𝑎 ≤ 𝛿0‖𝜙‖
3

. (9)

Then the argument in the exponential becomes

−𝑎𝑡 + (3.36 + 2.081𝛿−1
0 )

𝑡2

𝑛
‖𝜙‖2) ≤ − 𝑛𝑎2

(13.44 + 8.324𝛿−1
0 )‖𝜙‖2

and the constant in front:

2 + (7.668 + 8.242𝛿−1
0 )

𝑡

𝑛
‖𝜙‖ ≤ 2 +

(7.668 + 8.242𝛿−1
0 )𝑎

(6.72 + 4.162𝛿−1
0 )‖𝜙‖

≤ 2 +
7.668𝛿20 + 8.242𝛿0
20.16𝛿0 + 12.486

≤ 2 +
7.668 + 8.242

20.16 + 12.486
≤ 2.488 ≤ 2.5

Remark 6.2. We could also have bounded the front constant in a different way to show
it can be taken close to 2 for small 𝑎:

2 + (7.668 + 8.424𝛿−1
0 )

𝑡

𝑛
‖𝜙‖ ≤ 2 +

(7.668 + 8.242𝛿−1
0 )𝑎

(6.72 + 4.162𝛿−1
0 )‖𝜙‖

≤ 2 +
8.242

4.162

𝑎

‖𝜙‖
≤ 2 + 2

𝑎

‖𝜙‖
We obtain a version of the first part of Theorem A.

Theorem 6.3. For all 𝑛, 𝑎 such that

𝑛 ≥ 1 +
log 100

− log(1 − 𝛿0/13)
and 𝑎 ≤ 𝛿0‖𝜙‖

3

it holds

P𝜇

[︁
|𝜇̂𝑛(𝜙) − 𝜇0(𝜙)| ≥ 𝑎

]︁
≤ 2.488 exp

(︁
− 𝑛

𝛿0
13.44𝛿0 + 8.324

𝑎2

‖𝜙‖2
)︁
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A simpler, less precise estimate is

P𝜇

[︁
|𝜇̂𝑛(𝜙) − 𝜇0(𝜙)| ≥ 𝑎

]︁
≤ 2.5 exp

(︁
− 𝑛 · 0.046𝛿0

𝑎2

‖𝜙‖2
)︁

6.2 Exponential regime

For larger 𝑎, we obtain a result with exponential decay by taking 𝑡 as large as allowed
by the first smallness condition (7), i.e.

𝑡 ≃ 𝑛

‖𝜙‖
log

(︁
1 +

𝛿20
12 + 13𝛿0

)︁
.

To simplify, we precisely take the slightly smaller

𝑡 =
𝑛

‖𝜙‖
× 0.98𝛿20

12 + 13𝛿0

Then the argument in the exponential becomes

−𝑎𝑡 + (3.36 + 2.081𝛿−1
0 )

𝑡2

𝑛
‖𝜙‖2) = 𝑛

0.98𝛿20
12 + 13𝛿0

(︁
− 𝑎

‖𝜙‖
+

0.98(3.36𝛿20 + 2.081𝛿0)

12 + 13𝛿0

)︁
≤ −𝑛

0.98𝛿20
12 + 13𝛿0

(︁ 𝑎

‖𝜙‖
− 0.254𝛿0

)︁
and the constant in front:

2 + (7.668 + 8.242𝛿−1
0 )

𝑡

𝑛
‖𝜙‖ = 2 + (7.668 + 8.242𝛿−1

0 )
0.98𝛿20

12 + 13𝛿0

= 2 +
7.515𝛿20 + 8.078𝛿0

12 + 13𝛿0

≤ 2 +
15.593

25
≤ 2.624

We obtain a version of the second part of Theorem A.

Theorem 6.4. For all 𝑛, 𝑎 such that

𝑛 ≥ 1 +
log 100

− log(1 − 𝛿0/13)
and 𝑎 ≥ 𝛿0‖𝜙‖

3

it holds

P𝜇

[︁
|𝜇̂𝑛(𝜙) − 𝜇0(𝜙)| ≥ 𝑎

]︁
≤ 2.624 exp

(︁
− 𝑛

0.98𝛿20
12 + 13𝛿0

(︁ 𝑎

‖𝜙‖
− 0.254𝛿0

)︁)︁
.

A simpler, less precise estimate is:

P𝜇

[︁
|𝜇̂𝑛(𝜙) − 𝜇0(𝜙)| ≥ 𝑎

]︁
≤ 2.7 exp

(︁
− 𝑛 · 0.009𝛿20

𝑎

‖𝜙‖

)︁
.
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6.3 Second-order concentration

In the case one has a good upper bound for the variance

𝜎2(𝜙) = 𝜇0(𝜙
2) − (𝜇0𝜙)2 + 2

∑︁
𝑘≥1

𝜇0(𝜙L𝑘
0𝜙)

then the previous concentration results can be improved by using the second-order for-
mula in Corollary 5.4, which yields

E𝜇

[︀
exp(𝑡𝜇̂𝑛(𝜙))

]︀
exp(𝑡𝜇0(𝜙))

= exp
(︀ 𝑡2

2𝑛
𝜎2(𝜙) + 𝑂10.89+20.04𝛿−1

0 +8.577𝛿−2
0

(
𝑡3

𝑛2
‖𝜙‖3)

)︀
×
(︀
1 + 𝑂3.834+4.121𝛿−1

0
(
𝑡

𝑛
‖𝜙‖)

)︀
so that, if we know 𝜎2(𝜙) ≤ 𝑈 :

P𝜇

[︀
|𝜇̂𝑛(𝜙)−𝜇0(𝜙)| ≥ 𝑎

]︀
≤

(︀
2+

(7.668 + 8.242𝛿−1
0 )𝑡

𝑛
‖𝜙‖

)︀
exp

(︀
−𝑎𝑡+

𝑡2

2𝑛
𝑈+𝐶

𝑡3

𝑛2
‖𝜙‖3

)︀
where 𝐶 can be any number above 10.89 + 20.04𝛿−1

0 + 8.577𝛿−2
0 . To get a compact

expression, we observe that 0.89 + 0.04𝛿−1
0 ≤ 0.93𝛿−2

0 so that

10.89 + 20.04𝛿−1
0 + 8.577𝛿−2

0 ≤ 10 + 20𝛿−1
0 + 9.507𝛿−2

0 ≤ 10(1 + 𝛿−1
0 )2 =: 𝐶.

The choice of 𝑡 can then be adapted to the circumstances; we will only explore the
choice 𝑡 = 𝑎𝑛/𝑈 which is nearly optimal when 𝑎 is small.

This choice can be made as soon as

𝑎 ≤ 𝑈

‖𝜙‖
log

(︁
1 +

𝛿20
12 + 13𝛿0

)︁
and entails the following upper bound for the front constant:

2 + (7.668 + 8.242𝛿−1
0 )

𝛿20
12 + 13𝛿0

≤ 2 +
7.668 + 8.242

12 + 13
≤ 2.637

Meanwhile, the exponent becomes

−𝑎𝑡 +
𝑡2

2𝑛
𝑈 + 𝐶

𝑡3

𝑛2
‖𝜙‖3 = −𝑎2𝑛

2𝑈
+

𝐶‖𝜙‖3𝑎3𝑛
𝑈3

which, given 𝜇̂𝑛(𝜙) satisfies the Central Limit Theorem, is nearly optimal if 𝑎 ≪ 𝑈2

2𝐶‖𝜙‖3

and 𝑈 is close to 𝜎2(𝜙). We obtain Theorem B, in the following version.

Theorem 6.5. For all 𝑛 ≥ 60/𝛿0, if 𝜎2(𝜙) ≤ 𝑈 and

𝑎 ≤ 𝑈

‖𝜙‖
log

(︁
1 +

𝛿20
12 + 13𝛿0

)︁
then it holds

P𝜇

[︀
|𝜇̂𝑛(𝜙) − 𝜇0(𝜙)| ≥ 𝑎

]︀
≤ 2.637 exp

(︁
− 𝑛 ·

(︀ 𝑎2
2𝑈

− 10(1 + 𝛿−1
0 )2

‖𝜙‖3𝑎3

𝑈3

)︀)︁
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7 Berry-Esseen bounds

In this section, we use the second-order Taylor formula for the leading eigenvalue to
prove effective Berry-Esseen bounds. The method we use is the one proposed by Feller
[Fel66], which does not yield the best constant in the IID case, but is quite easily adapted
to the Markov or dynamical case as observed in [CP90].

The starting point is a “smoothing” argument that allows to translate the proximity
of characteristic functions into a proximity of distribution functions.

Proposition 7.1 ([Fel66]). Let 𝐹,𝐺 be the distribution functions and 𝜑, 𝛾 be the char-
acteristic functions of real random variables with vanishing expectation. Assume 𝐺 is
derivable and ‖𝐺′‖∞ ≤ 𝑚; then for all 𝑇 > 0:

‖𝐹 −𝐺‖∞ ≤ 1

𝜋

∫︁ 𝑇

−𝑇

⃒⃒⃒𝜑(𝑡) − 𝛾(𝑡)

𝑡

⃒⃒⃒
d𝑡 +

24𝑚

𝜋𝑇
.

We set 𝐺(𝑇 ) = (2𝜋)−
1
2

∫︀ 𝑇

−∞ 𝑒−
𝑡2

2 d𝑡 the reduced normal distribution function, so that

‖𝐺′‖∞ = (2𝜋)−
1
2 and 𝛾(𝑡) = 𝑒−

𝑡2

2 , and apply the above estimate to the distribution
function 𝐹𝑛 of the random variable 1√

𝑛
(𝜙(𝑋1) + · · · + 𝜙(𝑋𝑛)), where here 𝜙 is the fully

normalized version of 𝜙:

𝜙 =
𝜙− 𝜇0(𝜙)

𝜎(𝜙)
where 𝜎2(𝜙) = 𝜇0(𝜙

2) − (𝜇0𝜙)2 + 2
∑︁
𝑘≥1

𝜇0

(︀
𝜙L𝑘

0(𝜙)
)︀
,

assuming 𝜎2(𝜙) > 0 and with 𝜙 := 𝜙−𝜇0(𝜙). We save for later the following observation:

𝜎2(𝜙) = 𝜎2(𝜙)

≤ ‖𝜙2‖∞ + 2
∑︁
𝑘≥1

‖𝜙‖∞(1 − 𝛿0)
𝑘‖𝜙‖

≤ ‖𝜙‖2
(︀
1 +

2

𝛿0

)︀
so that

‖𝜙‖ ≥
(︀
1 +

2

𝛿0

)︀− 1
2

≥
√︀

𝛿0/3

Applying formula (3) to 𝑖𝑡√
𝑛
𝜙, we obtain an expression for the characteristic function

𝜑𝑛(𝑡) =

∫︁
L 𝑖𝑡√

𝑛
𝜙1(𝑥) d𝜇(𝑥)

= 𝜆𝑛
𝑖𝑡√
𝑛
𝜙

(︁∫︁
P 𝑖𝑡√

𝑛
𝜙1 d𝜇 +

∫︁ [︀
R/𝜆

]︀𝑛
𝑖𝑡√
𝑛
𝜙
1 d𝜇

)︁
⏟  ⏞  

=:𝐴
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where 𝜇 is the law of 𝑋0. From now on, we assume

√
𝑛 ≥ ‖𝑡𝜙‖

log
(︁

1 +
𝛿20

13+12𝛿0

)︁ and
√
𝑛 ≥ 1 +

log 100

− log(1 − 𝛿0/13)

to apply the estimates from Section 5. We will use later that this condition, considering
the extremal case 𝛿0 = 1, implies 𝑛 ≥ 3311.

We then get (Corollary 5.4):

𝐴 =

∫︁
P 𝑖𝑡√

𝑛
𝜙1 d𝜇 + 𝜆−𝑛

𝑖𝑡√
𝑛
𝜙

∫︁
R𝑛

𝑖𝑡√
𝑛
𝜙
1 d𝜇 = 1 + 𝑂3.668+4.121𝛿−1

0
(‖ 𝑡√

𝑛
𝜙‖).

We also have from Corollary 5.4

𝜆𝑛
𝑖𝑡√
𝑛
𝜙

= exp
(︁
− 𝑡2

2
+ 𝑂10.89+20.04𝛿−1

0 +8.577𝛿−2
0

(
1√
𝑛
‖𝑡𝜙‖3)

)︁
.

In order to bound |𝜑𝑛(𝑡)− 𝛾(𝑡)|, following Feller [Fel66] we use that for all 𝑎, 𝑏, 𝑐 such
that |𝑎|, |𝑏| ≤ 𝑐 and all 𝑛 ∈ N it holds

|𝑎𝑛 − 𝑏𝑛| ≤ 𝑛|𝑎− 𝑏|𝑐𝑛−1.

We take 𝑎 = 𝜑𝑛(𝑡)
1
𝑛 , 𝑏 = 𝛾(𝑡)

1
𝑛 and 𝑐 an upper bound which we will now choose. Feller

takes 𝑐 = 𝑒−
𝑡2

4𝑛 , but we need two adaptations and take 𝑐 = 1.32
1
𝑛 𝑒−𝛼 𝑡2

𝑛 where 𝛼 ∈ (0, 0.5)
will be optimized later on.

We have 𝛾(𝑡)
1
𝑛 = 𝑒−

𝑡2

2𝑛 ≤ 𝑐 and

𝜑𝑛(𝑡)
1
𝑛 ≤ 𝑒−

𝑡2

2𝑛 exp
(︀
(10.89 + 20.04𝛿−1

0 + 8.577𝛿−2
0 )(

1

𝑛3/2
‖𝑡𝜙‖3)

)︀
𝐴

1
𝑛

where

𝐴 ≤ 1 + (3.834 + 4.121𝛿−1
0 )‖ 𝑡√

𝑛
𝜙‖

≤ 1 + (3.834 + 4.121𝛿−1
0 )

𝛿20
13 + 12𝛿0

≤ 1.32

To ensure 𝜑𝑛(𝑡)
1
𝑛 ≤ 𝑐, it is therefore sufficient that

(10.89 + 20.04𝛿−1
0 + 8.577𝛿−2

0 )(
1√
𝑛
‖𝑡𝜙‖3) ≤ (0.5 − 𝛼)𝑡2

i.e. it is sufficient to ask

√
𝑛 ≥ 10.89 + 20.04𝛿−1

0 + 8.577𝛿−2
0

0.5 − 𝛼
|𝑡|‖𝜙‖3 (10)
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Under this assumption, we have (using 𝑛 ≥ 3311 to bound (𝑛− 1)/𝑛 by 0.9996):

|𝜑𝑛(𝑡) − 𝛾(𝑡)| ≤ 1.32𝑛𝑒−0.9996𝛼𝑡2
⃒⃒
𝜑𝑛(𝑡)

1
𝑛 − 𝛾(𝑡)

1
𝑛

⃒⃒
. (11)

Now we will bound |𝜑𝑛(𝑡)
1
𝑛 − 𝛾(𝑡)

1
𝑛 |, starting by a finer evaluation of 𝐴:

𝐴
1
𝑛 = (1 + 𝑂3.834+4.121𝛿−1

0
(‖ 𝑡√

𝑛
𝜙‖))

1
𝑛

≤ exp
(︀ 1

𝑛3/2
(3.834 + 4.121𝛿−1

0 )‖𝑡𝜙‖)
)︀

By our assumptions the argument of the exponential is not greater than

1

𝑛
(3.834 + 4.121𝛿−1

0 ) log
(︁

1 +
𝛿20

13 + 12𝛿0

)︁
≤ 1

3311

3.834𝛿20 + 4.121𝛿0
13 + 12𝛿0

≤ 0.0001

and using 𝑒0.0001 ≤ 1.0002, for all 𝜀 ∈ [0, 0.0001] we have exp(𝜀) ≤ 1 + 1.0002𝜀 and
therefore:

𝐴
1
𝑛 ≤ 1 +

3.835 + 4.122𝛿−1
0

𝑛3/2
‖𝑡𝜙‖

Now we have⃒⃒
𝜑𝑛(𝑡)

1
𝑛 − 𝛾(𝑡)

1
𝑛

⃒⃒
≤

⃒⃒⃒
𝜆 𝑖𝑡√

𝑛
𝜙(1 +

3.835 + 4.122𝛿−1
0

𝑛3/2
‖𝑡𝜙‖) − 1 +

𝑡2

2𝑛

⃒⃒⃒
+
⃒⃒⃒
𝑒−

𝑡2

2𝑛 − 1 +
𝑡2

2𝑛

⃒⃒⃒
Since for all 𝑥 ∈ [0,+∞[ we have 0 ≤ 𝑒−𝑥 − 1 + 𝑥 ≤ 1

2
𝑥2, the second summand is

bounded above by 𝑡4

8𝑛2 . In the first summand we use (Lemma 5.2, definition of 𝜎2 and
normalization of 𝜙)

𝜆 𝑖𝑡√
𝑛
𝜙 = 1 − 𝑡2

2𝑛
+ 𝑂7.41+17.75𝛿−1

0 +8.49𝛿−2
0

(︀
‖ 𝑡√

𝑛
𝜙‖3

)︀
.

The lower order terms simplify and we obtain⃒⃒
𝜑𝑛(𝑡)

1
𝑛 − 𝛾(𝑡)

1
𝑛

⃒⃒
≤

⃒⃒⃒
𝑂7.41+17.75𝛿−1

0 +8.49𝛿−2
0

(‖ 𝑡√
𝑛
𝜙‖3) + 𝜆 𝑖𝑡√

𝑛
𝜙

3.835 + 4.122𝛿−1
0

𝑛3/2
‖𝑡𝜙‖

⃒⃒⃒
+

𝑡4

8𝑛2

≤ 1

𝑛3/2

(︁
(7.41 + 17.75𝛿−1

0 + 8.49𝛿−2
0 )‖𝑡𝜙‖3

+ 1.0524(3.835 + 4.122𝛿−1
0 )‖𝑡𝜙‖

)︁
+

𝑡4

8𝑛2

≤ (7.41 + 17.75𝛿−1
0 + 8.49𝛿−2

0 )‖𝑡𝜙‖3 + (4.036 + 4.338𝛿−1
0 )‖𝑡𝜙‖

𝑛3/2
+

𝑡4

8𝑛2

For all 𝑇 > 0 such that the above conditions on 𝑛, 𝑡 hold for all 𝑡 ∈ [−𝑇, 𝑇 ], we have by
Proposition 7.1:

‖𝐹𝑛 −𝐺‖∞ ≤ 1

𝜋

∫︁ 𝑇

−𝑇

⃒⃒⃒𝜑(𝑡) − 𝛾(𝑡)

𝑡

⃒⃒⃒
d𝑡 +

24𝑚

𝜋𝑇
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≤ 2.64

𝜋

∫︁ 𝑇

0

𝑛𝑒−0.9996𝛼𝑡2
⃒⃒
𝜑𝑛(𝑡)

1
𝑛 − 𝛾(𝑡)

1
𝑛

⃒⃒
d𝑡 +

3.048

𝑇

≤ 2.64

𝜋
√
𝑛

∫︁ ∞

0

𝑒−0.9996𝛼𝑡2
(︀
𝑑‖𝑡𝜙‖3 + 𝑓‖𝑡𝜙‖ + 𝑔𝑡4

)︀
d𝑡 +

3.048

𝑇

where 𝑑 = 7.41 + 17.75𝛿−1
0 + 8.49𝛿−2

0 , 𝑓 = 4.036 + 4.338𝛿−1
0 and, using 𝑛 ≥ 3311,

𝑔 = 0.0022. We want to take 𝑇 as large as possible to lower the last term, but we need
to ensure two conditions:

𝑇 ≤
√
𝑛

‖𝜙‖
log

(︁
1 +

𝛿20
13 + 12𝛿0

)︁
and 𝑇 ≤

√
𝑛

‖𝜙‖3
(0.5 − 𝛼)

10.89 + 20.04𝛿−1
0 + 8.577𝛿−2

0

We could use here the lower bound on ‖𝜙‖ to replace the left condition by a condition
of the same form as the right one, but this would be too strong when ‖𝜙‖ is far from
the bound. We will make a choice which will be better when ‖𝜙‖ is of the order of 1
(recall 𝜙 is normalized, and therefore insensitive to scaling 𝜙), by replacing the above
conditions by the more stringent

𝑇 ≤
√
𝑛

max{‖𝜙‖, ‖𝜙‖3}
min

{︁
log

(︁
1 +

𝛿20
13 + 12𝛿0

)︁
,

(0.5 − 𝛼)

10.89 + 20.04𝛿−1
0 + 8.577𝛿−2

0

}︁
In the min, the first term is larger than 0.98𝛿20/(12 + 13𝛿0) which is easily seen to be
larger than the second term for all 𝛿0. We thus take

𝑇 =

√
𝑛

max{‖𝜙‖, ‖𝜙‖3}
(0.5 − 𝛼)

10.89 + 20.04𝛿−1
0 + 8.577𝛿−2

0

and we obtain

‖𝐹𝑛 −𝐺‖∞ ≤ 2.64

𝜋
√
𝑛

∫︁ +∞

0

𝑒−0.9996𝛼𝑡2
(︀
𝑑‖𝜙‖3𝑡3 + 𝑓‖𝜙‖𝑡 + 𝑔𝑡4

)︀
d𝑡

+
(33.193 + 61.082𝛿−1

0 + 26.082𝛿−2
0 ) max{‖𝜙‖, ‖𝜙‖3}

(0.5 − 𝛼)
√
𝑛

We have for 𝑑 = 1, 3, 4:∫︁ +∞

0

𝑒−0.9996𝛼𝑡2𝑡𝑑 d𝑡 = (0.9996𝛼)−
𝑑+1
2

∫︁ +∞

0

𝑒−𝑡2𝑡𝑑 d𝑡.

Since
∫︀ +∞
0

𝑒−𝑡2𝑡𝑑 d𝑡 = 1
2
Γ(𝑑+1

2
) we thus have

‖𝐹𝑛 −𝐺‖∞ ≤ 1.32

𝜋
√
𝑛

(︀
𝑑(0.9996𝛼)−2‖𝜙‖3 + 𝑓(0.9996𝛼)−1‖𝜙‖ + 𝑔(0.9996𝛼)−

5
2 Γ(

5

2
)
)︀

+
(33.193 + 61.082𝛿−1

0 + 26.082𝛿−2
0 ) max{‖𝜙‖, ‖𝜙‖3}

(0.5 − 𝛼)
√
𝑛
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We will now choose 𝛼, by comparing the two most troublesome coefficients 1.32𝑎
𝜋(0.9996𝛼)2

,

which is close to 0.42𝑑
𝛼2 (and makes us want to take 𝛼 large), and (33.193+61.082𝛿−1

0 +26.082𝛿−2
0 )

0.5−𝛼

which is somewhat close to 2.9𝑎
0.5−𝛼

when 𝛿0 is small (and makes us want to take 𝛼 small).
This leads us to take 𝛼 = 0.2. We then get

‖𝐹𝑛 −𝐺‖∞ ≤ 1√
𝑛

(︁
(77.9 + 186.6𝛿−1

0 + 89.26𝛿−2
0 )‖𝜙‖3 + (8.49 + 9.12𝛿−1

0 )‖𝜙‖ + 0.069

+ (110.65 + 203.61𝛿−1
0 + 86.94𝛿−2

0 ) max{‖𝜙‖, ‖𝜙‖3}
)︁

≤ 1√
𝑛

(︁
(197.04 + 399.33𝛿−1

0 + 176.2𝛿−2
0 ) max{‖𝜙‖, ‖𝜙‖3} + 0.069

)︁
Using ‖𝜙‖ ≥

√︀
𝛿0/3 and since 𝛿0 ≤ 1, we obtain 0.069 ≤ 0.36 max{‖𝜙‖, ‖𝜙‖3}𝛿−2

0 so
that

‖𝐹𝑛 −𝐺‖∞ ≤ max{‖𝜙‖, ‖𝜙‖3}√
𝑛

(︀
197.04 + 399.33𝛿−1

0 + 176.56𝛿−2
0

)︀
and finally

‖𝐹𝑛−𝐺‖∞ ≤ 177(𝛿−2
0 +2.26𝛿−1

0 +1.1)
max{‖𝜙‖, ‖𝜙‖3}√

𝑛
≤ 177(𝛿−1

0 +1.13)2
max{‖𝜙‖, ‖𝜙‖3}√

𝑛

which is Theorem C.
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