R. Ghanem and P. Spanos, Stochastic finite elements : a spectral approach, 1991.
DOI : 10.1007/978-1-4612-3094-6

H. G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.12-16, pp.12-16, 2005.
DOI : 10.1016/j.cma.2004.05.027

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Moës, M. Cloirec, P. Cartraud, and J. Remacle, A computational approach to handle complex microstructure geometries, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.28-30, pp.3163-3177, 2003.
DOI : 10.1016/S0045-7825(03)00346-3

N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, vol.46, issue.1, pp.131-150, 1999.
DOI : 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A

A. Nouy, F. Schoefs, and N. Moës, X-SFEM, a computational technique based on X-FEM to deal with random shapes, Revue europ??enne de m??canique num??rique, vol.16, issue.2, 2007.
DOI : 10.3166/remn.16.277-293

URL : https://hal.archives-ouvertes.fr/hal-00368060

J. Sethian, Level Set Methods and Fast Marching Methods : Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 1999.

C. Soize and R. Ghanem, Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure, SIAM Journal on Scientific Computing, vol.26, issue.2, pp.395-410, 2004.
DOI : 10.1137/S1064827503424505

URL : https://hal.archives-ouvertes.fr/hal-00686211

N. Sukumar, D. Chopp, N. Moës, and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite-element method, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.46-47, pp.6183-6200, 2001.
DOI : 10.1016/S0045-7825(01)00215-8

URL : https://hal.archives-ouvertes.fr/hal-01007065