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Abstract. In terms of Linear Algebra, a directional coupler between a single-mode waveguide and a two-

mode waveguide can be thought of as formally equivalent to a set of three mutually coupled single-mode
waveguides. Its responses, easily derived in the frame of ternary Coupled-Mode Theory, are used to
establish analytically the scattering parameters of a hybrid ring-based modal multiplexer.

1 Introduction

Mode-division multiplexing (MDM), also referred to as
Spatial-division multiplexing (SDM), relies on multi-
mode waveguides to simultaneously transmit signals
allocated on different spatial modes, all sharing the same
wavelength [1-3]. In the single-mode domain, the
system-level dimensioning of optical multi-port devices
is easily carried out by means of the powerful formalism
of Scattering Parameters, in which each output wave is
simply expressed as a linear combination of all possible
input waves. The exchange of energy between modes
takes place in directional couplers through an overlap of
their evanescent part, a mechanism well described in
terms of Coupled-Mode Theory (CMT) [4-5]. There is
no fundamental reason why, in the multi-mode domain,
this same analytical tool shouldn’t appear as relevant.

In what follows, we investigate most specifically the
key element for hybrid multimode integrated structures:
an asymmetric directional coupler between a single-
mode waveguide (SMWG) and a two-mode waveguide
(TMWGQ). Taking advantage of the formal equivalence
between a multi-mode waveguide and a set of mutually
coupled single-mode ones [6-7], we first derive its
responses (transmittance and coupling), before inserting
the structure into a more complex system, a ring-based
modal multiplexer, for which we establish the scattering
parameters under a closed form.

2 Single-mode to multimode coupling

Consider an asymmetric coupler between a SMWG and
a TMWG (Fig. 1). The latter is dimensioned in order to
support a fundamental guided mode with even symmetry
and a first-order mode with odd symmetry, both
characterized by their respective propagation constants
Peven and f,4s. Time dependence is taken as exp(+i w?).
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Fig. 1. Typical coupling between a SMWG and a TMWG.

Taking advantage of the formal equivalence between
the TMWG and a set of two mutually coupled SMWGs
[6], we describe the coupling region as a ternary coupler
of length d [7], as schematically depicted in Fig. 2.
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Fig. 2. Modelling of the directional coupler between the upper
SMWG and the lower TMWG (itself seen as a set of 2 coupled
SMWGs) as a six-port network; a; = F(0), b; = F(d).

In this basis, the evolution operator (along the
common z-axis) reads:

o[ B [A x4 0N(F
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where F, is the complex amplitude of “mode” N° n,
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The average propagation constant £, the mismatch A
and the effective coupling constant y are defined as:

ﬂ:ﬂ1+32ﬂ2’ A:ﬂlgﬁz’ 2=Ni+7. 3

Working in terms of Slowly Varying Envelope
Amplitudes 4, such as F,, = 4, ¢ '#, we get:
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with 0= A/y the reduced mismatch and « = atan(y,/y;).
Eigenvalues and eigenvectors of the reduced operator are
obtained through a standard diagonalization procedure
(involving Cardano’s method for solving the third-order
characteristic equation), leading to a complete
determination of the three ternary super-modes
(respectively slow, “neutral” and fast). We revert
eventually to the even/odd TMWG basis, with:

bu ) 1 (1 1\(b 5
b ) N2\-1 1D\, o
a,) 1 1 -1\(a,,, sb
a, _E 1 1 )a, ’ (55)

then we derive analytically the scattering matrix of the
coupler, expressed under the following form:

b4 ts ks le ks/ o al
beven = ks /e te ke/ o aeve’n . (6)
budd ks/ o k elo to aodd

Because of the symmetries, only six parameters are
involved: three “direct transmissions” (¢, ¢, ¢,) and three
“cross-couplings” (kye, kso» kew). For the sake of
illustration, let us consider the case when perfect phase-
matching is achieved between the upper SMWG and the
odd mode of the lower TMWG:
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The power exchange between the modes is depicted
in Fig.3 as a function of the dimensionless coupling
strength yd, integrated over the interaction length d,
when only the upper single-mode (1) is present at the
input. Up to 96% of the power can be coupled into the
lower odd mode (o). Note that residual coupling into the
lower even mode (e) also occurs. For comparison, the
dashed line represents the result of a much more
simplistic two-mode coupling approach, neglecting the
presence of the third (e) mode.

Fig. 3. Power exchange as a function of the coupling from
input a; to outputs by, beyen, bogs- In dashed line, the result of a
much more simplistic approach with only two-mode coupling,
neglecting the residual crosstalk into the mismatched (e) mode.

We would like to emphasize that the calculations are
carried out under a reduced form, the only assumption
being that of eqn.(7); this means that the results carry a
universal significance for any “single to odd” phase-
matched directional coupler, whatever the precise opto-
geometric parameters of the actual device.

Let us now investigate a more elaborate device: a
ring-based modal multiplexer.

3 Ring-based modal multiplexer

The system under consideration [Fig. 4] is made of an
input SMWG connected to an output TMWG through a
ring resonator (RR) in the “racetrack” configuration. For
the sake of clarity, let us assume that the SMWG and the
RR share the same propagation constant ;. The upper
binary coupler, of length d, is completely defined by its
own scattering parameters: direct and cross-transmission
t; and ki, respectively. The lower ternary coupler, also of
length d, is described as seen above. The whole device
works in a way similar to a single-mode add-drop filter,
except for the additional feature of mode conversion.
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Fig. 4. Ring-based modal multiplexer seen as a multi-port
network. All ports (with their phase reference) are actually
located at each end of the couplers.

Once again, we take advantage of Linear Algebra in
order to express each relevant output field (b oughs Pevens
b,qs) as a linear combination of all input fields (a;,, devens
a,qq)- Once closed the feedback loop provided by the RR,
a straightforward self-consistent calculation leads
eventually to the following analytical expressions:
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with D the unmistakable signature of a feedback loop:
D=1-t1t¢e"", 9)

where @ denotes the phase change through a half-circle
inside the RR (from the end of the upper coupler to the
entrance of the lower one, or vice versa). The complex
quantity 7, ¢,¢ > represents the amplitude and phase
change over a round-trip, experienced by a wave
circulating in the RR.

The overall form taken by scattering parameters is
worth some comments. From eqn.(8), one can see that
they fall into one of two categories. The simplest ones
(from a;, t0 beyen OF 10 Doy, fTOM ey OF Aoga 1O biprougn)
take the form of a single-pass numerator over the
common denominator D. The other ones come as the
sum of two terms, expressing the interference between
two possible paths: for instance, the transmittance from
Qin 10 byyougn Tesults from the competition between the
direct path through the upper coupler (#,), and the path
through the RR (k’t,e %), itself amplified by the
feedback loop (D).

It is therefore possible to exploit these interference
effects in order to fine-tune the parameters of the whole
system. For instance, by equating the internal
transmission coefficients #; and # on both couplers seen
from inside the RR, it becomes possible (by destructive
interference) to exactly cancel the transmittance from a;,
t0 Dprougn, thus converting all the power of the upper
single-mode input into the output modes of the lower
TMWG. Note, however, that such a mechanism relies on
interference: in practice, we have to make sure that the
working wavelength is actually attuned to a resonance.

Tolerance and bandwidth issues have to be kept in mind,
but will not be considered further in the present work.

Besides, it can be interesting to note that, once
established the scattering parameters of both couplers,
expressions (8), themselves closely related to the
topology of the network, could also be recovered from
graph theory considerations [8].

4 Conclusions

We have presented a modelling technique based on
scattering matrix formalism adapted to multi-mode
devices. By exploiting the formal identity between a
two-mode waveguide and a set of two mutually coupled
single-mode waveguides, the multi-mode interaction is
treated within the usual framework of Coupled Mode
Theory (CMT). This approach has been tested on the
typical example of a ring-based modal multiplexer,
opening the way to a systematic exploration of the
parameter space for the purpose of design. Taking into
account possible losses in the waveguides would be
straightforward.
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