
Budget Restricted Incremental Learning with
Pre-Trained Convolutional Neural Networks and

Binary Associative Memories
Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu Arzel and Michel Jezequel

IMT Atlantique, Brest, France
name.surname@imt-atlantique.fr

Abstract—Thanks to their ability to absorb large amounts of
data, Convolutional Neural Networks (CNNs) have become state-
of-the-art in numerous vision challenges, sometimes even on par
with biological vision. They rely on optimisation routines that
typically require intensive computational power, thus the question
of embedded architectures is a very active field of research.
Of particular interest is the problem of incremental learning,
where the device adapts to new observations or classes. To tackle
this challenging problem, we propose to combine pre-trained
CNNs with binary associative memories, using product random
sampling as an intermediate between the two methods. The
obtained architecture requires significantly less computational
power and memory usage than existing counterparts. Moreover,
using various challenging vision datasets we show that the
proposed architecture is able to perform one-shot learning – and
even use only a small portion of the dataset – while keeping very
good accuracy.

Index Terms—Incremental Learning, Transfer Learning, Con-
volutional Neural Networks, Associative Memories

I. INTRODUCTION

For the past few years, Deep Neural Networks (DNNs),
and in particular Convolutional Neural Networks (CNNs), have
achieved state-of-the-art performance [1], [2], [3] in several
domains of supervised learning, sometimes even being on par
with the visual cortex [4]. DNNs rely on hundreds of millions
of parameters that are trained to deal with large amounts of
data. In this context a major drawback of the method is the
need for intensive computation and memory usage during the
learning phase. This limitation is critical for embedded systems
such as smartphones or sensor networks.

A lot of effort has been driven towards optimized hardware
implementations of DNNs [5]. For example in [6], the authors
propose an architecture with state-of-the-art performance on
the ImageNet challenge [7] using less than one megabyte, and
in [8] a fixed point quantization of CNNs was introduced to
reduce the network size. However, learning its parameters still
require the processing of the whole dataset, involving many
gradient computations. Moreover, the whole training dataset
has to be stored in memory for learning.

Incremental methods provide solutions to process the learn-
ing data sequentially, using subsets of the training dataset.
An incremental technique is defined as such [9], [10]: a)
it is able to learn additional information from new data
(example-incremental), b) it does not require access to the

original data used to train the existing classifiers (in order
to limit memory usage), c) it preserves previously acquired
knowledge (avoid catastrophic forgetting) and d) it is able to
accommodate new classes that may be introduced with new
data (class-incremental). Although models have been proposed
and studied extensively during the last decades, finding a good
compromise between accuracy and required resources remains
challenging. Indeed, most of existing works retrain the model
when receiving new data [11], [12], and reuse some prior data
for the retraining process [10], [13].

In this paper we propose an incremental learning model with
the following claims:

• It is possible to adapt the model to new data without
retraining it,

• It uses much less computational power than existing
counterparts,

• It approaches state-of-art accuracy on challenging vision
datasets (CIFAR10, ImageNet),

• It dramatically decreases the memory usage (by sev-
eral orders of magnitude compared to nearest neighbour
search),

• It only requires a few learning examples.
We point out that these claims are of particular interest when
targeting embedded applications.

We rely on an increasingly popular method to benefit from
the accuracy of DNNs without the need to train them on
the targeted dataset, termed “transfer learning” [14], [2]. The
idea is to use pre-trained CNNs on large datasets as feature
extractors, and retrain the final layer of DNNs.

In this work, we propose to combine transfer learning
with binary associative memories to achieve fully incremental
learning. Binary associative memories are devices that are
able to perform one-shot learning with very limited resources.
The output of the DNN is quantized in a specific manner
to combine it with the binary associative memories. This
solution allows processing data sequentially one subset at a
time, without forgetting initially processed data, and using
only a sample of the database for learning. An overview of
the proposed method is depicted in Figure 1. We evaluate the
proposed method on challenging vision datasets (ImageNet
and CIFAR10), and compare both accuracy and resources with
alternative methods.



Input
Signal

sm

Input
Label
cm

Pre-trained
CNN

Hidden Layer
Output

Feature
Vector

xm

Split Feature
Vector

Step 1 Step 2

Quantization

•

•
•
•

+

qm
1

Storage

Step 3

Associative Memories

•
• •
•

•
•
•
•

+ •
• •
•

• ••

•
+

y21

•
• •
•

n34

η81

xm1

xm2

xm3

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

Figure 1. Overview of the proposed method, comprising three main steps. Given a set of samples, we first use a pre-trained CNN for feature extraction.
Subsequently, we use a PQ technique to quantize the feature vectors. Finaly, we use a binary associative memory to store and classify the quantized data

The outline of the paper is as follows. In Section II we
introduce related work. We present the proposed method in
Section III. The experimental results are outlined in Sec-
tion IV. Finally, Section V is a conclusion.

II. RELATED WORK

The term incremental usually refers to the ability of a
learning process to learn sequentially, thus being able to handle
new data and new classes without the need to retrain the
whole system [10]. As an example, the “learn++” algorithm
introduced in [10] accommodates new classes using weak
one-vs-all classifiers. This approach conveniently manages the
insertion, deletion and recurrence of classes over learning
data [13]. However, this method requires to continuously train
new classifiers in order to accommodate for new data, resulting
in a potentially large computational intensiveness and memory
usage.

Another approach was proposed to deal with a large amount
of data [11], [12], [15]. The idea is to replace batches in
classical learning methods with a process based on Support
Vector Machines (SVM), in which learning is performed using
only one subset at a time, independently of the others. As a
consequence, it is possible to limit memory usage. However,
training the SVMs can be computationally expensive.

In [16] incremental learning refers to three distinct prob-
lems: example-incremental learning [11], [12], [15], class-
incremental learning [10], [13], and attribute-incremental
learning. In [17], the authors propose a SVM inspired method
to handle both the first two concepts defined above. However,
it requires the training of novel SVMs using new examples and
old SVMs. In addition, SVMs suffer from catastrophic forget-
ting, which is the loss of previously learned information [18],
[19]. To address this problem a combination between SVMs
and learn++ method called “SVMlearn++” [20] was proposed,

showing a promising improvement on biological datasets [21].
However, this method still needs to retrain a new SVM each
time new data is processed, and some knowledge is forgotten
while new information is being learned.

The method we propose in this paper is quite different as
it combines incremental aspects with one-shot learning using
binary associative memories. Consequently, there is no need to
retrain the system with old data, nor to perform computation-
ally intensive processing with a new one. In addition, learning
new data does not damage previously learned information, and
only a few examples are required for learning, resulting in
substantial savings in memory during the learning process.

III. THE PROPOSED METHOD

The proposed method is built upon three main ideas: 1) us-
ing a pre-trained deep CNN to perform features extraction of
signals, 2) using product quantizing techniques to embed data
in a finite alphabet and 3) using binary associative memories
to store and classify data as a proxy to a nearest neighbour
search. In the next paragraphs, we detail these three steps.

Step 1: The first key idea is to use the internal layers of
a pre-trained deep CNN [3] which acts as a generic feature
extractor and associates an input signal sm with a feature
vector xm (cf. Figure 1 step 1).

Step 2: Having a feature vector set X = {x1, x2, . . . , xM},
the next step is to embed xm in a finite alphabet. This step
is crucial as it allows to map outputs of step 1) to the
inputs of step 3). There is a lot of literature dedicated to this
problem, including methods relying on Product Quantization
(PQ) [22]. Because we aim at providing computationally light
solutions, we rather use product random sampling in this work.
Basically, we split each xm into P subvectors of equal sizes



denoted
(
xmp
)
1≤p≤P

, which are quantized independently from
each other using random selection of K anchor points Yp =
yp1, ..., ypK , where each ykp is such that ∃xm ∈ X, xm

p = ykp .
After step 2), each feature vector xm is transformed into

a word of fixed length
(
qm
p

)
1≤p≤P

over a finite alphabet
(the alphabet of the anchor points) (cf. Figure 1 step 2). This
process is performed as follows:{

k?(m, p) = argmin
k
‖xmp − ypk‖2

qm
p = ypk?(m,p)

. (1)

Step 3: The outputs of product random sampling are words
of fixed length P over a finite alphabet (containing K distinct
symbols). The idea here is to use a neural network comprising
two layers, the input one that is organized in P clusters
containing K neurons each, and the output one containing
RC neurons, where R is the number of neurons for each
class and C is the number of classes in our dataset. Consider
the neurons in the input layer to be indexed by two variables
p, 1 ≤ p ≤ P and k, 1 ≤ k ≤ K, where p denotes the index of
the cluster and k the index of the neuron inside the cluster, and
the neurons in the output layer to be indexed by two variables
c, 1 ≤ c ≤ C and r, 1 ≤ r ≤ R. We denote neurons in the
input layer npk and neurons in the output layer ηcr.

When processing a training input signal sm, a number of
neurons are activated in the network. Namely, we activate
the neurons in the input layer whose indexes p, k are corre-
sponding to the indexes of the activated anchor subvectors qm

p

obtained in Step 2. We activate in the output layer a neuron
whose first index c is the index of the class cm the training
vector is part of, the second index r being drawn uniformly
at random. Then we add connections (since the network is
binary, there is no connection weight but only presence or
absence of connections) between ηcr and all npk, printing a
bipartite clique into the network (note that if a connection
already existed, it is left unchanged) (c.f. Figure 1, Step 3).

We do the same process for every new data allowing
incremental learning. Our method is a combination of a deep
pre-trained CNN that does not change during the training
process, and associative memories that are modified after each
newly observed example or class. This combination allows to
handle both example and class incremental approaches with no
other prior about the learning dataset, using only few learning
examples and without having to retrain the model or damage
the previously obtained knowledge [23]. The overall process
is depicted in Figure 1.

IV. EXPERIMENTS

In this section we first describe the implementation details
and strategies followed to quantize feature vectors X. The
accuracy of each strategy is then presented and discussed. We
also investigate the behaviour of the accuracy, when changing
some parameters, as the number of parts P to split feature
vectors, as the number of neurons k̃ for each class in the input
layer, and as the number of neurons R for each class in the
output layer.

A. Implementation Details and Strategies Followed

For our method, we adopt the Inception V3 CNN model. It
takes as input an image which is resized to 299 · 299 pixels
and outputs a 2048 dimensional vector from the layer before
the first fully-connected one [24]. The output vector represents
the feature vector of the input image. To get the subvectors
ypk introduced in the previous section, we split the feature
vectors X into P parts and we choose randomly k̃ subvectors
from each class for each part (i.e. K = Ck̃, C is the number
of classes in our dataset and K is the total number of neurons
in each cluster of the input layer).

We compare three strategies to emphasize the interest of
the proposed method. They are described in the following
paragraphs.

1) The “Independent Incremental” Approach (I-I): In this
approach, training is not necessary: from each class we sample
a portion of the example vectors and directly associate them to
the corresponding output neurons using the associative mem-
ory. New data does not impact previously acquired knowledge,
avoiding catastrophic forgetting.

In the case where R = 1, note that the associative memory is
equivalent to counting how many quantized subvectors belong
to each class and selecting the maximal one.

2) The “Non-Independent Incremental” Approach (N-I):
In this approach, learning new elements can affect previ-
ously learned data. More precisely, each new input vector is
quantized using all the already acquired anchor subvectors,
independently of the class of the example that added them. The
learning procedure is therefore computationally more complex
than for the I-I method.

3) The “Non-Independent Offline” Approach (N-O): In this
approach, the selection of anchor vectors is performed prior
to any storing in the associative memory, so that the latter
becomes independent of the order on which examples and
classes are presented to the network.

B. Evaluation

We evaluate the proposed methods using three distinct
datasets. The two first datasets (called in this paper ImageNet1
and ImageNet2) use 10 different classes of imageNet which
were not used to train the CNN model. We use Cifar10
as the third dataset. Throughout the experimental part, the
given accuracy is the average one over 10 realisations of each
experiment.

1) Comparing the approches: Our first experiments consist
of stressing the effect of the number of neurons per class
R in the output layer of the associative memory on the
accuracy of the three proposed approaches, for fixed values
of the quantization parameters P and k̃. Figure 2 depicts the
evolution of the accuracy of the methods as a function of
the number of R. Expectedly, we observe that performance
increases as a function of the number of neurons in the output
layer. More interesting is the behaviour of the I-I method,
which seems almost independent on R, while staying very
close to the N-O method even when the latter is using a large
value of R.



0 50 100 150 200 250 300

40

60

80

R

A
cc

ur
ac

y
(%

)

I-I Cifar10
N-I Cifar10
N-O Cifar10
I-I ImagNet1
N-I ImagNet1
N-O ImagNet1

Figure 2. Evolution of the accuracy of the I-I approch (P = 16 and k̃ = 20)
as a function of the number of neurons R in the output layer for each class
(ImageNet1 and Cifar10).

Additionally, the I-I approach shows better accuracy than
the N-I one even when varying the parameters P and k̃, as
shown in Table I. With this in mind, we focus on the I-I
approach with R = 1 in the following experiments.

Table I
COMPARING THE ACCURACY OF I-I APPROACH WITH N-I APPROACH WITH
R = 300 AND VARIOUS CLUSTER PARAMETERS (P AND k̃) (CIFAR10).

I-I accuracy (%) N-I accuracy (%)

P = 16, k̃ = 20 80.14 75.06

P = 16, k̃ = 10 77.72 65.52

P = 64, k̃ = 15 80.09 75.61

P = 32, k̃ = 5 76.36 59.38

Next, we consider two incremental protocols: class-
incremental and example-incremental.

2) Class-Incremental Protocol: We first evaluate the effect
of adding a new class on the accuracy. To do so, we start with
an empty quantizer and an empty associative memory, and we
add classes one by one. In order to avoid arbitrary decisions
in the order in which classes are presented to the method, we
perform experiments with random shuffles (200 times) and
plot the average. We consider the following parameters: P =
16, k̃ = 20 and R = 1. The accuracy ac when introducing
a novel class Cc is computed from scratch by adding new
test examples to old one, according to Equation (2), where zc
represents the number of well classified test examples of all
classes (for C1 to Cc), mc is the number of test examples of
the class Cc and Mc is the total number of all test examples
from classes C1 to Cc.

Mc =Mc−1 +mc

ac =
zc
Mc

with M0 = 0
(2)

Each time a novel class is to be learned, we randomly
sample k̃ subvectors for each of the P subspaces. We jointly

add k̃ corresponding neurons in each cluster of the input layer.
Finally, we add a new neuron corresponding to the newly
added class in the output layer.

The obtained results are depicted in Figure 3. Of course
the effect of adding new classes is more significant for a few
number of classes, as it considerably strengthens the problem.
The accuracy obtained after training all 10 classes approaches
the one corresponding to the N-O approach for each dataset.

2 4 6 8 10

80

85

90

95

100

Number of classes

A
cc

ur
ac

y
(%

)

ImageNet1
ImageNet2

Cifar10

Figure 3. Evolution of the accuracy of the proposed method as a function of
number of classes for P = 16, k̃ = 20 and R = 1 (ImageNet1, ImageNet2
and Cifar10).

3) Example-Incremental Protocol: Next we evaluate the
effect of adding new learning examples, without introducing
new classes, on the accuracy of the I-I approach. To do so, we
split the learning database into 5 parts and we learn one part at
a time. The same testing dataset is used to measure accuracy
at each step. For each part to be learned, we proportionally
sample subvectors for each of the P subspaces and add the
corresponding neurons in each cluster of the input layer.
In Figure 4, for the three datasets, our method handles the
incremental learning improving its accuracy and reaching the
same final results as in the previous tests.

C. Complexity and memory usage

A key factor in proposing interesting solutions when tar-
geting embedded architectures are complexity and memory
usage. We refer to complexity as the number of arithmetical
operations needed to learn the database (complexity-`) or to
classify an unlabelled input (complexity-p). The complexity-`
of the proposed method is negligible because we do not have to
train the model with the whole dataset (c.f. subsection IV-D),
while complexity-p is defined as TK + PRC where T is the
feature vector size (T = 2048 in our case due to the use of
inception v3).

Figure 5 represents the accuracy as a function of the
complexity-p when varying K and P (the other parameters
are fixed to T = 2048, R = 1 and C = 10) and shows
the best accuracy-complexity ratio (BACR). For a given K,
BACR is obtained as the maximum in accuracy for similar
values of complexity-p. We use the set of parameters reaching



0.2 0.4 0.6 0.8 1

75

80

85

90

Proportion of database

A
cc

ur
ac

y
(%

)

ImageNet1
ImageNet2

Cifar10

Figure 4. Evolution of the accuracy as a function of the number of learning
examples (P = 16 and k̃ = 20) (ImageNet1, ImageNet2 and Cifar10).

the BACR to compare our method with a nearest neighbour
search.

1 1.5 2 2.5 3 3.5 4

·105

70

75

80

85

90

complexity-p

A
cc

ur
ac

y
(%

)

ImageNet1
Cifar10

BACR ImageNet1
BACR Cifar10

Figure 5. Evolution of the accuracy of I-I approach as a function of
complexity-p (ImageNet1 and Cifar10) when varying K and P (T = 2048,
R = 1 and C = 10).

Memory usage is defined by the size of clusters on input
or output layers, and of the binary matrix which stores the
connections between neurons. Memory usage sums up to
KTf+KPRC where f is the number of bits used per vector
coordinates (we use f = 32 bits). Note that the size of the
pre-trained CNN is not considered and the memory usage for
learning and classifying are considered similar. We estimate
accuracy, complexity and memory usage to compare the pro-
posed method with a λ nearest neighbour (λ-NN) approach.
The complexity-` of the λ-NN search is also negligible, the
complexity-p is defined by MT and memory usage is MTf .
Results are shown in Table II.

We observe a loss in accuracy using our method, from 87%
for nearest neighbour to 82%. On the other hand we obtain
important gains in complexity and memory usage. One of the
reason is that nearest neighbour search requires storing all

Table II
ACCURACY, COMPLEXITY AND MEMORY USAGE OF I-I APPROACH

(P = 64,K = 200 AND R = 1) COMPARED TO λ-NN SEARCH FOR
CIFAR10.

Proposed Other techniques
Method 1-NN 5-NN

Accuracy(%) 82 85 87

complexity-` negligible negligible negligible
complexity-p 4.1 · 105 108 108

Memory usage-` 1.3 · 107 3.3 · 109 3.3 · 109

Memory usage-p 1.3 · 107 3.3 · 109 3.3 · 109

training examples, which does not meet the criteria that define
incremental learning algorithms [10].

Instead of using λ-NN search, we can accelerate it using PQ
(Product Quantification). Namely, we split all feature vectors
xm into P of equal size denoted

(
xmp
)
1≤p≤P

, and for each
subspace, we perform K-means on the feature vector set
Xp = {x1

p, ..., xMp } to extract K centroids. When using K-
means, we lowerbound the complexity-` by taking into account
only the MTK operations needed to quantize the learning
dataset before storing it, with no consideration for the price of
performing K-means. We motivate this choice as one could
instead use product random sampling as described in our
method. The complexity-p is TK + MP and the memory
usage is TfK +MPl̇og2(K). Table III shows the obtained
results.

Table III
ACCURACY, COMPLEXITY AND MEMORY USAGE RATIO OF I-I APPROACH
(P = 64,K = 200 AND R = 1) COMPARED TO λ-NN SEARCH USING PQ

(K = 200, P = 64) FOR CIFAR10. NUMBERS BETWEEN BRACKETS
ACCOUNTS FOR PRODUCT RANDOM SAMPLING INSTEAD OF PQ.

Proposed Other techniques
method 1-NN 5-NN

Accuracy(%) 82 82.6(82) 86.07(83)

complexity-` negligible ≥ 2 · 1010 ≥ 2 · 1010

complexity-p 4.1 · 105 3.2 · 106 3.2 · 106

Memory usage-` 1.3 · 107 3.7 · 107 3.7 · 107

Memory usage-p 1.3 · 107 3.7 · 107 3.7 · 107

NN search using PQ not only gives a good accuracy
(86.07% compared with 82% of the I-I approach), but also
reduces the complexity-p and memory usage by a factor of
100. However it requires a large computational power for
learning process and stores a quantized version of the whole
dataset, again not complying with the incremental learning
algorithms criteria [10]. In addition both complexity and
memory usage depends of number of learning examples M
and could quickly become problematic.

Note that the proposed method uses product random sam-
pling because it offers almost the same accuracy as using K-
means instead. Moreover to use K-means it is required to store
the whole database and perform expensive operations.

Finally, to assess the robustness of the proposed method



with regards to the chosen CNN feature extractor, we perform
similar experiments using the SqueezeNet [6] architecture.
This network makes even more sense with regards to embed-
ded platforms given its very small memory usage. Table IV
shows the obtained results that comfort the ones obtained using
Inception V3.

Table IV
ACCURACY, COMPLEXITY AND MEMORY USAGE RATIO OF I-I APPROACH

(P = 64,K = 200 AND R = 1) USING SQUEEZENET COMPARED TO
λ-NN SEARCH FOR IMAGENET2.

Proposed Other techniques
method 1-NN 5-NN

Accuracy(%) 84 88 89

complexity-` negligible negligible negligible
complexity-p 2 · 105 8.4 · 105 8.4 · 105

Memory usage-` 6.5 · 106 3.2 · 108 3.2 · 108

Memory usage-p 6.5 · 106 3.2 · 108 3.2 · 108

D. Discussion

The proposed method achieves incremental learning (Fig-
ures 3 and 4) with substantial reduction of computational
complexity and memory usage, compared to nearest neighbour
search, without compromising classification accuracy (Tables
II and III). Note that we preferred the I-I approach in our tests,
since it obtained better accuracy than N-I. Since we also use
product random sampling to feed the associative memories
and require only one neuron per class in the output layer,
we obtain that the neuron npk corresponding to ypk is only
connected to the neuron ηc, where ∃xm ∈ X, xm

p = ypk and
xm belongs to the class Cc. As a consequence, knowing the
connections of neurons obtained from random sampling with
the neurons of the output layer, we need only few examples
to train our model. Thus, the proposed method needs only a
portion of the learning dataset to train, resulting in even lighter
computational intensiveness and memory usage.

V. CONCLUSION

We introduced a novel incremental algorithm based on pre-
trained CNNs and associative memories to classify images,
the first ones using connection weights to process images,
the second one using existence of connections to store them
efficiently. This combination of methods allows to learn and
process data using very few examples, memory usage and
computational intensiveness. The obtained accuracy is close
to other state-of-the-art methods based on transfer learning.
As a consequence, we believe this method is promising for
embedded devices and consider proposing thrifty hardware
implementations of it as future work.

REFERENCES

[1] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking
by learning discriminative saliency map with convolutional neural
network,” CoRR, vol. abs/1502.06796, 2015. [Online]. Available:
http://arxiv.org/abs/1502.06796

[2] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[4] C. F. Cadieu, H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A.
Solomon, N. J. Majaj, and J. J. DiCarlo, “Deep neural networks rival the
representation of primate it cortex for core visual object recognition,”
PLoS Comput Biol, vol. 10, no. 12, p. e1003963, 2014.

[5] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going deeper with embedded fpga platform for
convolutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2016, pp. 26–35.

[6] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[7] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and F.-F.
Li, “Large scale visual recognition challenge,” www. image-net.
org/challenges/LSVRC/2012, vol. 1, 2012.

[8] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quanti-
zation of deep convolutional networks,” in International Conference on
Machine Learning (ICML), June 2016.

[9] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, “Learn++: an incremen-
tal learning algorithm for multilayer perceptron networks,” in Acoustics,
Speech, and Signal Processing. ICASSP’00. Proceedings.IEEE Interna-
tional Conference on, vol. 6. IEEE, 2000, pp. 3414–3417.

[10] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An
incremental learning algorithm for supervised neural networks,” IEEE
transactions on systems, man, and cybernetics, part C (applications and
reviews), vol. 31, no. 4, pp. 497–508, 2001.

[11] N. A. Syed, S. Huan, L. Kah, and K. Sung, “Incremental learning with
support vector machines,” 1999.

[12] T. Poggio and G. Cauwenberghs, “Incremental and decremental support
vector machine learning,” Advances in neural information processing
systems, vol. 13, p. 409, 2001.

[13] Y. Sun, K. Tang, L. L. Minku, S. Wang, and X. Yao, “Online ensemble
learning of data streams with gradually evolved classes,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 28, no. 6, pp. 1532–
1545, 2016.

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[15] V. Lomonaco and D. Maltoni, “Comparing incremental learning strate-
gies for convolutional neural networks,” in IAPR Workshop on Artificial
Neural Networks in Pattern Recognition. Springer, 2016, pp. 175–184.

[16] Z.-H. Zhou and Z.-Q. Chen, “Hybrid decision tree,” Knowledge-based
systems, vol. 15, no. 8, pp. 515–528, 2002.

[17] J. Zheng, F. Shen, H. Fan, and J. Zhao, “An online incremental learning
support vector machine for large-scale data,” Neural Computing and
Applications, vol. 22, no. 5, pp. 1023–1035, 2013.

[18] N. Kasabov, Evolving connectionist systems: Methods and applications
in bioinformatics, brain study and intelligent machines. Springer
Science & Business Media, 2013.

[19] R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends in cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[20] Z. Erdem, R. Polikar, F. Gurgen, and N. Yumusak, “Ensemble of
svms for incremental learning,” in International Workshop on Multiple
Classifier Systems. Springer, 2005, pp. 246–256.

[21] J. F. G. Molina, L. Zheng, M. Sertdemir, D. J. Dinter, S. Schönberg, and
M. Rädle, “Incremental learning with svm for multimodal classification
of prostatic adenocarcinoma,” PloS one, vol. 9, no. 4, p. e93600, 2014.

[22] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[23] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
“An empirical investigation of catastrophic forgetting in gradient-based
neural networks,” arXiv preprint arXiv:1312.6211, 2013.

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” arXiv preprint
arXiv:1512.00567, 2015.




