K. Akiyama, K. Matsuzaki, and H. Hayashi, Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi, Nature, vol.108, issue.7043, pp.824-827, 2005.
DOI : 10.1016/j.pbi.2004.05.011

C. Balzergue, V. Puech-pag-es, G. Rochange, S. Puech-pages, V. Becard et al., The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events, Journal of Experimental Botany, vol.62, issue.3, pp.1049-1060, 2011.
DOI : 10.1093/jxb/erq335

C. Bassa, I. Mila, M. Bouzayen, and C. Audran-delalande, Phenotypes Associated with Down-Regulation of Sl-IAA27 Support Functional Diversity Among Aux/IAA Family Members in Tomato, Plant and Cell Physiology, vol.53, issue.9, pp.1583-1595, 2012.
DOI : 10.1093/pcp/pcs101

URL : https://hal.archives-ouvertes.fr/hal-00834949

A. Besserer, G. Becard, A. Jauneau, C. Roux, and N. Sejalon-delmas, GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus Gigaspora rosea by Boosting Its Energy Metabolism, PLANT PHYSIOLOGY, vol.148, issue.1, pp.402-413, 2008.
DOI : 10.1104/pp.108.121400

A. Besserer, V. Puech-pag-es, P. Kiefer, V. Gomez-roldan, A. Jauneau et al., Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria, PLoS Biology, vol.49, issue.7, p.226, 2006.
DOI : 10.1371/journal.pbio.0040226.sv004

URL : http://doi.org/10.1371/journal.pbio.0040226

H. Bouwmeester, R. Matusova, S. Zhongkui, and M. Beale, Secondary metabolite signalling in host???parasitic plant interactions, Current Opinion in Plant Biology, vol.6, issue.4, pp.358-364, 2003.
DOI : 10.1016/S1369-5266(03)00065-7

S. Chaabouni, B. Jones, C. Delalande, H. Wang, Z. Li et al., Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth, Journal of Experimental Botany, vol.60, issue.4, pp.1349-1362, 2009.
DOI : 10.1093/jxb/erp009

S. Chaabouni, A. Latch-e, J. Pech, and B. Mondher, Tomato Aux/IAA3 and HOOKLESS are important actors of the interplay between auxin and ethylene during apical hook formation, Plant Signaling & Behavior, vol.4, pp.559-560, 2009.

R. Challis, J. Hepworth, C. Mouchel, R. Waites, and O. Leyser, A Role for MORE AXILLARY GROWTH1 (MAX1) in Evolutionary Diversity in Strigolactone Signaling Upstream of MAX2, PLANT PHYSIOLOGY, vol.161, issue.4, pp.1885-1902, 2013.
DOI : 10.1104/pp.112.211383

E. Chapman and E. M. , Mechanism of Auxin-Regulated Gene Expression in Plants, Annual Review of Genetics, vol.43, issue.1, pp.265-285, 2009.
DOI : 10.1146/annurev-genet-102108-134148

P. Delaux, G. Combier, and J. , NSP1 is a component of the Myc signaling pathway, New Phytologist, vol.15, issue.1, pp.59-65, 2013.
DOI : 10.1111/nph.12340

W. Deng, F. Yan, M. Liu, X. Wang, and Z. Li, Down-regulation of SlIAA15 in tomato altered stem xylem development and production of volatile compounds in leaf exudates, Plant Signaling & Behavior, vol.7, issue.8, pp.911-913, 2012.
DOI : 10.1105/tpc.017954

W. Deng, Y. Yang, Z. Ren, C. Audran-delalande, I. Mila et al., The tomato SlIAA15 is involved in trichome formation and axillary shoot development, New Phytologist, vol.40, issue.2, pp.379-390, 2012.
DOI : 10.1111/j.1469-8137.2012.04053.x

N. Dharmasiri, S. Dharmasiri, D. Weijers, E. Lechner, M. Yamada et al., Plant Development Is Regulated by a Family of Auxin Receptor F Box Proteins, Developmental Cell, vol.9, issue.1, pp.109-119, 2005.
DOI : 10.1016/j.devcel.2005.05.014

E. Dor, K. Yoneyama, S. Wininger, Y. Kapulnik, K. Yoneyama et al., spp., Phytopathology, vol.101, issue.2, pp.213-222, 2011.
DOI : 10.1094/PHYTO-07-10-0184

I. D?-orr, A. Staack, and R. Kollmann, Resistance of Helianthus to Orobanche histological and cytological studies, Biology and management of Orobanche. Proceedings of the Third International Workshop on Orobanche and related Striga research. Amsterdam, the Netherlands: Royal Tropical Institute, pp.276-289, 1994.

S. Echevarr-ia-zome~-no, P. Erez-de-luque, A. Jorr-in, J. Maldonado, and A. , Pre-haustorial resistance to broomrape (Orobanche cumana) in sunflower (Helianthus annuus): cytochemical studies, Journal of Experimental Botany, vol.57, issue.15, pp.4189-4200, 2006.
DOI : 10.1093/jxb/erl195

M. Etemadi, C. Gutjahr, J. Couzigou, M. Zouine, D. Lauressergues et al., Auxin Perception Is Required for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis, Plant Physiology, vol.166, issue.1, pp.281-292, 2014.
DOI : 10.1104/pp.114.246595

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149713

E. Foo, Auxin influences strigolactones in pea mycorrhizal symbiosis, Journal of Plant Physiology, vol.170, issue.5, pp.523-528, 2013.
DOI : 10.1016/j.jplph.2012.11.002

URL : http://ecite.utas.edu.au/84538/2/Auxin%20influences%20strigolactones.pdf

E. Foo, J. Ross, W. Jones, and J. Reid, Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins, Annals of Botany, vol.111, issue.5, pp.769-779, 2013.
DOI : 10.1093/aob/mct041

A. Fusconi, Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?, Annals of Botany, vol.113, issue.1, pp.19-33, 2014.
DOI : 10.1093/aob/mct258

A. Genre, M. Chabaud, C. Balzergue, V. Puech-pag-es, M. Novero et al., roots and their production is enhanced by strigolactone, New Phytologist, vol.144, issue.1, pp.190-202, 2013.
DOI : 10.1111/nph.12146

A. Genre, S. Ivanov, M. Fendrych, A. Faccio, V. Zarsky et al., Multiple Exocytotic Markers Accumulate at the Sites of Perifungal Membrane Biogenesis in Arbuscular Mycorrhizas, Plant and Cell Physiology, vol.53, issue.1, pp.244-255, 2012.
DOI : 10.1093/pcp/pcr170

M. Giovannetti and B. Mosse, AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS, New Phytologist, vol.5, issue.3, pp.489-500, 1980.
DOI : 10.1111/j.1469-8137.1980.tb04556.x

V. Gomez-roldan, S. Fermas, P. Brewer, V. Puech-pag-es, E. Dun et al., Strigolactone inhibition of shoot branching, Nature, vol.29, issue.7210, pp.189-194, 2008.
DOI : 10.1038/nature07271

C. Gutjahr, Phytohormone signaling in arbuscular mycorhiza development, Current Opinion in Plant Biology, vol.20, pp.26-34, 2014.
DOI : 10.1016/j.pbi.2014.04.003

G. Hagen and T. Guilfoyle, Auxin-responsive gene expression: genes, promoters and regulatory factors, Plant Molecular Biology, vol.49, pp.373-385, 2002.
DOI : 10.1007/978-94-010-0377-3_9

G. Hagen, G. Martin, Y. Li, and T. Guilfoyle, Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants, Plant Molecular Biology, vol.9, issue.3, pp.567-579, 1991.
DOI : 10.1007/BF00040658

M. Hanlon and C. Coenen, Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation, New Phytologist, vol.52, issue.3, pp.701-709, 2011.
DOI : 10.1111/j.1469-8137.2010.03567.x

M. Harrison, G. Dewbre, and J. Liu, A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi, THE PLANT CELL ONLINE, vol.14, issue.10, pp.2413-2429, 2002.
DOI : 10.1105/tpc.004861

B. Hause, C. Mrosk, S. Isayenkov, and D. Strack, Jasmonates in arbuscular mycorrhizal interactions, Phytochemistry, vol.68, issue.1, pp.101-110, 2007.
DOI : 10.1016/j.phytochem.2006.09.025

M. Herrera-medina, S. Steinkellner, H. Vierheilig, O. Bote, J. Garc et al., Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza, New Phytologist, vol.91, issue.3, pp.554-564, 2007.
DOI : 10.1111/j.1365-3040.1988.tb01158.x

H. Imaizumi-anraku, N. Takeda, M. Charpentier, J. Perry, H. Miwa et al., Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots, Nature, vol.10, issue.7025, pp.527-531, 2005.
DOI : 10.1073/pnas.94.26.14948

S. Kepinski, O. Leyser, N. Dharmasiri, S. Dharmasiri, and E. M. , The Arabidopsis F-box protein TIR1 is an auxin receptor, Nature, vol.99, issue.7041, pp.446-451, 2005.
DOI : 10.1101/gr.980303

W. Kohlen, T. Charnikhova, M. Lammers, T. Pollina, P. Haider et al., ) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis, New Phytologist, vol.225, issue.Suppl 1, pp.535-547, 2012.
DOI : 10.1111/j.1469-8137.2012.04265.x

URL : http://hdl.handle.net/11858/00-001M-0000-000E-7232-1

H. Koltai, Cellular events of strigolactone signalling and their crosstalk with auxin in roots: Fig. 1., Journal of Experimental Botany, vol.66, issue.16, pp.4855-4861, 2015.
DOI : 10.1093/jxb/erv178

V. Lendzemo, T. Kuyper, and H. Vierheilig, Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi, Mycorrhiza, vol.64, issue.5, pp.287-294, 2009.
DOI : 10.1007/s00572-009-0235-4

O. Leyser, Dynamic Integration of Auxin Transport and Signalling, Current Biology, vol.16, issue.11, pp.424-433, 2006.
DOI : 10.1016/j.cub.2006.05.014

W. Liu, W. Kohlen, A. Lillo, R. Op-den-camp, S. Ivanov et al., Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2, The Plant Cell, vol.23, issue.10, pp.3853-3865, 2011.
DOI : 10.1105/tpc.111.089771

L. , J. Charnikhova, T. , F. , I. Bouwmeester et al., Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato, Journal of Plant Physiology, vol.168, pp.294-297, 2011.

L. , J. , F. , I. Garc-ia, J. Berrio et al., Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis, Plant Science, vol.230, pp.59-69, 2014.

R. De-los-santos, H. Vierheilig, J. Ocampo, and J. Garrido, Altered pattern of arbuscular mycorrhizal formation in tomato ethylene mutants, Plant Signaling & Behavior, vol.55, issue.5, pp.755-758, 2011.
DOI : 10.1111/j.1365-313X.2007.03170.x

F. Maillet, V. Poinsot, O. Andr-e, V. Puech-pag-es, A. Haouy et al., Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, vol.64, issue.7328, pp.58-63, 2011.
DOI : 10.1038/nature09622

URL : https://hal.archives-ouvertes.fr/hal-00577122

R. Nagy, V. Karandashov, V. Chague, K. Kalinkevich, M. Tamasloukht et al., The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species, The Plant Journal, vol.1, issue.2, pp.236-250, 2005.
DOI : 10.1111/j.1365-313X.2005.02364.x

S. Peng, D. Eissenstat, J. Graham, K. Williams, and N. Hodge, Growth Depression in Mycorrhizal Citrus at High-Phosphorus Supply (Analysis of Carbon Costs), Plant Physiology, vol.101, issue.3, pp.1063-1071, 1993.
DOI : 10.1104/pp.101.3.1063

L. Su, C. Bassa, C. Audran, I. Mila, C. Cheniclet et al., The Auxin Sl-IAA17 Transcriptional Repressor Controls Fruit Size Via the Regulation of Endoreduplication-Related Cell Expansion, Plant and Cell Physiology, vol.55, issue.11, pp.1969-1976, 2014.
DOI : 10.1093/pcp/pcu124

URL : https://hal.archives-ouvertes.fr/hal-01335934

X. Tan, L. Calderon-villalobos, M. Sharon, C. Zheng, C. Robinson et al., Mechanism of auxin perception by the TIR1 ubiquitin ligase, Nature, vol.62, issue.7136, pp.640-645, 2007.
DOI : 10.1038/nature05731

A. Trouvelot, J. Kough, and V. Gianinazzi-pearson, Mesure du taux de mycorhization VA d'un systeme radiculaire Recherche de methodes d'estimation ayant une signification fonctionnelle Physiological and genetical aspects of mycorrhizae, Proceedings of the 1st European Symposium on mycorrhizae Institut National de la Recherche Agronomique, pp.217-221, 1986.

T. Ulmasov, J. Murfett, G. Hagen, and T. Guilfoyle, Aux/IAA Proteins Repress Expression of Reporter Genes Containing Natural and Highly Active Synthetic Auxin Response Elements, THE PLANT CELL ONLINE, vol.9, issue.11, pp.1963-1971, 1997.
DOI : 10.1105/tpc.9.11.1963

A. Van-zeijl, W. Liu, T. Xiao, W. Kohlen, W. Yang et al., The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis, BMC Plant Biology, vol.155, issue.1, p.260, 2015.
DOI : 10.1186/s12870-015-0651-x

H. Vierheilig, A. Coughlan, U. Wyss, P. , and Y. , Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi, Applied and Environmental Microbiology, vol.64, pp.5004-5007, 1998.

J. Vogel, M. Walter, P. Giavalisco, A. Lytovchenko, W. Kohlen et al., SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato, The Plant Journal, vol.48, issue.2, pp.300-311, 2010.
DOI : 10.1111/j.1365-313X.2009.04056.x

M. Voisin, P. Duff-e, E. Perez, F. Hadjou, P. Delavault et al., Host specificity and genetic diversity of the parasitic plant Phelipanche ramosa on winter oilseed rape in France, 13th International Rapeseed Congress, pp.1-4, 2011.

H. Wang, N. Schauer, B. Usadel, P. Frasse, M. Zouine et al., Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling, THE PLANT CELL ONLINE, vol.21, issue.5, pp.1428-1452, 2009.
DOI : 10.1105/tpc.108.060830

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700536

K. Yoneyama, A. Awad, X. Xie, K. Yoneyama, and Y. Takeuchi, Strigolactones as Germination Stimulants for Root Parasitic Plants, Plant and Cell Physiology, vol.51, issue.7, pp.1095-1103, 2010.
DOI : 10.1093/pcp/pcq055

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900819