Towards landscape-aware automatic algorithm configuration: preliminary experiments on neutral and rugged landscapes

Abstract : The proper setting of algorithm parameters is a well-known issue that gave rise to recent research investigations from the (offline) automatic algorithm configuration perspective. Besides, the characteristics of the target optimization problem is also a key aspect to elicit the behavior of a dedicated algorithm, and as often considered from a landscape analysis perspective. In this paper, we show that fitness landscape analysis can open a whole set of new research opportunities for increasing the effectiveness of existing automatic algorithm configuration methods. Specifically, we show that using landscape features in iterated racing both (i) at the training phase, to compute multiple elite configurations explicitly mapped with different feature values, and (ii) at the production phase, to decide which configuration to use on a feature basis, provides significantly better results compared against the standard landscape-oblivious approach. Our first experimental investigations on NK-landscapes, considered as a benchmark family having controllable features in terms of ruggedness and neutrality, and tackled using a memetic algorithm with tunable population size and variation operators, show that a landscape-aware approach is a viable alternative to handle the heterogeneity of (black-box) combinatorial optimization problems.
Type de document :
Communication dans un congrès
Bin Hu; Manuel López-Ibáñez. European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2017), Apr 2017, Amsterdam, Netherlands. Springer, Lecture Notes in Computer Science, 10197, pp.215-232, 2017, Evolutionary Computation in Combinatorial Optimization. 〈http://www.evostar.org/2017/〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01496347
Contributeur : Sébastien Verel <>
Soumis le : mardi 2 mai 2017 - 13:48:13
Dernière modification le : vendredi 22 mars 2019 - 01:35:35
Document(s) archivé(s) le : jeudi 3 août 2017 - 12:53:05

Fichier

liefooghe.evocop2017 (1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01496347, version 1

Collections

Citation

Arnaud Liefooghe, Bilel Derbel, Sébastien Verel, Hernan Aguirre, Kiyoshi Tanaka. Towards landscape-aware automatic algorithm configuration: preliminary experiments on neutral and rugged landscapes. Bin Hu; Manuel López-Ibáñez. European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2017), Apr 2017, Amsterdam, Netherlands. Springer, Lecture Notes in Computer Science, 10197, pp.215-232, 2017, Evolutionary Computation in Combinatorial Optimization. 〈http://www.evostar.org/2017/〉. 〈hal-01496347〉

Partager

Métriques

Consultations de la notice

697

Téléchargements de fichiers

169