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Abstract This Note presents the resolution of a differential system on the
plane that translates a geometrical problem about isotropic deformations of area
and length. The system stems from a probability study on deformed random
fields [1], which are the composition of a random field with invariance properties
defined on the plane with a deterministic diffeomorphism. The explicit resolution
of the differential system allows to prove that a weak notion of isotropy of the
deformed field, linked to its excursion sets, in fact coincides with the strong
notion of isotropy. The present Note first introduces the probability framework
that gave rise to the geometrical issue and then proposes its resolution.

The motivation for the result featured in the present article originates from
a probability problem about deformed random fields. Indeed, one of the main
results of [1] needed a complete characterization of isotropic deformed fields and
it turned out such a description was given by solutions to a system of nonlinear
partial differential equations. The resolution of that system is a major step in
the proof, yet it is completely independent. Moreover, its analytical flavour as
well as the geometric classification it contains makes it interesting on its own
and out of step with the probability nature of [1].

Geometrically, the aim is to investigate the class of planar transformations
F : R2 −→ R2 that are C2 and transform isotropically areas of rectangles and
lengths of segments :

∀ϕ ∈ SO(2), ∀i ∈ {1, 2} , li(F ◦ ϕ(E)) = li(F (E)) (1)

where li stands for the Lebesgue measure in R1 or R2 depending on E being
a segment (embedded in R1) or a rectangle (viewed as a surface embedded in
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R2). Such a property boils down to the fact that both the norms of each of
the columns of the cartesian Jacobian matrix of the polar form of F and its
determinant are radial : introducing T = R/2πZ the one-dimensional torus,

∀(r, θ) ∈ R+∗×T,
∥∥∥∥JacF (r, θ)

[
1
0

]∥∥∥∥ = g(r),

∥∥∥∥JacF (r, θ)

[
0
1

]∥∥∥∥ = h(r) and det (JacF ) (r, θ) = f(r),

(2)
where f , g and h are C2(R+∗,R).

In this Note we prove that the class (1) is exactly the family of “spiral de-
formations” described in polar coordinates by F (r, θ) = (R(r, θ),Θ(r, θ)) with :

∀(r, θ) ∈ R+ × T, R(r, θ) = R(r) and Θ(r, θ) = ±θ + Θ(r). (3)

The main goal of the present Note is therefore to introduce the background
and one of the main results of [1] in order to motivate the analytic problem and
then to solve it.

1 Characterization of isotropy in deformed ran-
dom via excursion sets

All the random fields mentioned in this introduction are defined on R2, take
real values and we furthermore assume that they are Gaussian.

A deformed random field is constructed with a regular, stationary and isotro-
pic random field X composed with a deterministic diffeomorphism F such that
F (0) = 0. The result of this composition is a random field X ◦ F . Stationarity,
respectively isotropy (refered to in the following as strong isotropy), consists in
an invariance of the law of a random field under translations, respectively under
rotations in R2. Even though the underlying field X is isotropic, the deformed
random fields constructed with X are generally not. It is however possible to
characterize explicitely a diffeomorphism F such that for any underlying field
X, the deformed field X ◦ F is strongly isotropic. Such diffeomorphisms are
exactly the spiral diffeomorphisms introduced above (3).

The objective in [1] is to study a deformed field using sparse information,
that is, the information provided by excursion sets of the field over some basic
subsets in R2. If a real number u is fixed, the excursion set of the field X ◦ F
above level u over a compact set T is the random set

Au(X ◦ F, T ) := {t ∈ T /X(F (t)) > u}.

One useful functional to study the topology of sets is the Euler characteris-
tic, denoted by χ. Heuristically, the Euler characteristic of a one-dimensional
compact regular set is simply the number of intervals in this set ; the Euler cha-
racteristic of a two-dimensional compact regular set is the number of connected
components minus the number of holes in this set.

A rotational invariance condition of the mean Euler characteristic of the
excursion sets of X ◦ F over rectangles is then introduced as a weak isotropy
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property. More precisely, a random field X◦F is said to satisfy this weak isotropy
property if for any real u, for any rectangle T in R2 and for rotation ϕ,

E[χ(Au(X ◦ F,ϕ(T )))] = E[χ(Au(X ◦ F, T ))]. (4)

The latter condition is in particular clearly true if the deformed field X ◦ F is
strongly isotropic or, in other words, if F is a spiral diffeomorphism. Provided
that we add some assumptions on X, for any rectangle T in R2, the expectation
of χ(Au(X ◦ F, T )) can be expressed as a linear combination of the area of the
set F (T ) and the length of its frontier, with coefficients depending on u only
and not on the precise law of X.

Consequently, it occurs that Condition (4) is equivalent to Condition (1)
and therefore to Condition (2) on F in the present Note. Theorem 2.1 that
we are going to demonstrate in this Note therefore implies that the spiral dif-
feomorphisms are the only solutions. This means that the associated deformed
field is strongly isotropic, as explained before. As a result, the weak definition
of isotropy coincides with the strong definition, as far as deformed fields are
concerned.

From a practical point of view, a major consequence is that we only need
information contained in the excursion sets of a deformed random field X ◦ F
(more precisely, Condition (4) fulfilled) to decide the issue of isotropy.

2 Planar deformations modifying lengths and
areas isotropically

We now turn to the study of the class of C2 planar transformations satisfying
(1). Using a polar representation for such F we translate the rotational invariant
property (2) into the following system of non-linear partial differential equations.

Theorem 2.1 Let two functions R : R+ × T −→ R+ and Θ : R+ × T −→ T be
continuous on R+ ×T and C2 in R+∗ ×T that satisfy : R(·, ·) is surjective and
R(0, ·) is a constant function. Let f , g and h be C1 functions from R+∗ to R
such that f does not vanish. Then the following differential equalities hold

∀(r, θ) ∈ R+∗ × T, f(r) = R∂rR∂θΘ−R∂θR∂rΘ (5)

g(r) = (∂rR)
2

+ (R∂rΘ)
2

(6)

h(r) = (∂θR)
2

+ (R∂θΘ)
2

(7)

if and only if there exist ε1 and ε2 in {−1, 1} and Θ0 in T such that
(i) h is strictly increasing and continuous on R+ with h(0) = 0 ;

(ii) for all r > 0, f(r) = ε1
h′(r)

2 and g(r)h(r) > f2(r) ;
(iii) the functions R and Θ are given by

∀(r, θ) ∈ R+×T, R(r, θ) =
√
h(r) and Θ(r, θ) = ε1θ+Θ0+ε2

∫ r

0

√
h(r∗)g(r∗)− f2(r∗)

h(r∗)
dr∗.
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Of important note is the fact that the assumptions made on R and Θ before
the differential system are here to ensure that they indeed describe a polar
representant of a planar deformation F . Also note that the solutions obtained
above are indeed spiral deformations (3).

The rest of this section is devoted to the proof of the theorem above. We first
find an equivalent version of (5) − (6) − (7) that is not quadratic. Second, we
prove that this equivalent problem can be seen as a specific case of a hyperbolic
system of equations solely constraint to (7). Finally we show that these two
constraints necessarily imply Theorem 2.1.

2.1 A non quadratic equivalent

Here we prove the following proposition that gives the shape of the deriva-
tives of R and Θ.

Proposition 2.2 Let R, Θ, f , g and h be functions as described by Theorem
2.1. Then, they satisfy the system (5)− (6)− (7) if and only if there exist p in
N and a continuous function Φ : R+ × T −→ T such that

∀(r, θ) ∈ R+ × T, ∂rR =
√
g(r) cos (Φ(r, θ))

R∂rΘ =
√
g(r) sin (Φ(r, θ))

∂θR = (−1)p

√
gh− f2

g
(r) cos (Φ(r, θ))− f

√
g

(r) sin (Φ(r, θ))

R∂θΘ = (−1)p

√
gh− f2

g
(r) sin (Φ(r, θ)) +

f
√
g

(r) cos (Φ(r, θ)) .

(8)

Proof of Proposition 2.2 First, functions satisfying (8) are solutions to our
original system (5)− (6)− (7) by mere computation.

Now assume that the functions are solutions of (5)− (6)− (7). The key is to
see the quantities involved as complex numbers functions : Z1 = ∂rR + iR∂rΘ
and Z2(r, θ) = R∂θΘ− i∂θR. Then the system (5)− (6)− (7) translates into

∀(r, θ) ∈ R+×T, |Z1(r, θ)|2 = g(r) and |Z2(r, θ)|2 = h(r) and Re
(
Z1(r, θ)Z2(r, θ)

)
= f(r).

We first note that f(r)2 6 g(r)h(r) and recalling that f never vanishes on R+

it follows that neither g nor h can be null on R+. Therefore since

g + h± 2f = (∂rR±R∂θΘ)
2

+ (∂θR∓R∂rΘ)
2 > 0

it follows 2 |f | 6 g(r) + h(r) and therefore we must in fact have

∀r ∈ R+, f(r)2 < g(r)h(r). (9)
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We can thus define the complex numbers

W1(r, θ) =
Z1(r, θ)√
g(r)

and W2(r, θ) =

√
f(r)2

g(r) (g(r)h(r)− f(r)2)

[
Z1(r, θ)− g(r)

f(r)
Z2(r, θ)

]
.

which are of prime importance since they satisfy the following orthonormality
property :

∀(r, θ) ∈ R+×T, |W1(r, θ)|2 = |W2(r, θ)|2 = 1 and Re
(
W1(r, θ)W2(r, θ)

)
= 0.

We deduce that there exist a continuous function Φ : R+ × T −→ T and an
integer p > 0 such that

∀(r, θ) ∈ R+ × T, W1(r, θ) = eiΦ(r,θ) and W2(r, θ) = e−iΦ(r,θ)+(2p+1) π
2 .

Coming back to the original Z1, Z2 and then to R and Θ concludes the proof.

2.2 A hyperbolic system under constraint

We now find a more general system of equations satisfied by the functions
we are looking for as well as a restrictive property that defines them.

Lemma 2.3 Let R, Θ, f , g and h be functions as described by Theorem 2.1.
Then, they satisfy the system (5)− (6)− (7) if and only if they satisfy (7) and
there exist α, β : R+ −→ R continuous with β(r) > 0 such that

∀(r, θ) ∈ R+∗ × T, ∂θR = α(r)∂rR− β(r)R∂rΘ

R∂θΘ = α(r)R∂rΘ + β(r)∂rR.
(10)

Remark 1 Even if this set of equations still seems non-linear, it actually is li-
near in X = (ln(R),Θ). It indeed satisfies a vectorial transport equation ∂θX +
A(r)∂rX = 0 with A(r) being skew-symmetric and invertible. This equation is
however non trivial as even in the case α(r) = 0 we are left to solve ∂θ [ln(R)] =
−β(r)∂θΘ and ∂θΘ = β(r)∂θ [ln(R)]. And so ln(R) and Θ are both solutions to
∂θθf + β(r)2∂rrf = 0. For more on this subject we refer the reader to [2].

Proof of Lemma 2.3 The necessary condition follows directly from the set

of equations (8) given in Proposition 2.2, denoting α(r) = (−1)p
√
gh−f2

g (r) and

β(r) = f(r)/g(r) and dividing by R > 0.
The sufficient condition follows by direct computation from (10) and (7),

defining g(r) = h(r)
α2(r)+β2(r) and f(r) = β(r)g(r) > 0.

We now show that solutions to the hyperbolic system that are constraint by
(7) must satisfy that R is radially symmetric.
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Proposition 2.4 Let R, Θ be solution to (10) with R and Θ verifying the as-
sumptions of Theorem 2.1. Suppose that (R,Θ) also satisfies (7) ; then R is
isotropic : for all (r, θ) in R+ × T, R(r, θ) = R(r) with moreover R(0) = 0 and
R′(r) > 0 for all r > 0.

Proof of Proposition 2.4 Let us first prove that R(r, θ) = 0 if and only if
r = 0.

The surjectivity of R implies that there exists (r0, θ0) such that R(r0, θ0) = 0.
If r0 6= 0 then by Lemma 2.3 R and Θ satisfy (5) at (r0, θ0) and thus f(r0) = 0.
This contradicts the fact that f does not vanish. Therefore r0 = 0 and since
R(0, ·) is constant we get that

∀θ ∈ T, R(0, θ) = 0. (11)

Recall that R is positive and it follows

∃r0 > 0, ∀r ∈ (0, r0], ∀θ ∈ T, ∂rR(r, θ) > 0. (12)

We now turn to the study of local extrema of R(r, ·). For a fixed r > 0, if
φ is a local extremum of R(r, ·) then ∂θR(r, φ) = 0 and also, thanks to (10),
α(r)∂rR(r, φ) = β(r)R∂rΘ(r, φ). Plugging these equalities inside the equation
satisfied by R∂θΘ in (10) and since β(r) 6= 0 we get

(R∂θΘ) (r, φ) =
α2(r) + β2(r)

β(r)
∂rR(r, φ).

Then we can apply the constraint on the angular derivatives (7) to conclude

∀(r, φ) such that ∂θR(r, φ) = 0, (∂rR(r, φ))
2

=
β2(r)

(α2(r) + β2(r))2
h(r). (13)

Finally, for any r > 0, R(r, ·) is 2π-periodic and thus has a global maximum
and a global minimum on T. Let us choose r1 in (0, r0) where r0 has been
defined in (12). Functions R and Θ are C2 in R+∗ × T and for any θ, the
determinant of the Jacobian of (R, θ) is equal to f(r1)/R(r1), by (5). This
determinant does not vanish so by the local inverse function theorem there exist
[r1 − δ1, r1 + δ1] ⊂ [0, r0] and two functions φm, φM : [r1 − δ1, r1 + δ1] −→ T
that are C1 and such that

∀r > 0, R(r, φm(r)) = min
θ∈[−π,π]

R(r, θ) and R(r, φM (r)) = max
θ∈[−π,π]

R(r, θ).

By definition, for all r in [r1− δ1, r1 + δ1], ∂θR(r, φm/M (r)) = 0 and because φm
and φM are C1 this implies :

∀r ∈ [r1 − δ1, r1 + δ1], ∂r
(
R(r, φm/M (r))

)
= ∂rR(r, φm/M (r)). (14)
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Thanks to (14), (13) and (12) we thus obtain ∂r (R(r, φm(r))) = ∂r (R(r, φM (r)))
on [r1 − δ1, r1 + δ1]. This implies

∀r ∈ [r1−δ1, r1+δ1], min
θ∈[−π,π]

R(r, θ) = max
θ∈[−π,π]

R(r, θ)+

[
min

θ∈[−π,π]
R(r1 − δ1, θ)− max

θ∈[−π,π]
R(r1 − δ1, θ)

]
.

To conclude we iterate : either r1 − δ1 = 0 and we define r2 = 0 or we can
start our argument again with r2 = r1−δ1. Iterating the process we construct a
sequence (rn)n∈N∗ either strictly decreasing or reaching 0 at a certain step and
such that

∀r ∈ [rn+1, r1], min
θ∈[−π,π]

R(r, θ) = max
θ∈[−π,π]

R(r, θ) + min
θ∈[−π,π]

R(rn+1, θ)− max
θ∈[−π,π]

R(rn+1, θ).

(15)

This sequence thus converges to r∞ > 0. If r∞ 6= 0 then we could start our
process again at r∞ and construct another decreasing sequence still satisfying
(15). In the end we will construct a sequence converging to 0 so without loss of
generality we assume that r∞ = 0.

Hence, since R is continuous on R+ × T and (11) holds true, it follows by
taking the limit as n tends to ∞ in (15) :

∀r ∈ [0, r1], min
θ∈[−π,π]

R(r, θ) = max
θ∈[−π,π]

R(r, θ).

The equality above implies that θ 7→ R(r, θ) is constant for any r 6 r1.

The rotational invariance of R(r, ·) holds for any r1 < r0 where r0 is such that
(12) holds true. Therefore, denoting rM = sup {r > 0 : ∀θ ∈ T, ∂rR(r, θ) > 0}
it follows that for any r 6 rM , θ 7→ R(r, θ) is constant. Since R(·, ·) is C2 in
R+∗ × T we infer

∀r ∈ (0, rM ), ∀θ ∈ T, ∂θR(r, θ) = 0.

Suppose that rM < +∞ then by continuity of ∂θR we get ∂θR(rM , θ) = 0 for all
θ. But the definition of rM implies the existence of θM such that ∂rR(rM , θM ) =
0. It follows that

∂θR(rM , θM ) = 0 and ∂rR(rM , θM ) = 0.

Plugging the above inside the constraint (7) yields f(rM ) = 0 which is a contra-
diction since rM > 0.

We thus conclude that rM = +∞ and that θ 7→ R(r, θ) is invariant for any
r > 0.

2.3 Isotropic solutions and proof of Theorem 2.1

Proof of Theorem 2.1 Let us consider R, Θ, f , g and h as in the statement
of Theorem 2.1 and satisfying the system (5)− (6)− (7). Thanks to Proposition

7



2.4, there exists R : R+ −→ R+ continuous on R+ and C2 on R+∗ such that
R(0) = 0, R′(r) > 0 and R(r, θ) = R(r) for any (r, θ) in R+ × T.

First, we recall (9) : h(r)g(r) > f(r)2 for r > 0 and since f does not vanish
it follows that h(r) > 0 and g(r) > 0 for any r > 0.

Then, thanks to (7) we infer |∂θΘ(r, θ)| =
√
h(r)/R(r). The right-hand side

does not vanish so neither does ∂θΘ. By continuity it keeps a fixed sign s in
{−1, 1}.

∀(r, θ) ∈ R+∗ × T, ∂θΘ(r, θ) = s

√
h(r)

R(r)
.

We now recall that Θ maps R+ × T to T and since the right-hand side does
not depend on θ such an equality implies that

∃ε ∈ {−1, 0, 1} , ∀r > 0,

√
h(r)

R(r)
= ε.

Recalling that R(0) > 0 we deduce that ε = 1 and thus

∀r ∈ R+, R(r) =
√
h(r) and Θ(r, θ) = ±θ + Θ(r) (16)

where Θ is a function from R+ to T.
At last, we use (5) to obtain f(r) = ±h′(r)/2 for any r > 0. The hyperbolic

system (10), with α(r) = (−1)p
√
gh−f2

g (r) (p an integer defined in Proposition

2.2)) and β(r) = f(r)/g(r), yields

∀(r, θ) ∈ R+∗ × T, ∂rΘ(r, θ) =
α(r)R(r, θ)∂θΘ(r, θ)− β(r)∂θR(r, θ)

(α2(r) + β2(r))R(r, θ)

which implies

∀r > 0, Θ(r) = ±(−1)p
∫ r

0

√
g(r∗)h(r∗)− f2(r∗)

h(r∗)
dr∗ + Θ(0). (17)

This concludes the proof because equations (9), (16) and (17) are exactly the
conditions stated in Theorem 2.1. The sufficient condition is checked by direct
computations.
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