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We show that graphene-dielectric multilayers give rise to an unusual tunability of the Casimir-Lifshitz
forces and allow to easily realize completely different regimes within the same structure. Concerning
thermal effects, graphene-dielectric multilayers take advantage of the anomalous features predicted for
isolated suspended graphene sheets, even though they are considerably affected by the presence of the
dielectric substrate. They can also achieve the anomalous nonmonotonic thermal metallic behavior by
increasing the graphene sheets density and their Fermi level. In addition to a strong thermal modulation
occurring at short separations, in a region where the force is orders of magnitude larger than the one
occurring at large distances, the force can be also adjusted by varying the number of graphene layers as well
as their Fermi levels, allowing for relevant force amplifications which can be tuned, very rapidly and in situ,
by simply applying an electric potential. Our predictions can be relevant for both Casimir experiments and
micro- or nanoelectromechanical systems and in new devices for technological applications.
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The Casimir-Lifshitz pressure (CLP) occurring between
closely spaced bodies is a mechanical manifestation of both
quantum vacuum and thermal fluctuations of radiation and
matter fields [1–3]. It is the object of large theoretical and
experimental interest [4] for both its fundamental and
applicative implications. In particular, on the applicative
side, such a force has a clear impact in micro- and nano
(electro)mechanical systems (MEMS and NEMS, respec-
tively), where it plays a dominant role at small separations
[5]. For parallel planar structures separated by a distance d,
the CLP can be expressed as [2]
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where p ¼ TE, TM stands for the two light polarizations
(transverse electric and transverse magnetic) and qz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω=cÞ2 −Q2

p
and RðiÞ

p ðQ;ω; TÞ are the z component of
the vacuum wave vector and the reflection coefficient of
bodies i ¼ 1, 2, respectively. The integral is over the
parallel-plane wave vector component Q.
Equation (1) shows that the CLP can be tuned by

modifying the bodies’ reflection coefficients or by varying
the temperature T. In practice, thermal manipulation has
been always considered as noneffective: At short separa-
tions (d ≤ 1 μm), where the CLP is stronger, thermal
effects are very small compared to vacuum (T ¼ 0 K)
ones. Remarkably, a thermal metal anomaly (TMA) has
been predicted: For metals at intermediate separations

(≃1 μm), contrary to dielectrics, the CLP decreases with
an increasing temperature [6]. Thermal effects dominate
only at very large separations d ≫ λT ¼ ℏc=ðkBTÞ (≈7 μm
at room temperature), where the force reduces to the
Lifshitz limit [for metals PLif ¼ −kBTζð3Þ=ð8πd3Þ [3]]
and is already extremely weak and very hard to measure
[7–11]. For this reason, almost all research efforts focused
on changing the reflection coefficients by using more
complex geometries (recently, large interest has been
devoted to gratings [12–18]) and materials (like topological
insulators [19], metamaterials [20], switchable mirrors [21],
and others [22]).
Recently, the availability of graphene, with its peculiar

transport and optical properties [23], stimulated both
theoretical [24–30] and experimental [31] investigations
of the CLP involving graphene sheets, with applications in
nanophotonics and optomechanical systems [32].
Remarkably, the CLP between two suspended parallel

graphene sheets has been predicted [25] to reach the

FIG. 1. Graphene-based multilayer scheme.
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Lifshitz metallic behavior PLif at very small separations
d ≫ χT ¼ ℏvF=ðkBTÞ ≪ λT , since the Fermi velocity is
much smaller than c (vF ≃ c=300). A natural question,
then, is to what extent this striking thermal graphene
anomaly (TGA) persists in typical realistic Casimir exper-
imental conditions, which require the presence of substrates
[11,31] in a mixed graphene-dielectric configuration. This
issue is also crucial for technological applications in
MEMS and NEMS and in microoptomechanical devices,
calling for a specific investigation due to the nonadditive
nature of the CLP.
In this Letter, by simply introducing a dielectric substrate

(we consider a general parallel-plane graphene-dielectric
multilayer configuration),we propose a settingwhich allows
several important modulations of the CLP and opens to
genuine technological applications. Furthermore, it allows
compatibility with existing Casimir experiments and natu-
rally guarantees the flatness and parallelism assumed in the
model [25].
First, we show that the TGA strongly deviates from the

ideal suspended-graphene configuration, still remaining
large enough to thermally modulate the force at separations
∼200 nm, where the CLP is strong and typically measured.
Second, we show that, by increasing the density of the
graphene layers in the dielectric host, we recover the TMA
once the graphene is doped. Finally, we show that the same
system allows an easy, strong, and rapid CLP electrostatic
tunability in situ by modulating the graphene conductivity
with an applied voltage to the graphene sheets.
All these effects are particularly relevant for experi-

ments, since they allow one, contrary to almost all known
configurations, to dynamically change the force in the same
experimental device without changing the geometry or
materials.
Physical system and model.—We consider the interac-

tion between two identical parallel graphene multilayers
imbedded in two dielectric slabs separated by a distance d
(see Fig. 1). Each slab has a thickness L and is loaded with
Ng equally spaced graphene sheets dividing the slab into
N ¼ Ng − 1 layers. The dielectric layers are characterized
by their permittivity εðωÞ, and the graphene sheets by their
conductivity σðω; T; μFÞ (where μF is the Fermi level).
While Eq. (1) is useful for understanding the roles of the

different parameters, for computational efficiency we
would rather use its frequency complex-rotated version
(ω ¼ iξn) [2]
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where the prime on the sum means that the n ¼ 0 term is
divided by 2, ξn ¼ 2πnkBT=ℏ are the Matsubara frequen-

cies, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξn=cÞ2 þQ2

p
, and RðiÞ

p ðQ; iξn; TÞ are the
frequency-rotated reflection coefficients. In order to

compute the graphene multilayer reflection coefficients,
we implemented the scattering matrix algorithm (see [33]
for details) because of its outstanding stability with respect
to all the parameters of the problem.
In the following, we will consider SiO2 slabs with

permittivity εðωÞ ¼ εRðωÞ þ iεIðωÞ taken from Ref. [34],
which at the Matsubara frequencies becomes εðiξnÞ ¼ 1þ
ð2=πÞ R∞

0 ½ωεIðωÞ=ω2 þ ξ2n�dω [35]. The graphene sheets
conductivity σðωÞ ¼ σRðωÞ þ iσIðωÞ is the sum of the
intraband and interband contributions [36] (see also
[37–39]) and at Matsubara frequencies takes the form [40]

σðiξnÞ ¼ σintraðiξnÞ þ σinterðiξnÞ;
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Here, σ0 ¼ e2=ð4ℏÞ, e is the electron charge, the Fermi
level μF (typically between 0 and 1 eV) can be modulated
by applying a bias voltage or by chemical doping,
GðxÞ ¼ fð−xÞ − fðxÞ ¼ sinhðx=kBTÞ=½coshðμF=kBTÞ þ
coshðx=kBTÞ� with fðxÞ ¼ fexp½ðx − μFÞ=ðkBTÞ� þ 1g−1,
and Γ accounts for relaxation mechanisms (we use
Γ ¼ 1013 rad=s).
Thermal and electrostatic modulation.—We first focus

on the influence of the temperature variation for graphene
multilayer structures in Fig. 2, where we evaluate, as a
function of the separation distance, the relative variation
of the CLP for two different temperatures, namely,
T ¼ 200 K and T ¼ 400 K, with respect to the pressure
at T ¼ 300 K used as a reference. In Fig. 2(a), we compare
the CLP between two dielectric SiO2 slabs, two parallel
suspended graphene sheets, and two identical graphene-
dielectric multilayers with N ¼ 1 (hence, with Ng ¼ 2

graphene sheets each) and with N ¼ 10.
We see that the CLP in graphene-dielectric multilayers

strongly deviates from that in the suspended parallel
graphene-graphene configuration, whose almost constant
behavior in Fig. 2(a) reflects the rapid TGA saturation of
the CLP to the Lifshitz limit [25]. It is worth noticing that,
in the case of slabs, to reach a 10% relative variation, very
large separations are required (d≃ 2 μm for both T ¼
200 K and T ¼ 400 K), where the total CLP is already
negligible, making elusive the measurement of thermal
effects. This appears clearly in Fig. 3, where at d ¼ 2 μm
the slab-slab CLP is ≃ − 10−8 nN=μm2. Remarkably,
for graphene-dielectric multilayers (for both N ¼ 1
and N ¼ 10), a 10% relative variation is already reached
at d≃ 200 nm. At this distance (which is typical in
Casimir experiments), the CLP for graphene multilayers
is ≃ − 10−4 nN=μm2 (see Fig. 3), which is 4 orders of
magnitude larger than for the simple slab configurations.
This precisely opens to the possibility of measuring thermal
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effects, especially at small distances, and to thermally
manipulate the force within standard Casimir experimental
setups.
In Fig. 2(b), we compare the CLP for two gold slabs [41]

and two N ¼ 100 graphene-dielectric multilayers with
μ ¼ 0 eV and μ ¼ 1 eV. We clearly see that for
μ ¼ 0 eV the relative thermal variation for N ¼ 100 is
weaker than for N ¼ 1 and N ¼ 10 [Fig. 2(a)], showing
that by increasing N the relative thermal effect decreases,
while its absolute value increases [see Fig. 4(d)] and that
bothN ¼ 1 andN ¼ 10 are almost equally good candidates
to measure the CLP relative thermal variations. For μ ¼
1 eV it becomes nonmonotonic, acquiring the TMA behav-
ior shown by gold. In that case, the collective behavior of the
2D embedded graphene sheets makes the graphene-dielec-
tric multilayer structure equivalent to an effective 3D metal.
Let us now focus on other ways to tune the CLPwhich are

offered by such structures. In the first line in Fig. 4, we show
howa change in the Fermi level μF, which can be done in situ

and dynamically, affects the CLP strength. We fix the
number of layers [N ¼ 10, 50, and 100 for Figs. 4(a),
4(b), and 4(c), respectively] and calculate, as a function of
the distance, the relative variation of the CLP at increasing
values of μF, by normalizing with respect to the pressure
at μF ¼ 0 eV.
We see that, already with N ¼ 10, the relative variation

can reach 20% [Fig. 4(a)], and for N ¼ 100 a remarkable

(a)

(b)

FIG. 2. Relative variation of P when T varies [T ¼ 200 K (blue
lines) and T ¼ 400 K (red lines)]. The CLP at T ¼ 300 K is
taken as a reference, and L ¼ 1 μm. (a) Slabs (SS, dashed
curves), suspended graphene sheets (GG, dotted curves), and
graphene-dielectric multilayers with μF ¼ 0 eV (N ¼ 1, solid
curve; N ¼ 10, solid curve with diamonds). (b) Gold (MM,
dashed curves) and graphene-dielectric multilayers with N ¼ 100
(μ ¼ 0 eV, dotted curve; μ ¼ 1 eV, solid curve).

FIG. 3. CLP for L ¼ 1 μm and T ¼ 300 K, for different
structures: SiO2 slabs (red solid line), graphene multilayers with
N ¼ 10 and μF ¼ 0 eV (blue solid line), and the Lifshitz limit for
metals PLif (black dashed line).

FIG. 4. Relative variation of the CLP as a function of the
distance between the two multilayers, for T ¼ 300 K and
L ¼ 1 μm. (a)–(c) We plot ΔμF ¼ j½PðμFÞ − PðμF ¼ 0Þ�=
PðμF ¼ 0Þj for μF ¼ 0.2, 0.4, 0.6, 0.8, and 1 eV, with N ¼ 10
(a), N ¼ 50 (b), and N ¼ 100 (c). (d)–(f) We plot ΔN ¼
j½PðNÞ − PðN ¼ 1Þ�=PðN ¼ 1Þj for N ¼ 10, 20, 50, and 100,
with μF ¼ 0 eV (d), μF ¼ 0.4 eV (e), and μF ¼ 1 eV (f).
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variation > 50% can be obtained by continuously tuning
μF up to 1 eV [Fig. 4(c)]. In the second line in Fig. 4, we
show how much the CLP depends on N. We fix the
Fermi level [μF ¼ 0, 0.4, and 1 eV for Figs. 4(d), 4(e),
and 4(f), respectively] and calculate the relative variation
of the CLP at increasing values of N, normalizing with
respect to the pressure with N ¼ 1. We see that for μF ¼
1 eV the relative variation for N ¼ 100 goes up to ≃80%
[Fig. 4(f)]. It is worth stressing that in Fig. 4, by varying
N or μF, the maximum variations are obtained at
distances around 0.6 μm and become negligible at a
few microns, when the asymptotic universal regime PLif
is reached.
In order to have more insight on the origin of the large

CLP modulation (Figs. 2 and 3) with respect to the
temperature T, the Fermi level μF, and the number of
layers N, we first look, in Fig. 5, at the graphene
conductivity σðiξÞ as a function of T and μF. After, in
Fig. 6, we see how σðiξÞ, jointly with the SiO2 permittivity
εðiξÞ and the variation of N, affect the multilayer reflection

coefficient RðiÞ
p ðQ; iξn; TÞ.

The large thermal variation observed in Fig. 2 derives from
strong thermal variations of σðiξÞ [see Fig. 5(b)], which
directly affect the multilayer TM reflectivity jRj2 at normal
incidence (Q ¼ 0) as shown in Fig. 6(a). In Figs. 5(b) and
5(c), we see the interplay between T and μF encoded in
Eq. (3), which implies that a larger relative thermal variation
is obtained for μF ¼ 0 eV (for larger doping, rapidly
μF ≫ kBT ≃ 10−2 eV, implying no thermal conductivity
effects). This explains the partial recovering of the TGA
for μF ¼ 0 eV in Figs. 2(a) and 2(b) and, on the other side,
explains that the TMA recovered in Fig. 2(b) for μF ¼ 1 eV
is not due to thermal features of the graphene sheets. In
Fig. 6(a), we see that the thermal variation of σðiξÞ
affects the reflectivity mainly at frequencies smaller than
≃1015 rad= sec [which are the dominating frequencies in the

Matsubara sum (2)], while at larger frequencies the reflec-
tivity is influenced only by the thermal-independent SiO2

dielectric permittivity εðiξÞ given in Fig. 5(a).
It is worth stressing that jRðQ ¼ 0Þj2 in Fig. 6 is useful to

understand the behavior of the CLP in general, where several
Matsubara terms ξn contribute to the sum (2). This is not the
case for the large separation limit d → ∞, for which one
should consider only the firstMatsubara term ξ0 ¼ 0 rad= sec
and after perform the integration over Q. In that case, the
reflectivities reduce to themetallic limits jRTMðξ0Þj2 ¼ 1 and
jRTEðξ0Þj2 ¼ 0 for any Q ≠ 0 (the Q → 0 and ω → 0 limit
orderingmatters). In Fig. 2, theCLP forN ¼ 1 andN ¼ 10 at
intermediate distancesd≃ 1 μm is not saturated by the single
ξ0 term (which would be enough for the suspended graphene
configuration—dotted line) due to the mixed graphene-
dielectric configuration.
Let us now analyze the effect of varying both μF and N

on jRj2: We see in Fig. 6(b) that adding and increasing the
number of graphene sheets strongly modifies the reflec-
tivity in a large range of frequencies ≲1015 rad= sec,
approaching more and more an ideal metallic behavior
jRj2 ¼ 1 (while jRj2 ≃ 0 at small frequencies for simple
slabs). Analogous variations of jRj2 are shown if, at fixed
values of N, the Fermi level increases, as shown in
Fig. 6(c). The reflectivity increases considerably by
increasing N and/or μF, which confers to the graphene
multilayer a tunable metallic behavior and explains the
strong modulations of the CLP observed in Fig. 4.
Conclusions.—We analyze, in terms of the graphene

conductivity and of the structure reflection coefficients,
both individual and collective effects of changing the
temperature, the Fermi level, and the number of graphene
sheets on the CLP between graphene-dielectric multilayer
structures. We exploit the fact that by changing T, μ, and N

FIG. 5. SiO2 permittivity (a) and graphene conductivity (b),(c)
at imaginary frequencies.

FIG. 6. TM reflectivity jRj2 at normal incidence (Q ¼ 0) at
imaginary frequencies and for L ¼ 1 μm. (a) N ¼ 10,
μF ¼ 0 eV, and T varies. (b) T ¼ 300 K, μF ¼ 0.4 eV, and N
varies. (c) T ¼ 300 K, N ¼ 1, and μF varies.
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it is possible to modulate the graphene (semi)metallic
features and, hence, the reflectivity of the structure. For
these structures, we found that the CLP can strongly
depend on the temperature, implying a dramatic change
with respect to both single suspended graphene sheets
(more difficult to realize) and dielectric slabs and allowing
the measurement of thermal effects at small separations.
Relevant similarities with normal 3D metals are found in
some conditions. We also show that a consistent modula-
tion of the CLP can be obtained by varying the number of
graphene sheets in the structure or the Fermi level. This
latter variation can be done by simply changing the
electrostatic potential of the graphene sheets and allows
for a fast in situ tuning of the interaction, which is of clear
experimental interest. A natural direct extension of this
study is to consider nonordered graphene-dielectric multi-
layer structures in order to further sculpt the CLP. These
findings offer several opportunities for both experimental
Casimir investigations and for more applicative studies in
micro- and nanomechanical devices.

We acknowledge Florian Bigourdan and George Hanson
for useful discussions.
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coming from Eq. (1) of Ref. [36]. We neglect here the
nonlocal effects which can be included by using a more
general wave-vector-dependent anisotropic conductivity
σijðω; kÞ [37]. These effects are negligible at the dominant
optical frequencies (relevant at typical separations) and do
not affect the recovery of the universal large distance law

(given by the zero frequency contribution), making reason-
able the approximation σijðω; kÞ → σðω; k ¼ 0Þ in the CLP
integral.

[41] For gold, we used the Drude permittivity εðωÞ ¼ 1 − ω2
p=

ðω2 þ iωγÞ, with ℏωp ¼ 9 eV and ℏγ ¼ 35 meV.
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