Convex super-resolution detection of lines in images
 Kévin Polisano, Laurent Condat, Marianne Clausel, Valérie Perrier

To cite this version:

Kévin Polisano, Laurent Condat, Marianne Clausel, Valérie Perrier. Convex super-resolution detection of lines in images. SIGMA'2016 CIRM Workshop: Signal, Image, Geometry, Modelling, Approximation, Oct 2016, Luminy, France. , 2016. hal-01496124

HAL Id: hal-01496124

https://hal.science/hal-01496124

Submitted on 3 May 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CONVEXSUPER-RESOLUTION DETECTION of Lines in Images

Kévin Polisano, Marianne Clausel, Valérie Perrier and Laurent Condat

contact mail : kevin.polisano@imag.fr

Objectives

We present a new convex formulation for the problem of recovering lines in degraded images. Following the recent paradigm of super-resolution, we formulate a dedicated atomic norm penalty and solve this optimization problem by a primal-dual algorithm. Then, a spectral estimation method recovers the line parameters, with subpixel accuracy.

ATOMIC NORM FRAMEWORK

Let $z \in \mathbb{C}^{N}$ be a vector such as $z=\sum_{k=1}^{K} c_{k} a\left(\omega_{k}\right)$ with $c_{k} \in \mathbb{C}$ and atoms $a(\omega) \in \mathbb{C}^{N}$ continuously indexed in a dictionary \mathcal{A} by a parameter ω in a compact set Ω. The atomic norm, which enforces sparsity with respect this set \mathcal{A}, is defined as

$$
\|z\|_{\mathcal{A}}=\inf _{c_{k}^{\prime}, \omega_{k}^{\prime}}\left\{\sum_{k}\left|c_{k}^{\prime}\right|: z=\sum_{k} c_{k}^{\prime} a\left(\omega_{k}^{\prime}\right)\right\}
$$

Consider the dictionary

$$
\mathcal{A}=\left\{a(f, \phi) \in \mathbb{C}^{|I|}, f \in[0,1], \phi \in[0,2 \pi)\right\}
$$

in which the atoms are the vectors of components $[a(f, \phi)]_{i}=e^{j(2 \pi f i+\phi)}, i \in I$, and simply $[a(f)]_{i}=$ $e^{j 2 \pi f i}, i \in I$, if $\phi=0$. The atomic norm writes:

$$
\|z\|_{\mathcal{A}}=\inf _{c_{k}^{\prime}>0, f_{k}^{\prime}, \phi_{k}^{\prime}}\left\{\sum_{k} c_{k}^{\prime}: z=\sum_{k} c_{k}^{\prime} a\left(f_{k}^{\prime}, \phi_{k}^{\prime}\right)\right\}
$$

Theorem 1 [Caratheodory]. Let $z=\left(z_{n}\right)_{n=-N+1}^{N-1}$ be a vector with Hermitian symmetry $z_{-n}=z_{n}^{*} . z$ is a positive combination of $K \leqslant N+1$ atoms $a\left(f_{k}\right)$ if and only if $\mathbf{T}_{N}\left(z_{+}\right) \succcurlyeq 0$ and of rank K, where $z_{+}=\left(z_{0}, \ldots, z_{N-1}\right)$ and \mathbf{T}_{N} is the Toeplitz operator

$$
\mathbf{T}_{N}\left(z_{+}\right)=\left(\begin{array}{cccc}
z_{0} & z_{1}^{*} & \cdots & z_{N-1}^{*} \\
z_{1} & z_{0} & \cdots & z_{N-2}^{*} \\
\vdots & \vdots & \ddots & \vdots \\
z_{N-1} & z_{N-2} & \cdots & z_{0}
\end{array}\right)
$$

Moreover, this decomposition is unique, if $K \leqslant N$.
Proposition 1. The atomic norm $\|z\|_{\mathcal{A}}$ can be characterized by this semidefinite program $\operatorname{SDP}(z)$ [2]:
$\|z\|_{\mathcal{A}}=\min _{q \in \mathbb{C}^{N}}\left\{q_{0}: \mathbf{T}_{N}^{\prime}(z, q)=\left(\begin{array}{cc}\mathbf{T}_{N}(q) & z \\ z^{*} & q_{0}\end{array}\right) \succcurlyeq 0\right\}$.

- $l_{n_{2}}^{\sharp}=\hat{x}^{\sharp}\left[:, n_{2}\right]=\sum_{k=1}^{K} c_{k} a\left(f_{n_{2}, k}\right)$
- $t_{m}^{\sharp}=\hat{x}^{\sharp}[m,:]=\sum_{k=1}^{K} c_{k} a\left(f_{m, k}, \phi_{m, k}\right)^{T}$ with
amplitude $c_{k}=\frac{\alpha_{k}}{\cos \theta_{k}}$, phase $\phi_{m, k}=-\frac{2 \pi \eta_{k} m}{W}$,
frequency $f_{n_{2}, k}=\frac{\tan \theta_{k} n_{2}-\eta_{k}}{W}, f_{m, k}=\frac{\tan \theta_{k} m}{W}$.
- $\left\|l_{n_{2}}^{\sharp}\right\|_{\mathcal{A}}=\sum_{k=1}^{K} c_{k}=\hat{x}^{\sharp}\left[0, n_{2}\right]$ by Theorem 1.
- $\left\|t_{m}^{\sharp}\right\|_{\mathcal{A}}=\operatorname{SDP}\left(t_{m}^{\sharp}\right) \leqslant \sum_{k=1}^{K} c_{k}$ by Proposition 1.

References

[1] K. Polisano et al., Convex super-resolution detection of lines in images, IEEE EUSIPCO, 2016.
[2] B. N. Bhaskar et al., Atomic norm denoising with applications to line spectral estimation, IEEE Transactions on signal processing, 2013.
[3] G. Tang et al., Compressed sensing off the grid, IEEE
Transactions on information theory, 2013.

Model of Noisy Blurred Lines

A sum of K perfect lines of infinite length, with angle $\theta_{k} \in(-\pi / 2, \pi / 2]$, amplitude $\alpha_{k}>0$, and offset $\eta_{k} \in \mathbb{R}$, is defined as the distribution
$x^{\sharp}\left(t_{1}, t_{2}\right)=\sum_{k=1}^{K} \alpha_{k} \delta\left(\cos \theta_{k}\left(t_{1}-\eta_{k}\right)+\sin \theta_{k} t_{2}\right)$.

The image observed b^{\sharp} of size $W \times H$ is obtained by the convolution of x^{\sharp} with a blur function ϕ, following by a sampling with unit step $\Delta: b^{\sharp}\left[n_{1}, n_{2}\right]=$ $\left(x^{\sharp} * \phi\right)\left(n_{1}, n_{2}\right)$. The point spread function ϕ is separable, that is $x^{\sharp} * \phi$ can be obtained by a first horizontal convolution $u^{\sharp}=x^{\sharp} * \varphi_{1}$, where φ_{1} is W periodic and bandlimited, that is its Fourier coefficients $\hat{g}[m]$ are zero for $|m| \geq(W-1) / 1=M+1$, so $\hat{u}^{\sharp}\left[m, n_{2}\right]=\hat{g}[m] \hat{x}^{\sharp}\left[m, n_{2}\right]$; and then a second vertical convolution with φ_{2}, such as the discrete filter $h[n]=\left(\varphi_{2} *\right.$ sinc $)[n]$ has compact support, gives $\hat{b}^{\sharp}[m,:]=\hat{u}^{\sharp}[m,:] * h=\hat{g}[m] \hat{x}[m,:] * h$, hence $\mathbf{A} \hat{x}^{\sharp}=\hat{b}^{\sharp}$
$\hat{x}^{\sharp}\left[m, n_{2}\right]=\sum_{k=1}^{K} \frac{\alpha_{k}}{\cos \theta_{k}} e^{j 2 \pi\left(\tan \theta_{k} n_{2}-\eta_{k}\right) m / W}$.

Super-Resolution and Regularization of Lines

The problem can be rewritten in this way:

$$
\tilde{X}=\underset{X \in \mathcal{H}}{\arg \min }\left\{F(X)+G(X)+\sum_{i=0}^{N-1} H_{i}\left(L_{i}(X)\right)\right\}
$$

with $F(X)=\frac{1}{2}\|\mathbf{H} \hat{x}-y\|_{F}^{2}, X=(\hat{x}, q), \nabla F$ a $\beta-$ Lipschitz gradient, a proximable indicator $G=\iota_{\mathcal{B}}$ where \mathcal{B} are the two first boundary constraints, and $N=M+1+H_{S}$ linear composite terms, where $H_{i}=\iota_{\mathcal{C}}$ with \mathcal{C} the cone of semidefinite positive matrices, and $L_{i} \in\left\{L_{m}^{(1)}, L_{n_{2}}^{(2)}\right\}$, defined by $L_{m}^{(1)}(X)=$ $\mathbf{T}_{H_{S}}^{\prime}(\hat{x}[m,:], q[m,:])$ and $L_{n_{2}}^{(2)}(X)=\mathbf{T}_{M+1}\left(\hat{x}\left[:, n_{2}\right]\right)$. L denotes the concatenation of the L_{i} operators.

Let $\tau>0$ and $\sigma>0$ such that $\frac{1}{\tau}-\sigma\|\mathbf{L}\|^{2} \geqslant \frac{\beta}{2}$.
Algorithm: Primal-dual splitting method [Condat]
Input: The blurred and noisy data image y Output: \tilde{x} solution of the optimization problem 1: Initialize all primal and dual variables to zero 2: for $n=1$ to Number of iterations do

$$
X_{n+1}=\operatorname{prox}_{\tau G}\left(X_{n}-\tau \nabla F\left(X_{n}\right)-\tau \sum_{i} L_{i}^{*} \xi_{i, n}\right)
$$

$$
\text { for } i=0 \text { to } N-1 \text { do }
$$

$$
\xi_{i, n+1}=\operatorname{prox}_{\sigma H_{i}^{*}}\left(\xi_{i, n}+\sigma L_{i}\left(2 X_{n+1}-X_{n}\right)\right)
$$

end for

7: end for

Spectral Estimation by a Prony-Like Method

Let be $d_{k} \in \mathbb{C}, f_{k} \in[-1 / 2,1 / 2), \zeta_{k}=e^{j 2 \pi f_{k}}$ and
Procedure for retrieving the line parameters

$$
z_{i}=\sum_{k=1}^{K} d_{k}\left(e^{j 2 \pi f_{k}}\right)^{i}, \quad \forall i=0, \ldots,|I|-1
$$

The annihilating polynomial filter is defined by: $H(\zeta)=\prod_{l=1}^{K}\left(\zeta-\zeta_{l}\right)=\sum_{l=0}^{K} h_{l} \zeta^{K-l}$ with $h_{0}=1$,

$$
\sum_{l=0}^{K} h_{l} z_{r-l}=\sum_{k=1}^{K} d_{k} \zeta_{k}^{r-K} \underbrace{\left(\sum_{l=0}^{K} h_{l} \zeta_{k}^{K-l}\right)}_{H\left(\zeta_{k}\right)=0}=0
$$

$\mathbf{P}_{K}(z) h=\left(\begin{array}{ccc}z_{K} & \cdots & z_{0} \\ \vdots & \ddots & \vdots \\ z_{|I|-1} & \cdots & z_{|I|-K-1}\end{array}\right)\left(\begin{array}{c}h_{0} \\ \vdots \\ h_{K}\end{array}\right)=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)$
(1) From $\mathbf{P}_{K}(z)$, compute h by a SVD. Form H whose roots give access to the frequencies f_{k}.
(2) Since $z=\mathbf{U} d$ with $\mathbf{U}=\left(a\left(f_{1}\right), \cdots, a\left(f_{K}\right)\right)$, find amplitudes by LS: $d=\left(\mathbf{U}^{\mathbf{H}} \mathbf{U}\right)^{-1} \mathbf{U}^{\mathbf{H}} z$.
(1) For each column $\tilde{x}[m,:]$ compute $\left\{\tilde{f}_{m, k}\right\}_{k}$ by (1) (2) For each column $\tilde{x}[m,:]$ compute $\left\{\tilde{d}_{m, k}\right\}_{k}$ by (2) (3) $\left\{f_{m, k}\right\}_{m}=\left\{\frac{\tan \theta_{k} m}{W}\right\}_{m}$ lin. regression $\rightarrow\left\{\tilde{\theta}_{k}\right\}$ (4) $\tilde{\alpha}_{m, k}=\left|\tilde{d}_{m, k}\right| \cos \left(\tilde{\theta}_{k}\right)$ and $\left\{\alpha_{k}\right\}_{k}=\mathbb{E}\left[\left\{\tilde{\alpha}_{m, k}\right\}_{m}\right]$ (5) $\tilde{d}_{m, k} /\left|\tilde{d}_{m, k}\right|=\left(e^{-j 2 \pi \frac{\eta_{k}}{W}}\right)^{m} \rightarrow\left\{\eta_{k}\right\}_{k}$ by (1)

This procedure enables to estimate the line parameters from the solution \tilde{x} of the optimization problem:

