Bags of Spatial Relations and Shapes Features for Structural Object Description

Abstract : We introduce a novel bags-of-features framework based on relative position descriptors, modeling both spatial relations and shape information between the pairwise structural subparts of objects. First, we propose a hierarchical approach for the decomposition of complex objects into structural subparts, as well as their description using the concept of Force Histogram Decomposition (FHD). Then, an original learning methodology is presented, in order to produce discriminative hierarchical spatial features for object classification tasks. The cornerstone is to build an homogeneous vocabulary of shapes and spatial configurations occurring across the objects at different scales of decomposition. An advantage of this learning procedure is its compatibility with traditional bags-of-features frameworks, allowing for hybrid representations of both structural and local features. Classification results obtained on two datasets of images highlight the interest of this approach based on hierarchical spatial relations descriptors to recognize structured objects.
Type de document :
Communication dans un congrès
International Conference on Pattern Recognition (ICPR), Dec 2016, Cancún, Mexico. pp.1994-1999, <10.1109/ICPR.2016.7899929>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01496896
Contributeur : Michaël Clément <>
Soumis le : jeudi 1 juin 2017 - 13:30:36
Dernière modification le : jeudi 8 juin 2017 - 01:08:06

Fichier

icpr2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Michaël Clément, Camille Kurtz, Laurent Wendling. Bags of Spatial Relations and Shapes Features for Structural Object Description. International Conference on Pattern Recognition (ICPR), Dec 2016, Cancún, Mexico. pp.1994-1999, <10.1109/ICPR.2016.7899929>. <hal-01496896>

Partager

Métriques

Consultations de
la notice

60

Téléchargements du document

32