H. Debrecen, Republic of Korea. 41 Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Institute for Applied Biosciences, vol.16, pp.702-701

V. Domaine-de, 71 Present address: Department Applied and Molecular Microbiology The Netherlands. 73 Present address: Seres Therapeutics, p.7141, 0200.

R. Samson, C. Visagie, J. Houbraken, S. Hong, V. Hubka et al., Phylogeny, identification and nomenclature of the genus Aspergillus, Studies in Mycology, vol.78, pp.141-73, 2014.
DOI : 10.1016/j.simyco.2014.07.004

C. Scazzocchio and . Aspergillus, Encyclopaedia of Microbiology, Amsterdam, pp.401-420, 2009.

D. Geiser, R. Samson, J. Varga, A. Rokas, and S. Witiak, A review of molecular phylogenetics in Aspergillus, and prospects for a robust genus-wide phylogeny, Aspergillus in the genomic era, pp.17-32, 2008.

J. Galagan, S. Calvo, C. Cuomo, L. Ma, J. Wortman et al., Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae, Nature, vol.20, issue.7071, pp.1105-1120, 2005.
DOI : 10.1091/mbc.12.9.2846

M. Machida, K. Asai, M. Sano, T. Tanaka, T. Kumagai et al., Genome sequencing and analysis of Aspergillus oryzae, Nature, vol.25, issue.7071, pp.1157-61, 2005.
DOI : 10.1271/bbb1961.51.323

W. Nierman, A. Pain, M. Anderson, J. Wortman, H. Kim et al., Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus, Nature, vol.33, issue.7071, pp.1151-1157, 2005.
DOI : 10.2174/1386207033329751

M. Andersen, M. Salazar, P. Schaap, P. Van-de-vondervoort, D. Culley et al., Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513, Genome Res, vol.8821, pp.885-97, 2011.

N. Fedorova, N. Khaldi, V. Joardar, R. Maiti, P. Amedeo et al., Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus, PLoS Genetics, vol.141, issue.4, 2008.
DOI : 10.1371/journal.pgen.1000046.s018

I. Benoit, I. Malavazi, G. Goldman, S. Baker, R. De-vries et al., Aspergillus -Genomics of a cosmopolitan fungus Genomics of soil-and plant-associated fungi, pp.89-126, 2013.

A. Rokas, G. Payne, N. Fedorova, S. Baker, M. Machida et al., What can comparative genomics tell us about species concepts in the genus Aspergillus? Stud Mycol, pp.11-18, 2007.

M. Gilsenan, J. Cooley, J. Bowyer, and P. , CADRE: the Central Aspergillus Data REpository 2012, Nucleic Acids Research, vol.40, issue.D1, pp.660-666, 2012.
DOI : 10.1093/nar/gkr971

M. Arnaud, G. Cerqueira, D. Inglis, M. Skrzypek, J. Binkley et al., The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources, Nucleic Acids Research, vol.40, issue.D1, pp.653-662, 2012.
DOI : 10.1093/nar/gkr875

I. Grigoriev, R. Nikitin, S. Haridas, A. Kuo, R. Ohm et al., MycoCosm portal: gearing up for 1000 fungal genomes, Nucleic Acids Research, vol.42, issue.D1, pp.699-704, 2014.
DOI : 10.1093/nar/gkt1183

URL : https://academic.oup.com/nar/article-pdf/42/D1/D699/3619942/gkt1183.pdf

I. Grigoriev, H. Nordberg, I. Shabalov, A. Aerts, M. Cantor et al., The Genome Portal of the Department of Energy Joint Genome Institute, Nucleic Acids Research, vol.40, issue.D1, pp.26-32, 2012.
DOI : 10.1093/nar/gkr947

A. Alker, G. Smith, and K. Kim, Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals, Hydrobiol, vol.460, pp.105-116, 2001.
DOI : 10.1007/978-94-017-3284-0_9

M. Van-den-berg, R. Albang, K. Albermann, J. Badger, J. Daran et al., Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum, Nature Biotechnology, vol.32, issue.10, pp.1161-1169, 2008.
DOI : 10.1038/nbt.1498

M. Marcet-houben, A. Ballester, B. De-la-fuente, E. Harries, J. Marcos et al., Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus, BMC Genomics, vol.13, issue.1, p.646, 2012.
DOI : 10.1111/j.1472-765X.1985.tb01479.x

T. Sharpton, J. Stajich, S. Rounsley, M. Gardner, J. Wortman et al., Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives, Genome Research, vol.19, issue.10, pp.1722-1753, 2009.
DOI : 10.1101/gr.087551.108

D. Martinez, B. Oliver, Y. Graser, J. Goldberg, W. Li et al., Comparative Genome Analysis of Trichophyton rubrum and Related Dermatophytes Reveals Candidate Genes Involved in Infection, mBio, vol.3, issue.5, pp.259-271, 2012.
DOI : 10.1128/mBio.00259-12

C. Desjardins, M. Champion, J. Holder, A. Muszewska, J. Goldberg et al., Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis, PLoS Genetics, vol.14, issue.10, p.1002345, 2011.
DOI : 10.1371/journal.pgen.1002345.s026

J. Galagan, S. Calvo, K. Borkovich, E. Selker, N. Read et al., The genome sequence of the filamentous fungus Neurospora crassa, Nature, vol.42, issue.6934, pp.859-68, 2003.
DOI : 10.1126/science.1058040

A. Goffeau, B. Barrell, H. Bussey, R. Davis, B. Dujon et al., Life with 6000 Genes, Science, vol.274, issue.5287, pp.546-553, 1996.
DOI : 10.1126/science.274.5287.546

J. Houbraken and R. Samson, Phylogeny of Penicillium and the segregation of Trichocomaceae into three families, Studies in Mycology, vol.70, pp.1-51, 2011.
DOI : 10.3114/sim.2011.70.01

J. Pitt and J. Taylor, , its sexual states and the new International Code of Nomenclature, Mycologia, vol.106, issue.5, pp.1051-62, 2014.
DOI : 10.1016/S0732-8893(03)00013-0

J. Houbraken, R. De-vries, and R. Samson, Modern Taxonomy of Biotechnologically Important Aspergillus and Penicillium Species, Adv Appl Microbiol, vol.86, pp.199-249, 2014.
DOI : 10.1016/B978-0-12-800262-9.00004-4

G. Perrone, A. Susca, G. Cozzi, K. Ehrlich, J. Varga et al., Biodiversity of Aspergillus species in some important agricultural products, Studies in Mycology, vol.59, pp.53-66, 2007.
DOI : 10.3114/sim.2007.59.07

O. Etxebeste, A. Garzia, E. Espeso, and U. Ugalde, Aspergillus nidulans asexual development: making the most of cellular modules, Trends in Microbiology, vol.18, issue.12, pp.569-76, 2010.
DOI : 10.1016/j.tim.2010.09.007

P. Dyer, O. Gorman, and C. , A fungal sexual revolution: Aspergillus and Penicillium show the way, Current Opinion in Microbiology, vol.14, issue.6, pp.649-54, 2011.
DOI : 10.1016/j.mib.2011.10.001

P. Dyer, O. Gorman, and C. , species, FEMS Microbiology Reviews, vol.36, issue.1, pp.165-92, 2012.
DOI : 10.1111/j.1574-6976.2011.00308.x

URL : https://hal.archives-ouvertes.fr/hal-01607783

C. Scazzocchio, Aspergillus genomes: secret sex and the secrets of sex, Trends in Genetics, vol.22, issue.10, pp.521-526, 2006.
DOI : 10.1016/j.tig.2006.08.004

URL : https://hal.archives-ouvertes.fr/hal-00105138

H. Park and J. Yu, Genetic control of asexual sporulation in filamentous fungi, Current Opinion in Microbiology, vol.15, issue.6, pp.669-77, 2012.
DOI : 10.1016/j.mib.2012.09.006

T. Adams, J. Wieser, and J. Yu, Asexual sporulation in Aspergillus nidulans, Microbiol Mol Biol Rev, vol.62, pp.35-54, 1998.

O. Bayram, G. Braus, R. Fischer, and J. Rodriguez-romero, Spotlight on Aspergillus nidulans photosensory systems, Fungal Genetics and Biology, vol.47, issue.11, pp.900-908, 2010.
DOI : 10.1016/j.fgb.2010.05.008

O. Bayram and G. Braus, Coordination of secondarymetabolism and development in fungi: the velvet familyof regulatory proteins, FEMS Microbiology Reviews, vol.36, issue.1, pp.1-24, 2012.
DOI : 10.1111/j.1574-6976.2011.00285.x

H. Wong and C. Chien, Ultrastructural Studies of the Conidial Anamorphs of Monascus, Mycologia, vol.78, issue.4, pp.593-602, 1986.
DOI : 10.2307/3807771

P. Dyer, P. Inderbitzin, and R. Debuchy, Mating-type structure, function, regulation and evolution in the Pezizomycotina editor. Growth, differentiation and sexuality. Volume I. The Mycota, pp.351-85, 2016.

R. Debuchy, V. Berteaux-lecellier, and P. Silar, Mating systems and sexual morphogenesis in ascomycetes Cellular and molecular biology of filamentous fungi, pp.501-536, 2010.

S. Yun, M. Berbee, O. Yoder, and B. Turgeon, Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors, Proceedings of the National Academy of Sciences, vol.56, issue.4, pp.5592-5599, 1999.
DOI : 10.1139/b78-086

D. Geiser, J. Pitt, and J. Taylor, Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus, Proceedings of the National Academy of Sciences, vol.94, issue.15, pp.388-93, 1998.
DOI : 10.1073/pnas.94.15.7748

M. Paoletti, F. Seymour, M. Alcocer, N. Kaur, A. Calvo et al., Mating Type and the Genetic Basis of Self-Fertility in the Model Fungus Aspergillus nidulans, Current Biology, vol.17, issue.16, pp.1384-1393, 2007.
DOI : 10.1016/j.cub.2007.07.012

J. Ramirez-prado, G. Moore, B. Horn, and I. Carbone, Characterization and population analysis of the mating-type genes in Aspergillus flavus and Aspergillus parasiticus, Fungal Genetics and Biology, vol.45, issue.9, pp.1292-1301, 2008.
DOI : 10.1016/j.fgb.2008.06.007

C. Rydholm, P. Dyer, and F. Lutzoni, DNA Sequence Characterization and Molecular Evolution of MAT1 and MAT2 Mating-Type Loci of the Self-Compatible Ascomycete Mold Neosartorya fischeri, Eukaryotic Cell, vol.6, issue.5, pp.868-74, 2007.
DOI : 10.1128/EC.00319-06

M. Flipphi, J. Sun, X. Robellet, L. Karaffa, E. Fekete et al., Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp., Fungal Genetics and Biology, vol.46, issue.1, pp.19-44, 2009.
DOI : 10.1016/j.fgb.2008.07.018

URL : https://hal.archives-ouvertes.fr/hal-00418924

C. Khosravi, T. Benocci, E. Battaglia, I. Benoit, and R. De-vries, Sugar Catabolism in Aspergillus and Other Fungi Related to the Utilization of Plant Biomass, Adv Appl Microbiol, vol.90, pp.1-28, 2014.
DOI : 10.1016/bs.aambs.2014.09.005

E. Fekete, R. De-vries, B. Seiboth, P. Sandor, E. Metz et al., d-Galactose uptake is nonfunctional in the conidiospores of Aspergillus niger, FEMS Microbiology Letters, vol.329, issue.2, pp.198-203, 2012.
DOI : 10.1111/j.1574-6968.2012.02524.x

K. Hayer, M. Stratford, and D. Archer, Structural Features of Sugars That Trigger or Support Conidial Germination in the Filamentous Fungus Aspergillus niger, Applied and Environmental Microbiology, vol.79, issue.22
DOI : 10.1128/AEM.02061-13

K. Hayer, M. Stratford, and D. Archer, Germination of Aspergillus niger Conidia Is Triggered by Nitrogen Compounds Related to L-Amino Acids, Applied and Environmental Microbiology, vol.80, issue.19, pp.6046-53, 2014.
DOI : 10.1128/AEM.01078-14

A. Geber, P. Williamson, J. Rex, E. Sweeney, and J. Bennett, Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization., Journal of Bacteriology, vol.174, issue.21, pp.6992-6998, 1992.
DOI : 10.1128/jb.174.21.6992-6996.1992

H. Culleton, V. Mckie, and R. De-vries, ?, Biotechnology Journal, vol.49, issue.1, pp.884-94, 2013.
DOI : 10.1016/j.fgb.2012.09.006

R. De-vries and J. Visser, Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides, Microbiology and Molecular Biology Reviews, vol.65, issue.4, pp.497-522, 2001.
DOI : 10.1128/MMBR.65.4.497-522.2001

I. Benoit, H. Culleton, M. Zhou, M. Difalco, G. Aguilar-osorio et al., Closely related fungi employ diverse enzymatic strategies to degrade plant biomass, Biotechnology for Biofuels, vol.57, issue.Suppl 1, p.107, 2015.
DOI : 10.1080/10635150802429642

URL : https://hal.archives-ouvertes.fr/hal-01199391

P. Coutinho, M. Andersen, K. Kolenova, P. Benoit, I. Gruben et al., Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae, Fungal Genetics and Biology, vol.46, issue.1, pp.161-170, 2009.
DOI : 10.1016/j.fgb.2008.07.020

V. Lombard, G. Ramulu, H. Drula, E. Coutinho, P. Henrissat et al., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Research, vol.42, issue.D1, pp.490-495, 2014.
DOI : 10.1093/nar/gkt1178

M. Mäkelä, J. Barboza, L. De-vries, R. Hildén, and K. , Production of feruloyl esterases by Aspergillus species Aspergillus and Penicillium in the post-genomic era, pp.129-173, 2016.

S. Klaubauf, H. Narang, H. Post, M. Zhou, K. Brunner et al., Similar is not the same: Differences in the function of the (hemi-)cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi, Fungal Genetics and Biology, vol.72, pp.73-81, 2014.
DOI : 10.1016/j.fgb.2014.07.007

A. Brakhage, Regulation of fungal secondary metabolism, Nature Reviews Microbiology, vol.132, issue.1, pp.21-32, 2013.
DOI : 10.1021/ja103262m

P. Wiemann and N. Keller, Strategies for mining fungal natural products, Journal of Industrial Microbiology & Biotechnology, vol.8, issue.2, pp.301-314, 2014.
DOI : 10.1038/nchembio.912

S. Bergmann, J. Schumann, K. Scherlach, C. Lange, A. Brakhage et al., Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans, Nature Chemical Biology, vol.72, issue.4, pp.213-220, 2007.
DOI : 10.1038/ja.2006.74

M. Schätzle, S. Husain, S. Ferlaino, and M. Muller, Tautomers of Anthrahydroquinones: Enzymatic Reduction and Implications for Chrysophanol, Monodictyphenone, and Related Xanthone Biosyntheses, Journal of the American Chemical Society, vol.134, issue.36, pp.14742-14747, 2012.
DOI : 10.1021/ja307151x

T. Simpson, Genetic and Biosynthetic Studies of the Fungal Prenylated Xanthone Shamixanthone and Related Metabolites in Aspergillus spp. Revisited, ChemBioChem, vol.42, issue.11, pp.1680-1688, 2012.
DOI : 10.1271/bbb1961.42.465

K. Bromann, M. Toivari, K. Viljanen, A. Vuoristo, L. Ruohonen et al., Identification and Characterization of a Novel Diterpene Gene Cluster in Aspergillus nidulans, PLoS ONE, vol.32, issue.4, p.35450, 2012.
DOI : 10.1371/journal.pone.0035450.s007

S. Bergmann, A. Funk, K. Scherlach, V. Schroeckh, E. Shelest et al., Activation of a Silent Fungal Polyketide Biosynthesis Pathway through Regulatory Cross Talk with a Cryptic Nonribosomal Peptide Synthetase Gene Cluster, Applied and Environmental Microbiology, vol.76, issue.24, pp.8143-8152, 2010.
DOI : 10.1128/AEM.00683-10

H. Yeh, M. Ahuja, Y. Chiang, C. Oakley, S. Moore et al., Reveal the Biosynthetic Pathway for Fellutamide B, a Proteasome Inhibitor, ACS Chemical Biology, vol.11, issue.8, pp.2275-84, 2016.
DOI : 10.1021/acschembio.6b00213

V. Schroeckh, K. Scherlach, H. Nutzmann, E. Shelest, W. Schmidt-heck et al., Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans, Proceedings of the National Academy of Sciences, vol.11, issue.13, pp.14558-63, 2009.
DOI : 10.1038/sj.emboj.7601752

A. Maccabe, M. Riach, S. Unkles, and J. Kinghorn, The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis, EMBO J, vol.9, pp.279-87, 1990.

M. Eisendle, H. Oberegger, I. Zadra, and H. Haas, The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC), Molecular Microbiology, vol.66, issue.2, pp.359-75, 2003.
DOI : 10.1016/B978-0-12-079870-4.50014-4

D. Brown, J. Yu, H. Kelkar, M. Fernandes, T. Nesbitt et al., Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans., Proceedings of the National Academy of Sciences, vol.93, issue.4, pp.1418-1440, 1996.
DOI : 10.1073/pnas.93.4.1418

S. Bouhired, M. Weber, A. Kempf-sontag, N. Keller, and D. Hoffmeister, Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA, Fungal Genetics and Biology, vol.44, issue.11, pp.1134-1179, 2007.
DOI : 10.1016/j.fgb.2006.12.010

J. Gerke, O. Bayram, K. Feussner, M. Landesfeind, E. Shelest et al., Breaking the Silence: Protein Stabilization Uncovers Silenced Biosynthetic Gene Clusters in the Fungus Aspergillus nidulans, Applied and Environmental Microbiology, vol.78, issue.23, pp.8234-8278, 2012.
DOI : 10.1128/AEM.01808-12

Y. Chiang, M. Ahuja, C. Oakley, R. Entwistle, A. Asokan et al., Results in the Discovery of Aspercryptin, Angewandte Chemie International Edition, vol.944, issue.5, pp.1662-1667, 2016.
DOI : 10.1128/AEM.00692-08

F. Lim, Y. Hou, Y. Chen, J. Oh, I. Lee et al., Genome-Based Cluster Deletion Reveals an Endocrocin Biosynthetic Pathway in Aspergillus fumigatus, Applied and Environmental Microbiology, vol.78, issue.12, pp.4117-4142, 2012.
DOI : 10.1128/AEM.07710-11

H. Lin, Y. Chooi, S. Dhingra, W. Xu, A. Calvo et al., -Bergamotene, Journal of the American Chemical Society, vol.135, issue.12, pp.4616-4625, 2013.
DOI : 10.1021/ja312503y

URL : https://hal.archives-ouvertes.fr/hal-01476571

B. Ames, X. Liu, and C. Walsh, Enzymatic Processing of Fumiquinazoline F: A Tandem Oxidative-Acylation Strategy for the Generation of Multicyclic Scaffolds in Fungal Indole Alkaloid Biosynthesis, Biochemistry, vol.49, issue.39, pp.8564-76, 2010.
DOI : 10.1021/bi1012029

O. Hanlon, K. Gallagher, L. Schrettl, M. Jochl, C. Kavanagh et al., Nonribosomal Peptide Synthetase Genes pesL and pes1 Are Essential for Fumigaclavine C Production in Aspergillus fumigatus, Applied and Environmental Microbiology, vol.78, issue.9, pp.3166-76, 2012.
DOI : 10.1128/AEM.07249-11

S. Maiya, A. Grundmann, S. Li, and G. Turner, The Fumitremorgin Gene Cluster of Aspergillus fumigatus: Identification of a Gene Encoding Brevianamide F Synthetase, ChemBioChem, vol.42, issue.7, pp.1062-1071, 2006.
DOI : 10.1016/j.fgb.2004.10.002

Y. Chooi, J. Fang, H. Liu, S. Filler, P. Wang et al., Genome Mining of a Prenylated and Immunosuppressive Polyketide from Pathogenic Fungi, Organic Letters, vol.15, issue.4, pp.780-783, 2013.
DOI : 10.1021/ol303435y

O. Hanlon, K. Cairns, T. Stack, D. Schrettl, M. Bignell et al., Targeted Disruption of Nonribosomal Peptide Synthetase pes3 Augments the Virulence of Aspergillus fumigatus, Infection and Immunity, vol.79, issue.10, pp.3978-92, 2011.
DOI : 10.1128/IAI.00192-11

Y. Igarashi, Y. Yabuta, A. Sekine, K. Fujii, K. Harada et al., Directed Biosynthesis of Fluorinated Pseurotin A, Synerazol and Gliotoxin, The Journal of Antibiotics, vol.57, issue.11, pp.748-54, 2004.
DOI : 10.7164/antibiotics.57.748

S. Maiya, A. Grundmann, X. Li, S. Li, and G. Turner, Identification of a Hybrid PKS/NRPS Required for Pseurotin A Biosynthesis in the Human PathogenAspergillus fumigatus, ChemBioChem, vol.19, issue.14, pp.1736-1779, 2007.
DOI : 10.1248/cpb.19.1739

M. Vödisch, K. Scherlach, R. Winkler, C. Hertweck, H. Braun et al., Proteome Reveals Metabolic Changes and the Activation of the Pseurotin A Biosynthesis Gene Cluster in Response to Hypoxia, Journal of Proteome Research, vol.10, issue.5, pp.2508-2532, 2011.
DOI : 10.1021/pr1012812

P. Wiemann, C. Guo, J. Palmer, R. Sekonyela, C. Wang et al., Prototype of an intertwined secondary-metabolite supercluster, Proceedings of the National Academy of Sciences, vol.215, issue.3, pp.17065-70, 2013.
DOI : 10.1006/jmbi.1990.9999

S. Robinson and D. Panaccione, Chemotypic and genotypic diversity in the ergot alkaloid pathway of Aspergillus fumigatus, Mycologia, vol.104, issue.4, pp.804-816, 2012.
DOI : 10.3852/11-310

J. Frisvad, T. Larsen, U. Thrane, M. Meijer, J. Varga et al., Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains, PLoS ONE, vol.59, issue.8, p.23496, 2011.
DOI : 10.1371/journal.pone.0023496.s007

T. Awakawa, X. Yang, T. Wakimoto, and I. Abe, Identified by Genome Mining, ChemBioChem, vol.71, issue.16, pp.2095-2104, 2013.
DOI : 10.1271/bbb.70310

T. Nakazawa, K. Ishiuchi, A. Praseuth, H. Noguchi, K. Hotta et al., Overexpressing Transcriptional Regulator in Aspergillus oryzae Activates a Silent Biosynthetic Pathway to Produce a Novel Polyketide, ChemBioChem, vol.60, issue.6, pp.855-61, 2012.
DOI : 10.1186/1471-2180-9-177

K. Imamura, Y. Tsuyama, T. Hirata, S. Shiraishi, K. Sakamoto et al., Identification of a Gene Involved in the Synthesis of a Dipeptidyl Peptidase IV Inhibitor in Aspergillus oryzae, Applied and Environmental Microbiology, vol.78, issue.19, pp.6996-7002, 2012.
DOI : 10.1128/AEM.01770-12

J. Yu, P. Chang, K. Ehrlich, J. Cary, D. Bhatnagar et al., Clustered Pathway Genes in Aflatoxin Biosynthesis, Applied and Environmental Microbiology, vol.70, issue.3, pp.1253-62, 2004.
DOI : 10.1128/AEM.70.3.1253-1262.2004

P. Chang, B. Horn, and J. Dorner, Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus, Fungal Genetics and Biology, vol.46, issue.2, pp.176-82, 2009.
DOI : 10.1016/j.fgb.2008.11.002

S. Zhang, B. Monahan, J. Tkacz, and B. Scott, Indole-Diterpene Gene Cluster from Aspergillus flavus, Applied and Environmental Microbiology, vol.70, issue.11, pp.6875-83, 2004.
DOI : 10.1128/AEM.70.11.6875-6883.2004

URL : http://aem.asm.org/content/70/11/6875.full.pdf

M. Nielsen, J. Nielsen, D. Anyaogu, D. Holm, K. Nielsen et al., Heterologous Reconstitution of the Intact Geodin Gene Cluster in Aspergillus nidulans through a Simple and Versatile PCR Based Approach, PLoS ONE, vol.760, issue.8, p.72871, 2013.
DOI : 10.1371/journal.pone.0072871.s008

K. Qiao, Y. Chooi, and Y. Tang, Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1, Metabolic Engineering, vol.13, issue.6, pp.723-755, 2011.
DOI : 10.1016/j.ymben.2011.09.008

C. Guo, H. Yeh, Y. Chiang, J. Sanchez, S. Chang et al., Biosynthetic Pathway for the Epipolythiodioxopiperazine Acetylaranotin in Aspergillus terreus Revealed by Genome-Based Deletion Analysis, Journal of the American Chemical Society, vol.135, issue.19, pp.7205-7218, 2013.
DOI : 10.1021/ja3123653

D. Inglis, J. Binkley, M. Skrzypek, M. Arnaud, G. Cerqueira et al., Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae, BMC Microbiology, vol.13, issue.1, p.91, 2013.
DOI : 10.1093/bioinformatics/17.9.847

Y. Seshime, P. Juvvadi, K. Kitamoto, Y. Ebizuka, and I. Fujii, Identification of csypyrone B1 as the novel product of Aspergillus oryzae type III polyketide synthase CsyB, Bioorganic & Medicinal Chemistry, vol.18, issue.12, pp.4542-4548, 2010.
DOI : 10.1016/j.bmc.2010.04.058

Y. Chiang, E. Szewczyk, T. Nayak, A. Davidson, J. Sanchez et al., Molecular Genetic Mining of the Aspergillus Secondary Metabolome: Discovery of the Emericellamide Biosynthetic Pathway, Chemistry & Biology, vol.15, issue.6, pp.527-559, 2008.
DOI : 10.1016/j.chembiol.2008.05.010

C. Birse and A. Clutterbuck, Isolation and developmentally regulated expression of an Aspergillus nidulans phenol oxidase-encoding gene, ivoB, Gene, vol.98, issue.1, pp.69-76, 1991.
DOI : 10.1016/0378-1119(91)90105-K

M. Andersen, J. Nielsen, A. Klitgaard, L. Petersen, M. Zachariasen et al., Accurate prediction of secondary metabolite gene clusters in filamentous fungi, Proceedings of the National Academy of Sciences, vol.15, issue.6, pp.99-107, 2013.
DOI : 10.1016/j.chembiol.2008.05.010

C. Zaehle, M. Gressler, E. Shelest, E. Geib, C. Hertweck et al., Terrein Biosynthesis in Aspergillus terreus and Its Impact on Phytotoxicity, Chemistry & Biology, vol.21, issue.6, pp.719-750, 2014.
DOI : 10.1016/j.chembiol.2014.03.010

URL : http://doi.org/10.1016/j.chembiol.2014.03.010

C. Botha, M. Legg, M. Truter, and M. Sulyok, Multitoxin analysis of <i>Aspergillus clavatus</i>-infected feed samples implicated in two outbreaks of neuromycotoxicosis in cattle in South Africa, Onderstepoort J Vet Res, vol.81, issue.1, 2014.
DOI : 10.1002/rcm.2640

C. Zutz, A. Gacek, M. Sulyok, M. Wagner, J. Strauss et al., Small Chemical Chromatin Effectors Alter Secondary Metabolite Production in Aspergillus clavatus, Toxins, vol.132, issue.10, pp.1723-1764, 2013.
DOI : 10.1007/s13225-010-0053-1

J. Frisvad and R. Samson, Neopetromyces gen. nov. and an overview of teleomorphs of Aspergillus subg, Circumdati. Stud Mycol, vol.45, pp.201-208, 2000.

J. Marui, S. Ohashi-kunihiro, T. Ando, M. Nishimura, H. Koike et al., Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering, Journal of Bioscience and Bioengineering, vol.110, issue.1, pp.8-11, 2010.
DOI : 10.1016/j.jbiosc.2010.01.001

H. Tamiya, E. Ochiai, K. Kikuchi, M. Yahiro, T. Toyotome et al., Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans, Journal of Infection and Chemotherapy, vol.21, issue.5, pp.385-91, 2015.
DOI : 10.1016/j.jiac.2015.01.005

J. Clardy, J. Springer, G. Buchi, K. Matsuo, and R. Wightman, Tryptoquivaline and tryptoquivalone, two tremorgenic metabolites of Aspergillus clavatus, Journal of the American Chemical Society, vol.97, issue.3, pp.663-668, 1975.
DOI : 10.1021/ja00836a045

Z. Jurjevic, S. Peterson, M. Solfrizzo, and M. Peraica, Sterigmatocystin production by nine newly described Aspergillus species in section Versicolores grown on two different media, Mycotoxin Research, vol.50, issue.3, pp.141-146, 2013.
DOI : 10.1128/JCM.05388-11

K. Nielsen, J. Mogensen, M. Johansen, T. Larsen, and J. Frisvad, Review of secondary metabolites and mycotoxins from the Aspergillus niger group, Analytical and Bioanalytical Chemistry, vol.127, issue.519, pp.1225-1267, 2009.
DOI : 10.7164/antibiotics.29.623

D. Kelly, N. Krasevec, J. Mullins, and D. Nelson, The CYPome (Cytochrome P450 complement) of Aspergillus nidulans, Fungal Genetics and Biology, vol.46, issue.1, pp.53-61, 2009.
DOI : 10.1016/j.fgb.2008.08.010

Y. Yoshida, Y. Aoyama, M. Noshiro, and O. Gotoh, Sterol 14-Demethylase P450 (CYP51) Provides a Breakthrough for the Discussion on the Evolution of Cytochrome P450 Gene Superfamily, Biochemical and Biophysical Research Communications, vol.273, issue.3, pp.799-804, 2000.
DOI : 10.1006/bbrc.2000.3030

S. Kelly, D. Lamb, A. Corran, B. Baldwin, L. Parks et al., -desaturase, FEBS Letters, vol.111, issue.2, pp.217-237, 1995.
DOI : 10.1007/978-3-642-84625-0_21

URL : https://hal.archives-ouvertes.fr/hal-01542526

P. Briza, H. Kalchhauser, E. Pittenauer, G. Allmaier, M. N. Breitenbach et al., N,N' Bisformyl Dityrosine is an in vivo Precursor of the Yeast Ascospore Wall, European Journal of Biochemistry, vol.160, issue.1, pp.124-155, 1996.
DOI : 10.1016/0076-6879(84)07026-9

P. Jawallapersand, S. Mashele, L. Kovacic, J. Stojan, R. Komel et al., Cytochrome P450 Monooxygenase CYP53 Family in Fungi: Comparative Structural and Evolutionary Analysis and Its Role as a Common Alternative Anti-Fungal Drug Target, PLoS ONE, vol.15, issue.4, 2014.
DOI : 10.1371/journal.pone.0107209.s002

M. Novak, L. Lah, M. Sala, J. Stojan, J. Bohlmann et al., Oleic acid metabolism via a conserved cytochrome P450 system-mediated omegahydroxylation in the bark beetle-associated fungus Grosmannia clavigera, PLoS One, vol.10, p.120119, 2015.

F. Brodhun and I. Feussner, Oxylipins in fungi, FEBS Journal, vol.44, issue.69, pp.1047-63, 2011.
DOI : 10.1146/annurev.phyto.44.070505.143412

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2011.08027.x/pdf

M. Miskei, Z. Karányi, and I. Pócsi, Annotation of stress???response proteins in the aspergilli, Fungal Genetics and Biology, vol.46, issue.1, pp.105-125, 2009.
DOI : 10.1016/j.fgb.2008.07.013

K. Goetz, C. Coyle, J. Cheng, O. Connor, S. Panaccione et al., Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus, Current Genetics, vol.41, issue.3, pp.201-212, 2011.
DOI : 10.1016/j.fgb.2003.10.002

S. Fillinger, G. Ruijter, M. Tamas, J. Visser, J. Thevelein et al., Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans, Molecular Microbiology, vol.217, issue.1, pp.145-57, 2001.
DOI : 10.1099/00221287-136-7-1299

J. Ouedraogo, S. Hagen, A. Spielvogel, S. Engelhardt, and V. Meyer, Survival Strategies of Yeast and Filamentous Fungi against the Antifungal Protein AFP, Journal of Biological Chemistry, vol.1771, issue.16, pp.13859-68, 2011.
DOI : 10.1091/mbc.E07-03-0274

J. Horák, Regulations of sugar transporters: insights from yeast, Current Genetics, vol.272, issue.5, pp.1-31, 2013.
DOI : 10.1126/science.272.5268.1662

N. Yan, Structural Biology of the Major Facilitator Superfamily Transporters, Annual Review of Biophysics, vol.44, issue.1, pp.257-83, 2015.
DOI : 10.1146/annurev-biophys-060414-033901

L. Chen, L. Cheung, L. Feng, W. Tanner, and W. Frommer, Transport of Sugars, Annual Review of Biochemistry, vol.84, issue.1, pp.865-94, 2015.
DOI : 10.1146/annurev-biochem-060614-033904

S. Jr, M. Reddy, V. Tamang, D. Vastermark, and A. , The transporter classification database, Nucleic Acids Res, vol.42, pp.251-259, 2014.

M. Saier, J. Beatty, A. Goffeau, K. Harley, W. Heijne et al., The major facilitator superfamily, J Mol Microbiol Biotechnol, vol.1, pp.257-79, 1999.

D. Reis, T. Menino, J. Bom, V. Brown, N. Colabardini et al., Identification of Glucose Transporters in Aspergillus nidulans, PLoS ONE, vol.38, issue.11, p.81412, 2013.
DOI : 10.1371/journal.pone.0081412.s003

J. Forment, M. Flipphi, L. Ventura, R. Gonzalez, and D. Ramon, High-Affinity Glucose Transport in Aspergillus nidulans Is Mediated by the Products of Two Related but Differentially Expressed Genes, PLoS ONE, vol.379, issue.1, p.94662, 2014.
DOI : 10.1371/journal.pone.0094662.s001

J. Li, L. Lin, H. Li, C. Tian, and Y. Ma, Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose, Biotechnology for Biofuels, vol.7, issue.1, p.31, 2014.
DOI : 10.1073/pnas.80.6.1730

P. Vankuyk, J. Diderich, A. Maccabe, O. Hererro, G. Ruijter et al., Aspergillus niger mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH, Biochemical Journal, vol.379, issue.2, pp.375-83, 2004.
DOI : 10.1042/bj20030624

X. Xie, H. Wilkinson, A. Correa, Z. Lewis, D. Bell-pedersen et al., Transcriptional response to glucose starvation and functional analysis of a glucose transporter of Neurospora crassa, Fungal Genetics and Biology, vol.41, issue.12, pp.1104-1123, 2004.
DOI : 10.1016/j.fgb.2004.08.009

J. Li, J. Xu, P. Cai, B. Wang, Y. Ma et al., Functional Analysis of Two l-Arabinose Transporters from Filamentous Fungi Reveals Promising Characteristics for Improved Pentose Utilization in Saccharomyces cerevisiae, Applied and Environmental Microbiology, vol.81, issue.12
DOI : 10.1128/AEM.00165-15

H. Wei, K. Vienken, R. Weber, S. Bunting, N. Requena et al., A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation, Fungal Genetics and Biology, vol.41, issue.2, pp.148-56, 2004.
DOI : 10.1016/j.fgb.2003.10.006

A. Colabardini, L. Ries, N. Brown, D. Reis, T. Savoldi et al., Functional characterization of a xylose transporter in Aspergillus nidulans, Biotechnology for Biofuels, vol.7, issue.1, p.46, 2014.
DOI : 10.1371/journal.pone.0057630

J. Du, S. Li, and H. Zhao, Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis, Molecular BioSystems, vol.3, issue.11, pp.2150-2156, 2010.
DOI : 10.1039/c0mb00007h

N. Giles, M. Case, J. Baum, R. Geever, L. Huiet et al., Gene organization and regulation in the qa (quinic acid) gene cluster of Neurospora crassa, Microbiol Rev, vol.49, pp.338-58, 1985.

H. Whittington, S. Grant, C. Roberts, H. Lamb, and A. Hawkins, Identification and isolation of a putative permease gene in the quinic acid utilization (QUT) gene cluster of Aspergillus nidulans, Current Genetics, vol.97, issue.2, pp.135-144, 1987.
DOI : 10.1007/BF00434668

J. Benz, R. Protzko, J. Andrich, S. Bauer, J. Dueber et al., Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes, Biotechnology for Biofuels, vol.7, issue.1, p.20, 2014.
DOI : 10.1111/j.1567-1364.2009.00523.x

J. Sloothaak, M. Schilders, P. Schaap, and L. De-graaff, Overexpression of the Aspergillus niger GatA transporter leads to preferential use of D-galacturonic acid over D-xylose, AMB Express, vol.38, issue.Pt 9, p.66, 2014.
DOI : 10.1016/j.fgb.2013.10.002

J. Nikawa, Y. Tsukagoshi, and S. Yamashita, Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae, J Biol Chem, vol.266, pp.11184-91, 1991.

C. Xue, T. Liu, L. Chen, W. Li, I. Liu et al., Role of an Expanded Inositol Transporter Repertoire in Cryptococcus neoformans Sexual Reproduction and Virulence, mBio, vol.1, issue.1, pp.84-94, 2010.
DOI : 10.1128/mBio.00084-10

G. Doehlemann, F. Molitor, and M. Hahn, Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea, Fungal Genetics and Biology, vol.42, issue.7, pp.601-611, 2005.
DOI : 10.1016/j.fgb.2005.03.001

A. Goncalves, C. Silva, T. Madeira, R. Coelho, D. De-sanctis et al., displays a novel loop arrangement for substrate selectivity, Acta Crystallographica Section D Biological Crystallography, vol.6, issue.11, pp.1468-78, 2012.
DOI : 10.1371/journal.pone.0014608

J. Fan, V. Chaturvedi, and S. Shen, Identification and Phylogenetic Analysis of a Glucose Transporter Gene Family from the Human Pathogenic Yeast Candida albicans, Journal of Molecular Evolution, vol.55, issue.3, pp.336-382, 2002.
DOI : 10.1007/s00239-002-2330-4

S. Hasegawa, M. Takizawa, H. Suyama, T. Shintani, and K. Gomi, Characterization and expression analysis of a maltose-utilizing (MAL) cluster in Aspergillus oryzae, Fungal Genetics and Biology, vol.47, issue.1, pp.1-9, 2010.
DOI : 10.1016/j.fgb.2009.10.005

U. Lingner, S. Munch, B. Sode, H. Deising, and N. Sauer, Functional Characterization of a Eukaryotic Melibiose Transporter, PLANT PHYSIOLOGY, vol.156, issue.3, pp.1565-76, 2011.
DOI : 10.1104/pp.111.178624

W. Fang, S. Leger, and R. , Mrt, a Gene Unique to Fungi, Encodes an Oligosaccharide Transporter and Facilitates Rhizosphere Competency in Metarhizium robertsii, PLANT PHYSIOLOGY, vol.154, issue.3, pp.1549-57, 2010.
DOI : 10.1104/pp.110.163014

M. Bun-ya, M. Nishimura, S. Harashima, and Y. Oshima, The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter., Molecular and Cellular Biology, vol.11, issue.6, pp.3229-3267, 1991.
DOI : 10.1128/MCB.11.6.3229

C. Dick, A. Dos-santos, and J. Meyer-fernandes, Inorganic phosphate uptake in unicellular eukaryotes, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1840, issue.7, pp.2123-2130, 2014.
DOI : 10.1016/j.bbagen.2014.03.014

V. Yadav, M. Kumar, D. Deep, H. Kumar, R. Sharma et al., Plays a Role in Phosphate Transport to the Host Plant, Journal of Biological Chemistry, vol.4, issue.34, pp.26532-26576, 2010.
DOI : 10.1093/nar/16.22.10881

J. Patton-vogt and S. Henry, GIT1, a gene encoding a novel transporter for glycerophosphoinositol in Saccharomyces cerevisiae, Genetics, vol.149, pp.1707-1722, 1998.

J. Mcdermott, B. Rosen, and Z. Liu, Jen1p: A High Affinity Selenite Transporter in Yeast, Molecular Biology of the Cell, vol.21, issue.22, pp.3934-3975, 2010.
DOI : 10.1091/mbc.E10-06-0513

C. Ferreira, F. Van-voorst, A. Martins, L. Neves, R. Oliveira et al., A Member of the Sugar Transporter Family, Stl1p Is the Glycerol/H+ Symporter in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.16, issue.4, pp.2068-76, 2005.
DOI : 10.1091/mbc.E04-10-0884

E. Fekete, L. Karaffa, B. Seiboth, E. Fekete, C. Kubicek et al., Identification of a permease gene involved in lactose utilisation in Aspergillus nidulans, Fungal Genetics and Biology, vol.49, issue.6, pp.415-440, 2012.
DOI : 10.1016/j.fgb.2012.03.001

E. Fekete, A. Orosz, L. Kulcsar, N. Kavalecz, M. Flipphi et al., Characterization of a second physiologically relevant lactose permease gene (lacpB) in Aspergillus nidulans, Microbiology, vol.162, issue.5, pp.837-884, 2016.
DOI : 10.1099/mic.0.000267

J. Galazka, C. Tian, W. Beeson, B. Martinez, N. Glass et al., Cellodextrin Transport in Yeast for Improved Biofuel Production, Science, vol.8, issue.7, pp.84-90, 2010.
DOI : 10.1111/j.1567-1364.2008.00428.x

E. Margolis-clark, I. Hunt, S. Espinosa, and B. Bowman, Identification of the Gene at the pmg Locus, Encoding System II, the General Amino Acid Transporter in Neurospora crassa, Fungal Genetics and Biology, vol.33, issue.2, pp.127-162, 2001.
DOI : 10.1006/fgbi.2001.1273

V. Vasseur, M. Van-montagu, and G. Goldman, Trichoderma harzianum genes induced during growth on Rhizoctonia solani cell walls, Microbiology, vol.141, issue.4, pp.767-74, 1995.
DOI : 10.1099/13500872-141-4-767

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/141/4/mic-141-4-767.pdf?itemId=/content/journal/micro/10.1099/13500872-141-4-767&mimeType=pdf&isFastTrackArticle=

F. Omura, H. Hatanaka, and Y. Nakao, strain RM11-1a, FEMS Yeast Research, vol.7, issue.8, pp.1350-61, 2007.
DOI : 10.1111/j.1567-1364.2007.00310.x

A. Yadav and A. Bachhawat, with Orthologues Prevalent among Pathogenic Yeast and Fungi, Journal of Biological Chemistry, vol.20, issue.22, pp.19714-19737, 2011.
DOI : 10.1534/genetics.105.046813

URL : http://www.jbc.org/content/286/22/19714.full.pdf

C. Gournas, T. Evangelidis, A. Athanasopoulos, E. Mikros, and V. Sophianopoulou, Proline Permease as a Model for Understanding the Factors Determining Substrate Binding and Specificity of Fungal Amino Acid Transporters, Journal of Biological Chemistry, vol.1838, issue.10, pp.6141-55, 2015.
DOI : 10.1093/bioinformatics/btk023

A. Apostolaki, Z. Erpapazoglou, L. Harispe, M. Billini, P. Kafasla et al., AgtA, the Dicarboxylic Amino Acid Transporter of Aspergillus nidulans, Is Concertedly Down-Regulated by Exquisite Sensitivity to Nitrogen Metabolite Repression and Ammonium-Elicited Endocytosis, Eukaryotic Cell, vol.8, issue.3, pp.339-52, 2009.
DOI : 10.1128/EC.00270-08

URL : https://hal.archives-ouvertes.fr/hal-00527235

K. Ghaddar, E. Krammer, N. Mihajlovic, S. Brohee, B. Andre et al., Converting the Yeast Arginine Can1 Permease to a Lysine Permease, Journal of Biological Chemistry, vol.1798, issue.10, pp.7232-7278, 2014.
DOI : 10.1093/bioinformatics/btm404

C. Gournas, M. Prevost, E. Krammer, and A. B. , Function and Regulation of Fungal Amino Acid Transporters: Insights from Predicted Structure, Adv Exp Med Biol, vol.30, issue.Pt 8, pp.69-106, 2016.
DOI : 10.1007/s002940050108

R. Russnak, D. Konczal, and S. Mcintire, A Family of Yeast Proteins Mediating Bidirectional Vacuolar Amino Acid Transport, Journal of Biological Chemistry, vol.263, issue.26, pp.23849-57, 2001.
DOI : 10.1016/0005-2736(89)90536-1

C. Abreu, M. Sanguinetti, S. Amillis, and A. Ramon, UreA, the major urea/H+ symporter in Aspergillus nidulans, Fungal Genetics and Biology, vol.47, issue.12, pp.1023-1056, 2010.
DOI : 10.1016/j.fgb.2010.07.004

J. Pateman, E. Dunn, and E. Mackay, Urea and thiourea transport in Aspergillus nidulans, Biochemical Genetics, vol.62, issue.2, pp.777-90, 1982.
DOI : 10.1007/BF00483973

M. Sanguinetti, S. Amillis, S. Pantano, C. Scazzocchio, and A. Ramon, Modelling and mutational analysis of Aspergillus nidulans UreA, a member of the subfamily of urea/H+ transporters in fungi and plants, Open Biology, vol.8, issue.4, p.140070, 2014.
DOI : 10.1007/BF00228148

URL : https://hal.archives-ouvertes.fr/hal-01016450

S. Unkles, E. Karabika, V. Symington, J. Cecile, D. Rouch et al., Alanine scanning mutagenesis of a high-affinity nitrate transporter highlights the requirement for glycine and asparagine residues in the two nitrate signature motifs, Biochemical Journal, vol.4, issue.1, pp.35-42, 2012.
DOI : 10.1074/jbc.M110.130716

S. Unkles, D. Rouch, Y. Wang, M. Siddiqi, A. Glass et al., Two perfectly conserved arginine residues are required for substrate binding in a high-affinity nitrate transporter, Proceedings of the National Academy of Sciences, vol.276, issue.23, pp.17549-54, 2004.
DOI : 10.1074/jbc.M007993200

H. Zheng, G. Wisedchaisri, and T. Gonen, Crystal structure of a nitrate/nitrite exchanger, Nature, vol.23, issue.7451, pp.647-51, 2013.
DOI : 10.1093/bioinformatics/btm404

S. Unkles, D. Zhou, M. Siddiqi, J. Kinghorn, and A. Glass, Apparent genetic redundancy facilitates ecological plasticity for nitrate transport, The EMBO Journal, vol.20, issue.22, pp.6246-55, 2001.
DOI : 10.1093/emboj/20.22.6246

URL : http://emboj.embopress.org/content/embojnl/20/22/6246.full.pdf

Y. Wang, W. Li, Y. Siddiqi, V. Symington, J. Kinghorn et al., Nitrite transport is mediated by the nitrite-specific high-affinity NitA transporter and by nitrate transporters NrtA, NrtB in Aspergillus nidulans, Fungal Genetics and Biology, vol.45, issue.2, pp.94-102, 2008.
DOI : 10.1016/j.fgb.2007.10.001

S. Unkles, V. Symington, Z. Kotur, Y. Wang, M. Siddiqi et al., Physiological and Biochemical Characterization of AnNitA, the Aspergillus nidulans High-Affinity Nitrite Transporter, Eukaryotic Cell, vol.10, issue.12, pp.1724-1756, 2011.
DOI : 10.1128/EC.05199-11

J. Parker and S. Newstead, Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1, Nature, vol.20, issue.7490, pp.68-72, 2014.
DOI : 10.1093/bioinformatics/btg430

J. Sun, J. Bankston, J. Payandeh, T. Hinds, W. Zagotta et al., Crystal structure of the plant dual-affinity nitrate transporter NRT1.1, Nature, vol.66, issue.7490, pp.73-80, 2014.
DOI : 10.1107/S0907444910007493

B. Monahan, M. Askin, M. Hynes, and M. Davis, Differential Expression of Aspergillus nidulans Ammonium Permease Genes Is Regulated by GATA Transcription Factor AreA, Eukaryotic Cell, vol.5, issue.2, pp.226-263, 2006.
DOI : 10.1128/EC.5.2.226-237.2006

N. Lougiakis, E. Gavriil, M. Kairis, G. Sioupouli, G. Lambrinidis et al., Design and synthesis of purine analogues as highly specific ligands for FcyB, a ubiquitous fungal nucleobase transporter, Bioorganic & Medicinal Chemistry, vol.24, issue.22, pp.5941-52, 2016.
DOI : 10.1016/j.bmc.2016.09.055

G. Diallinas, Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters, Frontiers in Pharmacology, vol.56, issue.143, p.207, 2014.
DOI : 10.1021/jm301916b

G. Diallinas and C. Gournas, The ubiquitous Nucleobase-Ascorbate Transporter (NAT) family: Lessons from model microbial genetic systems, Channels, vol.2, issue.5, pp.363-72, 2008.
DOI : 10.4161/chan.2.5.6902

URL : http://www.tandfonline.com/doi/pdf/10.4161/chan.2.5.6902?needAccess=true

C. Gournas, I. Papageorgiou, and G. Diallinas, The nucleobase???ascorbate transporter (NAT) family: genomics, evolution, structure???function relationships and physiological role, Molecular BioSystems, vol.24, issue.5, pp.404-420, 2008.
DOI : 10.1128/AAC.32.6.906

Y. Alguel, S. Amillis, J. Leung, G. Lambrinidis, S. Capaldi et al., Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity, Nature Communications, vol.75, p.11336, 2016.
DOI : 10.1111/j.1365-2958.2009.06997.x

M. Koukaki, A. Vlanti, S. Goudela, A. Pantazopoulou, H. Gioule et al., The Nucleobase-ascorbate Transporter (NAT) Signature Motif in UapA Defines the Function of the Purine Translocation Pathway, Journal of Molecular Biology, vol.350, issue.3, pp.499-513, 2005.
DOI : 10.1016/j.jmb.2005.04.076

A. Pantazopoulou and G. Diallinas, The first transmembrane segment (TMS1) of UapA contains determinants necessary for expression in the plasma membrane and purine transport, Molecular Membrane Biology, vol.279, issue.4, pp.337-385, 2006.
DOI : 10.1074/jbc.R400008200

S. Goudela, P. Karatza, M. Koukaki, S. Frillingos, and G. Diallinas, Comparative substrate recognition by bacterial and fungal purine transporters of the NAT/NCS2 family, Molecular Membrane Biology, vol.4, issue.3, pp.263-75, 2005.
DOI : 10.1111/j.1365-2958.1990.tb00627.x

S. Goudela, U. Reichard, S. Amillis, and G. Diallinas, Characterization and kinetics of the major purine transporters in Aspergillus fumigatus, Fungal Genetics and Biology, vol.45, issue.4, pp.459-72, 2008.
DOI : 10.1016/j.fgb.2007.08.001

E. Krypotou, C. Scazzocchio, and G. Diallinas, Functional characterization of NAT/NCS2 proteins of Aspergillus brasiliensis reveals a genuine xanthine???uric acid transporter and an intrinsically misfolded polypeptide, Fungal Genetics and Biology, vol.75, pp.56-63, 2015.
DOI : 10.1016/j.fgb.2015.01.009

URL : https://hal.archives-ouvertes.fr/hal-01436101

E. Krypotou and G. Diallinas, Transport assays in filamentous fungi: Kinetic characterization of the UapC purine transporter of Aspergillus nidulans, Fungal Genetics and Biology, vol.63, pp.1-8, 2014.
DOI : 10.1016/j.fgb.2013.12.004

E. Krypotou, T. Evangelidis, J. Bobonis, A. Pittis, T. Gabaldon et al., Origin, diversification and substrate specificity in the family of NCS1/FUR transporters, Molecular Microbiology, vol.9, issue.5, pp.927-50, 2015.
DOI : 10.1371/journal.pcbi.1003296

URL : https://hal.archives-ouvertes.fr/hal-01436066

E. Krypotou, G. Lambrinidis, T. Evangelidis, E. Mikros, and G. Diallinas, Modelling, substrate docking and mutational analysis identify residues essential for function and specificity of the major fungal purine transporter AzgA, Molecular Microbiology, vol.57, issue.1, pp.129-174, 2014.
DOI : 10.1146/annurev.arplant.57.032905.105421

E. Krypotou, V. Kosti, S. Amillis, V. Myrianthopoulos, E. Mikros et al., Modeling, Substrate Docking, and Mutational Analysis Identify Residues Essential for the Function and Specificity of a Eukaryotic Purine-Cytosine NCS1 Transporter, Journal of Biological Chemistry, vol.268, issue.44, pp.36792-803, 2012.
DOI : 10.1016/j.fgb.2005.11.006

A. Vlanti and G. Diallinas, The Aspergillus nidulans FcyB cytosine-purine scavenger is highly expressed during germination and in reproductive compartments and is downregulated by endocytosis, Molecular Microbiology, vol.14, issue.4, pp.959-77, 2008.
DOI : 10.1016/j.fgb.2003.10.006

G. Sioupouli, G. Lambrinidis, E. Mikros, S. Amillis, and G. Diallinas, Cryptic purine transporters in Aspergillus nidulans reveal the role of specific residues in the evolution of specificity in the NCS1 family, Mol Microbiol, 2016.

S. Loewen, A. Ng, N. Mohabir, S. Baldwin, C. Cass et al., Functional characterization of a H+/nucleoside co-transporter (CaCNT) fromCandida albicans, a fungal member of the concentrative nucleoside transporter (CNT) family of membrane proteins, Yeast, vol.277, issue.8, pp.661-75, 2003.
DOI : 10.1152/ajpcell.00587.2001

D. Canovas, J. Marcos, A. Marcos, and J. Strauss, Nitric oxide in fungi: is there NO light at the end of the tunnel?, Current Genetics, vol.22, issue.3, pp.513-521, 2016.
DOI : 10.1016/j.niox.2009.12.004

P. Gardner, A. Gardner, L. Martin, and A. Salzman, Nitric oxide dioxygenase: An enzymic function for flavohemoglobin, Proceedings of the National Academy of Sciences, vol.13, issue.1, pp.10378-83, 1998.
DOI : 10.1007/BF01891987

T. Schinko, H. Berger, W. Lee, A. Gallmetzer, K. Pirker et al., Transcriptome analysis of nitrate assimilation in Aspergillus nidulans reveals connections to nitric oxide metabolism, Molecular Microbiology, vol.394, issue.3, pp.720-758, 2010.
DOI : 10.1016/S1389-1723(02)80187-6

R. Te-biesebeke, A. Levasseur, A. Boussier, E. Record, C. Van-den-hondel et al., Phylogeny of fungal hemoglobins and expression analysis of the Aspergillus oryzae flavohemoglobin gene fhbA during hyphal growth, Fungal Biology, vol.114, issue.2-3, pp.135-178, 2010.
DOI : 10.1016/j.mycres.2009.08.007

S. Zhou, S. Fushinobu, S. Kim, Y. Nakanishi, J. Maruyama et al., Functional analysis and subcellular location of two flavohemoglobins from Aspergillus oryzae, Fungal Genetics and Biology, vol.48, issue.2, pp.200-207, 2011.
DOI : 10.1016/j.fgb.2010.08.011

K. Nakahara, T. Tanimoto, K. Hatano, K. Usuda, and H. Shoun, Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor, J Biol Chem, vol.268, pp.8350-8355, 1993.

M. De-jesus-berrios, L. Liu, J. Nussbaum, G. Cox, J. Stamler et al., Enzymes that Counteract Nitrosative Stress Promote Fungal Virulence, Current Biology, vol.13, issue.22, pp.1963-1971, 2003.
DOI : 10.1016/j.cub.2003.10.029

Z. Zhang, J. Wang, R. Chai, H. Qiu, H. Jiang et al., An S-(hydroxymet hyl)glutathione dehydrogenase is involved in conidiation and full virulence in the rice blast fungus Magnaporthe oryzae, PLoS One, vol.10, p.120627, 2015.

K. Lapp, M. Vodisch, K. Kroll, M. Strassburger, O. Kniemeyer et al., Characterization of the Aspergillus fumigatus detoxification systems for reactive nitrogen intermediates and their impact on virulence, Frontiers in Microbiology, vol.381, issue.e1000868, p.469, 2014.
DOI : 10.1016/j.bbrc.2009.01.112

B. Philippe, O. Ibrahim-granet, M. Prevost, M. Gougerot-pocidalo, S. Perez et al., Killing of Aspergillus fumigatus by Alveolar Macrophages Is Mediated by Reactive Oxidant Intermediates, Infection and Immunity, vol.71, issue.6, pp.3034-3076, 2003.
DOI : 10.1128/IAI.71.6.3034-3042.2003

K. Han and R. Prade, Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans, Molecular Microbiology, vol.29, issue.5, pp.1065-78, 2002.
DOI : 10.1093/oxfordjournals.pcp.a029093

A. Lafon, K. Han, J. Seo, J. Yu, and C. Enfert, G-protein and cAMP-mediated signaling in aspergilli: A genomic perspective, Fungal Genetics and Biology, vol.43, issue.7, pp.490-502, 2006.
DOI : 10.1016/j.fgb.2006.02.001

L. Li, S. Wright, S. Krystofova, G. Park, and K. Borkovich, Heterotrimeric G Protein Signaling in Filamentous Fungi, Annual Review of Microbiology, vol.61, issue.1, pp.423-52, 2007.
DOI : 10.1146/annurev.micro.61.080706.093432

M. Chang, K. Chae, D. Han, and K. Jahng, The GanB G??-Protein Negatively Regulates Asexual Sporulation and Plays a Positive Role in Conidial Germination in Aspergillus nidulans, Genetics, vol.167, issue.3, pp.1305-1320, 2004.
DOI : 10.1534/genetics.103.025379

A. Lafon, J. Seo, K. Han, J. Yu, and C. Enfert, The Heterotrimeric G-Protein GanB(??)-SfaD(??)-GpgA(??) Is a Carbon Source Sensor Involved in Early cAMP-Dependent Germination in Aspergillus nidulans, Genetics, vol.171, issue.1, pp.71-80, 2005.
DOI : 10.1534/genetics.105.040584

S. Rosen, J. Yu, and T. Adams, The Aspergillus nidulans sfaD gene encodes a G protein beta subunit that is required for normal growth and repression of sporulation, The EMBO Journal, vol.18, issue.20, pp.5592-600, 1999.
DOI : 10.1093/emboj/18.20.5592

G. Downes and N. Gautam, The G Protein Subunit Gene Families, Genomics, vol.62, issue.3, pp.544-52, 1999.
DOI : 10.1006/geno.1999.5992

T. Giannakouros, E. Nikolakaki, I. Mylonis, and E. Georgatsou, Serine-arginine protein kinases: a small protein kinase family with a large cellular presence, FEBS Journal, vol.12, issue.Pt 22, pp.570-86, 2011.
DOI : 10.1091/mbc.12.11.3502

D. Souza, C. Hashmi, S. Osmani, A. Andrews, P. Ringelberg et al., Functional Analysis of the Aspergillus nidulans Kinome, PLoS ONE, vol.9, issue.45, p.58008, 2013.
DOI : 10.1371/journal.pone.0058008.s003

C. Widmann, S. Gibson, M. Jarpe, and G. Johnson, Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human, Physiol Rev, vol.79, pp.143-80, 1999.

G. Moorhead, L. Trinkle-mulcahy, and A. Ulke-lemee, Emerging roles of nuclear protein phosphatases, Nature Reviews Molecular Cell Biology, vol.16, issue.3, pp.234-278, 2007.
DOI : 10.1128/MCB.14.7.4938

S. Son and S. Osmani, Analysis of All Protein Phosphatase Genes in Aspergillus nidulans Identifies a New Mitotic Regulator, Fcp1, Eukaryotic Cell, vol.8, issue.4, pp.573-85, 2009.
DOI : 10.1128/EC.00346-08

M. Lyon, A. Ducruet, P. Wipf, and J. Lazo, Dual-specificity phosphatases as targets for antineoplastic agents, Nature Reviews Drug Discovery, vol.61, issue.12, pp.961-76, 2002.
DOI : 10.1124/mol.61.4.720

C. Scazzocchio and A. Ramón, Chromatin in the genus Aspergillus The Aspergilli: Genomics, medical applications, biotechnology, and research methods, Boca Raton, pp.321-363, 2008.

A. Ehinger, S. Denison, and G. May, Sequence, organization and expression of the core histone genes ofAspergillus nidulans, MGG Molecular & General Genetics, vol.81, issue.2-3, pp.416-440, 1990.
DOI : 10.1007/BF00633848

S. Hays, J. Swanson, and E. Selker, Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa, Genetics, vol.160, pp.961-73, 2002.

M. Santisteban, T. Kalashnikova, and M. Smith, Histone H2A.Z Regulates Transcription and Is Partially Redundant with Nucleosome Remodeling Complexes, Cell, vol.103, issue.3, pp.411-433, 2000.
DOI : 10.1016/S0092-8674(00)00133-1

S. Ahmed, B. Dul, X. Qiu, and N. Walworth, Msc1 Acts Through Histone H2A.Z to Promote Chromosome Stability in Schizosaccharomyces pombe, Genetics, vol.177, issue.3, pp.1487-97, 2007.
DOI : 10.1534/genetics.107.078691

J. Linz, J. Wee, and L. Roze, Aspergillus parasiticus SU-1 Genome Sequence, Predicted Chromosome Structure, and Comparative Gene Expression under Aflatoxin-Inducing Conditions: Evidence that Differential Expression Contributes to Species Phenotype, Eukaryotic Cell, vol.13, issue.8, pp.1113-1136, 2014.
DOI : 10.1128/EC.00108-14

URL : http://ec.asm.org/content/13/8/1113.full.pdf

S. Nikkuni, H. Nakajima, S. Hoshina, M. Ohno, C. Suzuki et al., Evolutionary relationships among Aspergillus oryzae and related species based on the sequences of 18S rRNA genes and internal transcribed spacers., The Journal of General and Applied Microbiology, vol.44, issue.3, pp.225-255, 1998.
DOI : 10.2323/jgam.44.225

A. Sato, K. Oshima, H. Noguchi, M. Ogawa, T. Takahashi et al., Draft Genome Sequencing and Comparative Analysis of Aspergillus sojae NBRC4239, DNA Research, vol.18, issue.3, pp.165-76, 2011.
DOI : 10.1093/dnares/dsr009

URL : https://academic.oup.com/dnaresearch/article-pdf/18/3/165/1216725/dsr009.pdf

P. Faustinelli, X. Wang, E. Palencia, and R. Arias, Genome sequences of eight Aspergillus flavus spp. and one A. parasiticus sp., isolated from peanut seeds in Georgia, Genome Announc, vol.4, pp.278-294, 2016.

H. Malik, D. Vermaak, and S. Henikoff, Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone, Proceedings of the National Academy of Sciences, vol.26, issue.19, pp.1449-54, 2002.
DOI : 10.1093/nar/26.19.4413

M. Freitag, R. Williams, G. Kothe, and E. Selker, A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa, Proceedings of the National Academy of Sciences, vol.16, issue.6, pp.8802-8809, 2002.
DOI : 10.1128/MCB.16.6.3054

F. Malagnac, W. B. Goyon, C. Faugeron, G. Zickler, D. Rossignol et al., A Gene Essential for De Novo Methylation and Development in Ascobolus Reveals a Novel Type of Eukaryotic DNA Methyltransferase Structure, Cell, vol.91, issue.2, pp.281-90, 1997.
DOI : 10.1016/S0092-8674(00)80410-9

E. Kouzminova and E. Selker, dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora, The EMBO Journal, vol.20, issue.15, pp.4309-4332, 2001.
DOI : 10.1093/emboj/20.15.4309

D. Lee, M. Freitag, E. Selker, and R. Aramayo, A Cytosine Methyltransferase Homologue Is Essential for Sexual Development in Aspergillus nidulans, PLoS ONE, vol.144, issue.6, p.2531, 2008.
DOI : 10.1371/journal.pone.0002531.s002

L. Nicosia, M. Brocard-masson, C. Demais, S. , H. Van et al., Heterologous transposition in Aspergillus nidulans, Molecular Microbiology, vol.26, issue.5, pp.1330-1374, 2001.
DOI : 10.1128/MCB.3.12.2287

S. Liu, J. Lin, H. Wu, C. Wang, S. Huang et al., Bisulfite Sequencing Reveals That Aspergillus flavus Holds a Hollow in DNA Methylation, PLoS ONE, vol.24, issue.1, p.30349, 2012.
DOI : 10.1371/journal.pone.0030349.s005

F. Malagnac, A. Gregoire, C. Goyon, J. Rossignol, and G. Faugeron, Masc2, a gene from Ascobolus encoding a protein with a DNA-methyltransferase activity in vitro, is dispensable for in vivo methylation, Molecular Microbiology, vol.23, issue.1, pp.331-339, 1999.
DOI : 10.1093/hmg/7.2.279

S. Gnerre, I. Maccallum, D. Przybylski, F. Ribeiro, J. Burton et al., High-quality draft assemblies of mammalian genomes from massively parallel sequence data, Proceedings of the National Academy of Sciences, vol.462, issue.7269, pp.1513-1521, 2011.
DOI : 10.1038/462021a

J. Martin, V. Bruno, Z. Fang, X. Meng, M. Blow et al., Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads, BMC Genomics, vol.11, issue.1, p.663, 2010.
DOI : 10.1186/1471-2164-11-663

URL : http://doi.org/10.1186/1471-2164-11-663

A. Smit, R. Hubley, and P. Geen, RepeatMasker Open-3.0. 1996-2010

J. Jurka, V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany et al., Repbase Update, a database of eukaryotic repetitive elements, Cytogenetic and Genome Research, vol.110, issue.1-4, pp.462-469, 2005.
DOI : 10.1159/000084979

A. Price, N. Jones, and P. Pevzner, De novo identification of repeat families in large genomes, Bioinformatics, vol.21, issue.Suppl 1, pp.351-359, 2005.
DOI : 10.1093/bioinformatics/bti1018

A. Salamov and V. Solovyev, Ab initio Gene Finding in Drosophila Genomic DNA, Genome Research, vol.10, issue.4, pp.516-538, 2000.
DOI : 10.1101/gr.10.4.516

URL : http://genome.cshlp.org/content/10/4/516.full.pdf

V. Ter-hovhannisyan, A. Lomsadze, Y. Chernoff, and M. Borodovsky, Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training, Genome Research, vol.18, issue.12, pp.1979-90, 2008.
DOI : 10.1101/gr.081612.108

E. Birney and R. Durbin, Using GeneWise in the Drosophila Annotation Experiment, Genome Research, vol.10, issue.4, pp.547-555, 2000.
DOI : 10.1101/gr.10.4.547

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-413, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

T. Lowe and S. Eddy, tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence, Nucleic Acids Research, vol.25, issue.5, pp.955-64, 1997.
DOI : 10.1093/nar/25.5.0955

H. Nielsen, J. Engelbrecht, S. Brunak, and G. Von-heijne, Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites, Protein Engineering Design and Selection, vol.10, issue.1, pp.1-6, 1997.
DOI : 10.1093/protein/10.1.1

K. Melen, R. Fagerlund, J. Franke, M. Kohler, L. Kinnunen et al., Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein, J Biol Chem, vol.78, pp.28193-200, 2003.

E. Zdobnov and R. Apweiler, InterProScan - an integration platform for the signature-recognition methods in InterPro, Bioinformatics, vol.17, issue.9, pp.847-855, 2001.
DOI : 10.1093/bioinformatics/17.9.847

M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa et al., KEGG for linking genomes to life and the environment, Nucleic Acids Research, vol.36, issue.Database, pp.480-484, 2008.
DOI : 10.1093/nar/gkm882

E. Koonin, N. Fedorova, J. Jackson, A. Jacobs, D. Krylov et al., A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes, Genome Biology, vol.5, issue.2, p.7, 2004.
DOI : 10.1186/gb-2004-5-2-r7

M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler et al., Gene Ontology: tool for the unification of biology, Nature Genetics, vol.9, issue.1, pp.25-34, 2000.
DOI : 10.1091/mbc.9.12.3273

A. Enright, S. Van-dongen, and C. Ouzounis, An efficient algorithm for large-scale detection of protein families, Nucleic Acids Research, vol.30, issue.7, pp.1575-84, 2002.
DOI : 10.1093/nar/30.7.1575

R. Finn, A. Bateman, J. Clements, P. Coggill, R. Eberhardt et al., Pfam: the protein families database, Nucleic Acids Research, vol.42, issue.D1, pp.222-252, 2014.
DOI : 10.1093/nar/gkt1223

URL : https://hal.archives-ouvertes.fr/hal-01294685

K. Katoh and D. Standley, MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability, Molecular Biology and Evolution, vol.30, issue.4, pp.772-80, 2013.
DOI : 10.1093/molbev/mst010

J. Castresana, Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis, Molecular Biology and Evolution, vol.17, issue.4, pp.540-52, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026334

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.30, issue.9, pp.1312-1315, 2014.
DOI : 10.1093/bioinformatics/btu033

L. Li, S. Jr, C. Roos, and D. , OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes, Genome Research, vol.13, issue.9, pp.2178-89, 2003.
DOI : 10.1101/gr.1224503

A. Klitgaard, A. Iversen, M. Andersen, T. Larsen, J. Frisvad et al., Aggressive dereplication using UHPLC???DAD???QTOF: screening extracts for up to 3000 fungal secondary metabolites, Analytical and Bioanalytical Chemistry, vol.8, issue.7, pp.1933-1976, 2014.
DOI : 10.1039/c2mb25085c

URL : http://doi.org/10.1007/s00216-013-7582-x

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei et al., MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Molecular Biology and Evolution, vol.28, issue.10, pp.2731-2740, 2011.
DOI : 10.1093/molbev/msr121

URL : https://academic.oup.com/mbe/article-pdf/28/10/2731/2954190/msr121.pdf

D. Jones, W. Taylor, and J. Thornton, The rapid generation of mutation data matrices from protein sequences, Bioinformatics, vol.8, issue.3, pp.275-82, 1992.
DOI : 10.1093/bioinformatics/8.3.275

M. Punta, P. Coggill, R. Eberhardt, J. Mistry, J. Tate et al., The Pfam protein families database, Nucleic Acids Research, vol.40, issue.D1, pp.290-301, 2012.
DOI : 10.1093/nar/gkr1065

URL : https://hal.archives-ouvertes.fr/hal-01294685

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Molecular Biology and Evolution, vol.30, issue.12, pp.2725-2734, 2013.
DOI : 10.1093/molbev/mst197

URL : https://academic.oup.com/mbe/article-pdf/30/12/2725/19498310/mst197.pdf

M. Lechner, S. Findeiss, L. Steiner, M. Marz, P. Stadler et al., Proteinortho: Detection of (Co-)orthologs in large-scale analysis, BMC Bioinformatics, vol.12, issue.1, p.124, 2011.
DOI : 10.1073/pnas.0708855104

A. Isnard, D. Thomas, and Y. Surdin-kerjan, The Study of Methionine Uptake inSaccharomyces cerevisiaeReveals a New Family of Amino Acid Permeases, Journal of Molecular Biology, vol.262, issue.4, pp.473-84, 1996.
DOI : 10.1006/jmbi.1996.0529

K. Christie, S. Weng, R. Balakrishnan, M. Costanzo, K. Dolinski et al., Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms, Nucleic Acids Research, vol.32, issue.90001, pp.311-315, 2004.
DOI : 10.1093/nar/gkh033

URL : https://academic.oup.com/nar/article-pdf/32/suppl_1/D311/7621347/gkh033.pdf

I. Vangelatos, D. Vlachakis, V. Sophianopoulou, and G. Diallinas, Modelling and mutational evidence identify the substrate binding site and functional elements in APC amino acid transporters, Molecular Membrane Biology, vol.19, issue.324, pp.356-70, 2009.
DOI : 10.1126/science.1173654

K. Katoh, K. Kuma, H. Toh, and T. Miyata, MAFFT version 5: improvement in accuracy of multiple sequence alignment, Nucleic Acids Research, vol.33, issue.2, pp.511-519, 2005.
DOI : 10.1093/nar/gki198

A. Criscuolo and G. S. Bmge, BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evolutionary Biology, vol.10, issue.1, p.210, 2010.
DOI : 10.1186/1471-2148-10-210

S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Systematic Biology, vol.59, issue.3, pp.307-328, 2010.
DOI : 10.1093/sysbio/syq010

URL : https://hal.archives-ouvertes.fr/lirmm-00511784

P. Pérez-rodriguez, D. Riaño-pachón, L. Corrêa, S. Rensing, B. Kersten et al., PlnTFDB: updated content and new features of the plant transcription factor database, Nucleic Acids Research, vol.38, issue.suppl_1, pp.822-829, 2010.
DOI : 10.1093/nar/gkp805

R. De-vries, K. Burgers, P. Van-de-vondervoort, J. Frisvad, R. Samson et al., A New Black Aspergillus Species, A. vadensis, Is a Promising Host for Homologous and Heterologous Protein Production, Applied and Environmental Microbiology, vol.70, issue.7, pp.3954-3963, 2004.
DOI : 10.1128/AEM.70.7.3954-3959.2004

R. Barratt, G. Johnson, and W. Ogata, Wild-type and mutant stocks of Aspergillus nidulans, Genetics, vol.52, pp.233-279, 1965.

W. Yin, A. Reinke, M. Szilágyi, T. Emri, Y. Chiang et al., bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans, Microbiology, vol.159, issue.Pt_1, pp.77-88, 2013.
DOI : 10.1099/mic.0.063370-0

Z. Karányi, I. Holb, L. Hornok, I. Pócsi, and M. Miskei, FSRD: fungal stress response database, Database, vol.2013, issue.0, p.37, 2013.
DOI : 10.1093/database/bat037

J. Sigoillot, I. Herpoël, P. Frasse, S. Moukha, L. Lesage-meessen et al., Laccase production by a monokaryotic strain of Pycnoporus cinnabarinus derived from a dikaryotic strain, World Journal of Microbiology and Biotechnology, vol.15, issue.4, pp.481-485, 1999.
DOI : 10.1023/A:1008986809395

G. Henriksson, V. Sild, I. Szabo, G. Pettersson, and G. Johansson, Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1383, issue.1, pp.48-54, 1998.
DOI : 10.1016/S0167-4838(97)00180-5

A. Kruckeberg, L. Ye, J. Berden, and K. Dam, Functional expression, quantification and cellular localization of the Hxt2 hexose transporter of Saccharomyces cerevisiae tagged with the green fluorescent protein, Biochemical Journal, vol.339, issue.2, pp.299-307, 1999.
DOI : 10.1042/bj3390299

N. Noiraud, L. Maurousset, and R. Lemoine, Identification of a Mannitol Transporter, AgMaT1, in Celery Phloem, THE PLANT CELL ONLINE, vol.13, issue.3, pp.695-705, 2001.
DOI : 10.1105/tpc.13.3.695

S. Emr, R. Scheckman, M. Flessel, and J. Thorner, An MF alpha 1-SUC2 (alpha-factor-invertase) gene fusion for study of protein localization and gene expression in yeast., Proceedings of the National Academy of Sciences, vol.80, issue.23, pp.7080-7084, 1983.
DOI : 10.1073/pnas.80.23.7080

M. Salema-oom, V. Pinto, P. Gonçalves, and I. Spencer-martins, Maltotriose Utilization by Industrial Saccharomyces Strains: Characterization of a New Member of the ??-Glucoside Transporter Family, Applied and Environmental Microbiology, vol.71, issue.9, pp.5044-5053, 2005.
DOI : 10.1128/AEM.71.9.5044-5049.2005

I. Macreadie, O. Horaitis, A. Verkuylen, and K. Savin, Improved shuttle vectors for cloning and high-level Cu2+ -mediated expression of foreign genes in yeast, Gene, vol.104, issue.1, pp.107-118, 1991.
DOI : 10.1016/0378-1119(91)90474-P

R. Gietz and R. Schiestl, Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method, Nature Protocols, vol.152, issue.1, pp.35-42, 2007.
DOI : 10.1038/nprot.2007.14

J. Gibbons and A. Rokas, The function and evolution of the Aspergillus genome, Trends in Microbiology, vol.21, issue.1, pp.14-22, 2013.
DOI : 10.1016/j.tim.2012.09.005