O. C. Zienkiewicz, The Finite Element Method, 1977.

C. A. Brebbia, The Boundary Element Method for Engineers, 1978.

A. Deraemaeker, I. Babuska, and P. Bouillard, Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, International Journal for Numerical Methods in Engineering, vol.142, issue.4, pp.46-471, 1999.
DOI : 10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6

R. Freymann, Advanced Numerical and Experimental Methods in the Field of Vehicle Structural- Acoustics (Hieronymus Buchreproduktions GmbH, 2000.

C. Soize, Reduced models in the medium frequency range for general dissipative structural-dynamics systems, European Journal of Mechanics - A/Solids, vol.17, issue.4, pp.657-685, 1998.
DOI : 10.1016/S0997-7538(99)80027-8

URL : https://hal.archives-ouvertes.fr/hal-00765806

I. Harari and T. J. Hughes, Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains, Computer Methods in Applied Mechanics and Engineering, vol.98, issue.3, pp.411-454, 1992.
DOI : 10.1016/0045-7825(92)90006-6

I. Babuska, F. Ihlenburg, E. T. Paik, and S. A. Sauter, A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution, Computer Methods in Applied Mechanics and Engineering, vol.128, issue.3-4, pp.128-325, 1995.
DOI : 10.1016/0045-7825(95)00890-X

J. M. Melenk and I. Babuska, The partition of unity finite element method: Basic theory and applications, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.289-314, 1996.
DOI : 10.1016/S0045-7825(96)01087-0

J. M. Melenk and I. Babuska, Approximation with harmonic and generalized harmonic polynomials in the partition of unity method, Comput. Assist. Mech. Eng. Sci, vol.4, pp.607-632, 1997.

T. Strouboulis, K. Copps, and I. Babuska, The generalized finite element method: an example of its implementation and illustration of its performance, International Journal for Numerical Methods in Engineering, vol.17, issue.8, pp.47-1401, 2000.
DOI : 10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8

T. J. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering, vol.127, issue.1-4, pp.387-401, 1995.
DOI : 10.1016/0045-7825(95)00844-9

L. P. Franca, C. Farhat, A. P. Macedo, and M. Lesoinne, Residual-free bubbles for the Helmholtz equation, International Journal for Numerical Methods in Engineering, vol.127, issue.21, pp.40-4003, 1997.
DOI : 10.1002/(SICI)1097-0207(19971115)40:21<4003::AID-NME199>3.0.CO;2-Z

L. F. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of Computational Physics, vol.73, issue.2, pp.325-348, 1987.
DOI : 10.1016/0021-9991(87)90140-9

M. Bonnet, S. Chaillat, and J. Semblat, A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain, Comput. Met. Appl. Mech. Eng, vol.197, pp.4233-4249, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00276092

E. De-langre, Fonctions de transfert de plaques paréquationsparéquations intégrales Test de validation et de performance, Rapport CEA: DMT, 1991.

I. Harari and T. J. Hugues, A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics, Computer Methods in Applied Mechanics and Engineering, vol.97, issue.1, pp.97-77, 1992.
DOI : 10.1016/0045-7825(92)90108-V

E. Trefftz, Ein gegenstuck zum ritzschen verfahren, Second International Congress on Applied Mechanics, pp.131-137, 1926.

O. Laghrouche and P. Bettess, SHORT WAVE MODELLING USING SPECIAL FINITE ELEMENTS, Journal of Computational Acoustics, vol.318, issue.01, pp.189-210, 2000.
DOI : 10.1002/fld.1650040702

T. Strouboulis, I. Babuska, and R. Hidajat, The generalized finite element method for Helmholtz equation: Theory, computation, and open problems, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.37-40, pp.195-4711, 2006.
DOI : 10.1016/j.cma.2005.09.019

T. Strouboulis and R. Hidajat, Partition of unity method for Helmholtz equation: q-convergence for plane-wave and wave-band local bases, Applications of Mathematics, vol.51, issue.2, pp.51-181, 2006.
DOI : 10.1007/s10492-006-0011-0

O. Cessenat and B. Despres, Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem, SIAM Journal on Numerical Analysis, vol.35, issue.1, pp.255-299, 1998.
DOI : 10.1137/S0036142995285873

P. Monk and D. Q. Wang, A least-squares method for the Helmholtz equation, Computer Methods in Applied Mechanics and Engineering, vol.175, issue.1-2, pp.121-136, 1999.
DOI : 10.1016/S0045-7825(98)00326-0

C. Farhat, I. Harari, and L. P. Franca, The discontinuous enrichment method, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.48, pp.6455-6479, 2001.
DOI : 10.1016/S0045-7825(01)00232-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.9439

P. Bouillard and S. Suleau, Element-Free Galerkin solutions for Helmholtz problems: fomulation and numerical assessment of the pollution effect, Computer Methods in Applied Mechanics and Engineering, vol.162, issue.1-4, pp.317-335, 1998.
DOI : 10.1016/S0045-7825(97)00350-2

E. Perrey-debain, J. Trevelyan, and P. Bettess, Wave boundary elements: a theoretical overview presenting applications in scattering of short waves, Engineering Analysis with Boundary Elements, vol.28, issue.2, pp.131-141, 2004.
DOI : 10.1016/S0955-7997(03)00127-9

W. Desmet, P. Sas, and D. Vandepitte, An indirect trefftz method for the steady-state dynamic analysis of coupled vibro-acoustic systems, Comput. Assist Mech. Eng. Sci, vol.8, pp.271-288, 2001.

P. Ladevèze, A new computational approach for structure vibrations in the medium frequency range, Comptes Rendus Académie des Sciences ParisIIb), vol.322, pp.849-856, 1996.

P. Ladevèze, L. Arnaud, P. Rouch, and C. Blanzé, The variational theory of complex rays for the calculation of medium???frequency vibrations, Engineering Computations, vol.18, issue.1/2, pp.193-214, 2001.
DOI : 10.1108/02644400110365879

R. Rouch and P. Ladevèze, The variational theory of complex rays: a predictive tool for medium-frequency vibrations, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.28-30, pp.3301-3315, 2003.
DOI : 10.1016/S0045-7825(03)00352-9

P. Ladevèze, L. Blanc, P. Rouch, and C. Blanzé, A multiscale computational method for medium-frequency vibrations of assemblies of heterogeneous plates, Computers & Structures, vol.81, issue.12, pp.81-1267, 2003.
DOI : 10.1016/S0045-7949(03)00041-5

H. Riou, P. Ladevèze, and P. Rouch, Extension of the variational theory of complex rays to shells for medium-frequency vibrations, Journal of Sound and Vibration, vol.272, issue.1-2, pp.341-360, 2004.
DOI : 10.1016/S0022-460X(03)00775-2

P. Ladevèze, P. Rouch, H. Riou, and X. Bohineust, Analysis of Medium-Frequency Vibrations in a Frequency Range, Journal of Computational Acoustics, vol.18, issue.02, pp.255-284, 2003.
DOI : 10.1108/02644400110365879

P. Ladevèze and M. Chevreuil, A new computational method for transient dynamics including the low- and the medium-frequency ranges, International Journal for Numerical Methods in Engineering, vol.194, issue.4, pp.503-527, 2005.
DOI : 10.1002/nme.1379

H. Riou, P. P. Ladevèze, and B. Sourcis, THE MULTISCALE VTCR APPROACH APPLIED TO ACOUSTICS PROBLEMS, Journal of Computational Acoustics, vol.322, issue.04, pp.487-505, 2008.
DOI : 10.1137/0142032

B. Sourcis, Toward an adaptative strategy for the variational theory of complex rays: Application to linear acoustic, 2009.

J. M. Melenk, On generalized finite element method, 1995.

R. S. James and T. J. , Hughes, h-Adaptive finite element computation of time-harmonic exterior acoustics problems in two dimensions, Comput. Met. Appl. Mech. Eng, pp.146-65, 1997.