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Abstract: Simulations and phantom measurements are used to evaluate the ability of time-

domain diffuse optical tomography using Mellin-Laplace transforms to quantify the 

absorption perturbation of centimetric objects immersed at depth 1-2 cm in turbid media. We 

find that the estimated absorption coefficient varies almost linearly with the absorption 

change in the range of 0-0.15 cm
1

 but is underestimated by a factor that depends on the 

inclusion depth (~2, 3 and 6 for depths of 1.0, 1.5 and 2.0 cm respectively). For larger 

absorption changes, the variation is sublinear with ~20% decrease for δμa = 0.37 cm
1

. By 

contrast, constraining the absorption change to the actual volume of the inclusion may 

considerably improve the accuracy and linearity of the reconstructed absorption. 

©2016 Optical Society of America 

OCIS codes: (170.6920) Time-resolved imaging; (110.6960) Tomography; (100.3010) Image reconstruction 

techniques; (110.0113) Imaging through turbid media; (030.5260) Photon counting; (230.5160) Photodetectors. 
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1. Introduction 

In recent years, the possibility to characterize in-vivo and non-invasively the optical 

properties (absorption and scattering) of biological samples has attracted a great interest in the 

field of medical imaging. Pathologies like breast cancer [1,2] or osteoarticular diseases [3] are 

related to localized changes of optical properties due to increase of vascularization or 

collagen content. 

Another important field is brain imaging. In this case, a map of oxy- and deoxy-

hemoglobin concentration is fundamental for the diagnosis of injuries like ischemia [4], 

hemorrhage [5] and for functional imaging during a variety of tasks [6]. Recently, we have 

also proposed the monitoring of autologous tissues (“flap”) in reconstruction surgery using 

diffuse optical techniques. The vascularization of these tissues is fundamental and a fast 

postoperative control is important for the success of the operation [7]. 

A common approach to obtain a full 3D map of the optical properties in biological media 

at depths of a few cm is based on the combination of a set of light sources and detectors 

placed on the surface of the medium. By measuring the light collected at the detector d due to 

the light injected at the source s, it is possible by the help of sensitivity matrices to recover the 

distribution of optical properties inside the sample. This technique is called Diffuse Optical 

Tomography (DOT) [8]. 

Different modalities for DOT have been proposed in literature that differentiate on the 

kind of light modulation: continuous-wave (CW) is based on CW light, time-resolved (TR) is 

based on short-pulsed light, frequency-domain (FD) is based on amplitude and phase 

modulated illumination [8]. Among these it is possible to further add spatial modulation both 

on the source and detection leading to the approach of structured-light illumination and 

compressive sensing [9,10]. 

The TR approach has the important feature that time-of-flight of detected photons directly 

encodes space and, in a reflectance geometry where sources and detectors are placed on the 

same side, this means that time encodes photon penetration depth [11]. Moreover, by 

selecting temporal gates of the time-of-flight distribution, it is possible to directly select 

photons probing deeper or shallower regions of the tissue [12,13]. DOT is intrinsically an ill-

posed problem and usually needs some kind of regularization that can affect the accuracy of 

the reconstructed optical properties [14]. This side effect leads to low-pass filtered images 

consequently affecting the estimate of absolute chromophore concentrations like hemoglobin, 

water, lipid and collagen [15]. As an example, the collagen concentration in breast lesions is 

fundamental for the correct estimation of breast cancer risk, and can also help lesion 

diagnostics [16]. The lack of accuracy is a limit for the reliability and diagnostic capability of 

DOT. 

Most of DOT literature show reconstructed images of optical properties, where the quality 

reconstruction is typically evaluated as image contrast or contrast-to-noise ratio [17,18] and in 

terms of spatial resolution. Few works address the quantification capabilities of DOT that is 

the issue of accurate reconstruction of the optical properties. Works using FD-DOT in 2D 

have shown errors up to 15% for heterogeneities of 2.5 cm size having absorption coefficient 

μa = 0.1 cm
1

 over a background of μa = 0.05 cm
1

 [19]. Errors of 25% have been also 

reported for smaller inhomogeneities (1.7 cm size) with almost the same background and 

absorption perturbation [20]. In 3D FD-DOT an error of 36% has been shown for a small 

cylindrical object (0.8 cm diameter, 1.0 cm height) with almost the same optical properties of 

the above mentioned cases [21]. A more systematic work about the quantification problem in 

3D FD-DOT has been reported for objects with size ranging from 1 to 2 cm and absorption 

perturbations up to 0.2 cm
1

. The error achieved, using a 3 steps reconstruction algorithm, 
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was 27% for the 1 cm heterogeneity and 5.5% for the 2 cm one [15]. All these mentioned 

studies are based on FD-DOT on a cylindrical phantom with a 180 degrees arrangement of 

sources and detector at different planes, whereas no results are available for purely reflectance 

geometries, which is the most used for biomedical applications. 

Despite these specific contributions, we still lack a broad consensus on shared protocols 

for performance assessments of DOT systems and algorithms. Such procedures and metrics 

would greatly help development of new instruments and reconstruction tools against objective 

figures, permit grading of different systems, facilitate more sound comparison of clinical 

results, grant quality control in clinical studies and pave the way to industrial standards. All 

these aspects are fundamental for a more mature growth and uptake of DOT in clinics, and to 

improve soundness and consistency of research. 

In the more general field of diffuse optical imaging and spectroscopy, some successful 

attempts have been pursued in the last ten years to reach consensus in large inter-laboratory 

studies for performance assessment of diffuse optics instruments. We can quote, for instance, 

the MEDPHOT Protocol [22] for diffuse spectroscopy of homogeneous media, the BIP 

Protocol [23] for basic performance assessment of time-resolved systems, the NEUROPT 

Protocol [24] dealing with imaging in heterogeneous diffusive media. This latter is the one 

closest to the specificities of DOT, although it addresses more in general imaging systems and 

not only fully 3D tomographs. 

More specifically, the NEUROPT Protocol assesses 3 key features that are sensitivity to 

localized small absorption changes (contrast and contrast-to-noise ratio), spatial resolution 

(depth selectivity and lateral resolution) and quantification of absorption changes (accuracy 

and linearity). In particular, accuracy and linearity are important because they are directly 

related to the ability of quantifying chromophore concentrations and their variations. 

The idea of this paper is to make a step towards the translation of this performance 

assessment in TR-DOT with particular attention to the quantification problem. 

In previous studies, we have already reported results on the sensitivity and spatial 

resolution of TR-DOT using a short source-detector separation scanning scheme [25], 

demonstrating that the adoption of a fast-gated single-photon avalanche diode (SPAD) has 

enabled the possibility to detect photons with a long time-of-flight, increasing the sensitivity 

at depths higher than 2.0 cm. Further, the use of a fast-gated SPAD allowed us to 

experimentally implement the null-distance approach with advantages in term of contrast, 

spatial resolution and signal throughput [26,27]. 

In this paper, we specifically address the issue of quantification in a TR-DOT realization 

in reflectance geometry. In particular, we study the effect of the source-detector separation, of 

the optical properties of the perturbation, and of its depth. The perturbations consist of black 

totally absorbing objects that – as it has been recently demonstrated [28] – are representative 

of a variety of perturbations with different shape and optical properties. The study is restricted 

to the TR approach in reflectance geometry and to purely absorbing perturbations. Phantom 

measurements are compared to simulations to disentangle physics or model contributions 

from influence of instrumentation. The reconstruction algorithm is based on the Mellin-

Laplace transform (MLT) which permits to extract information in depth by time windowing 

the TR measurements [29]. 

Besides providing systematic results for the specific TR-DOT approach considered, this 

paper adds contributions in view of a future inter-laboratory consensus study on performance 

assessment of DOT instruments, which could either evolve from the NEUROPT Protocol or 

start as a new initiative. 

The paper is organized as follows: Section 2 defines the problem, describes the 

experimental setup, the phantom preparation and the reconstruction algorithm. Section 3 

defines the figures used to assess the quantitation performances. Section 4 displays results for 

linearity and accuracy both on simulation and phantom experiments. Section 5 summarizes 
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the key findings of the study, addresses the specific factors that affect TR-DOT 

quantification, and discusses the implication for specific clinical problems. 

2. Material and methods 

2.1 Geometry 

Time-domain DOT acquisitions in reflectance geometry were carried out with a horizontal 

scan at the surface of the phantom with a probe composed of one source and two detectors. 

The scan geometry was designed to obtain 30 source positions at steps of 0.75 cm with the 

inclusion decentered compared to the scan area to better appreciate reliability of our system to 

reconstruct and detect precisely in lateral (x and y) directions (Fig. 1(a)). We also investigated 

the influence of source detector distances by testing two probes in L configuration with one 

source (yellow circle) and two detectors at 1.5 cm (blue crosses) or 3.0 cm (green crosses) 

interfiber distances, as represented in Fig. 1(a). The center of inclusion was set at different 

depths z below the surface of the liquid phantom. The optodes were placed on the surface of 

the phantom and were held in three holes drilled in a black PVC plank. To avoid the 

waveguiding effect, the liquid phantom touched the black PVC holder and we removed 

possible air bubbles by gently dragging a finger to sweeping away bubbles. For the 

reconstruction, we used a mesh with a step of 0.2 cm (small grey dots in Fig. 1(a)). 

The reconstruction is based on the analysis of the differences between the signal recorded 

on the inhomogeneous sample containing an inclusion and the signal recorded on a reference 

(homogenous medium). Such reference measurements have been acquired on an x-line scan 

far from the inclusion (at x = 4 cm). 

 

Fig. 1. (a) Geometry of the scan x-y of both source-detector distances. The source (yellow 
circle) scan the yellow area. The grey disc corresponds to the position of the inclusion (x = 0 

cm. y = 0 cm). The crosses are the detection positions of the couple of detector optical fibers at 

1.5 cm (blue) and 3.0 cm (green) distance from the source. Each black dot is separated by 0.75 
cm in both directions. (b) Instrumental setup with the phantom containing an absorbing object 

(detailed in section 2.2). 

2.2 Experimental setup 

The experimental setup (whose schematic is reported in Fig. 1(b)) was based on a laser source 

providing pulses at 820 nm with a repetition rate of 40 MHz and 26 ps pulse width (Fianium 

Ltd, London). Light emitted from the laser was first attenuated by means of a Variable 

Optical Attenuator (VOA) operating from 0 up to 12 OD (Optical Density) and then injected 
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into the medium via a 200 μm core optical fiber (NA = 0.22; 2.45 m long), as reported in Fig. 

1(b). 

Photons reemitted from the sample were collected in two different positions by means of 

two fibers (1 mm core; 0.37 NA; 2.45 m long) posed at 1.5 or 3.0 cm distance from the 

source, depending on the experiment. Photons harvested from each detection fiber were then 

focused onto a silicon fast-gated SPAD [30] (active area diameter: 100 μm) using a pair of 

aspheric lenses. 

When a photon hits the active area of the detector, an avalanche is triggered and the fast-

gated SPAD module provides a pulse that is fed as a “start” to the TCSPC board (SPC-130, 

Becker&Hickl GmBH, Berlin, Germany). The “stop” pulse was sent to both TCSPC boards 

by the laser synchronization signal. This signal was also sent to the two fast gated modules to 

synchronize the opening of the gate (temporal width: 5 ns). In order to enable the detection at 

different delays from the laser injection into the medium, the signal for the gate opening was 

delayed by means of a home-made programmable delayer based on transmission lines 

(minimum delay step: 25 ps). 

The fast-gated modules were also used in the so-called “free-running” (i.e. non-gated) 

mode thus acquiring the full distribution of time-of-flight of re-emitted photons. In this case, 

the gate was opened before the first photon is reemitted and it was closed after the last 

photons are collected. 

Both for gated and non-gated mode, at each interfiber distance, we performed the scan 

(following the geometry explained in the previous paragraph) using 4 different totally 

absorbing objects. The inclusions were posed at a depth (defined as the distance between the 

surface and the centroid of the inclusion) of 1.0, 1.5 and 2.0 cm. In case of gated 

measurements, for each scanning point and for each delay at which the SPAD is gated-ON, 

curves were acquired for 5 s (5 repetitions of 1 s). As required by the fast-gated acquisition 

technique (see Ref [31]. for details), to exploit the gating capability to collect more late 

photons, there is the need to increase the power injected into the phantom when increasing the 

gate delay. In order to guarantee a significant increase in the number of late photons when 

increasing the gate delay, we decided to proceed in the following way for the selection of the 

number of gates. We started with a first gating window opened about 2 ns before the 

reflectance curve peak in order to include it in the acquisition window, and we set a proper 

attenuation using the VOA to fit the single-photon counting statistics (i.e. the photon counting 

rate was kept below 1.5 Mcps, which corresponds to about 4% of the laser pulsing rate [32]) . 

Then, we increased the laser power injected into the phantom reducing the VOA attenuation 

by a factor of 5. In this situation, of course, the count rate was well above the single-photon 

statistical limit for TCSPC. In order to fit such limit, we then increased the delay at which the 

SPAD was gated-ON, thus rejecting early photons and fitting again the single-photon 

counting statistics. Afterwards, we repeated the procedure per each delay, up to when the 

maximum available power is injected into the sample. For 3.0 cm interfiber distance, we 

needed 3 delays while for the 1.5 cm 5 delays were necessary due to the increased number of 

photon reaching the detector all delays when using small source-detector separations, as 

explained in Ref [26]. Therefore, the acquisition times were 15 s and 25 s, respectively. In 

order to have the same acquisition time as for gated measurements, the collection time of 

photon of the non-gated acquisitions at one scanning point was 15 s and 25 s for 3.0 cm and 

1.5 cm interfiber distances respectively. 

2.3 Phantoms 

For the realization of realistic absorption perturbations typical of biomedical situations, we 

followed the Equivalent Black Volume (EBV) approach, that is the use of a set of totally 

absorbing objects with different volumes. It was demonstrated, both with Monte Carlo 

simulations and phantom measurements [28], that it is possible to group different absorption 

perturbations of different size (volume) and intensity (absorption perturbations) in 
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equivalence classes, whose members produce the very same effect on time-domain photon 

distributions over different geometries (e.g. reflectance and transmittance), source-detector 

distances, and background optical properties. For each class, a totally absorbing object with a 

given volume can be identified, yielding the same effects of all perturbations belonging to the 

same class. In practice, the complex combination of different possible absorption 

perturbations can be modelled by phantoms using a set of small black PVC cylinders with 

increasing volumes. Table 1 shows the dimensions and volumes (EBV) of the objects used in 

the present study together with their equivalent absorption perturbation (δμa
vol

) calculated 

over a 1 cm
3
 volume sphere. These equivalent absorption perturbations were determined in 

[28] and correspond to the δμa that a spherical perturbation of 1 cm
3
 volume must have to 

produce the same perturbation of the totally absorbing object. This correspondence was 

validated as far as the object is not too close to the source or detector (e.g., depth < 1 cm). 

Table 1. Summary of the 4 totally absorbing cylinders of various sizes with diameters, 

heights, corresponding volumes and the equivalent absorption perturbations in a region 

corresponding of a sphere of 1 cm3 [28]. 

Inclusion Size 1 Size 2 Size 3 Size 4 

Diameter [cm] 0.32 0.4 0.5 0.68 

Height [cm] 0.32 0.4 0.5 0.68 

Volume [.103 .cm3] 25 50 100 250 

Equivalent δμa
vol [cm1] 0.056 0.087 0.15 0.37 

The inclusions were hold in a large tank (volume 29 × 29 × 14 cm
3
) through a thin wire 

hold on the bottom of the tank and painted in white to reduce interference. The tank was filled 

with a water suspension of Intralipid and black ink (Higgins), yielding an absorption 

coefficient (μa) equal to 0.07 cm ̵1 and a reduced scattering coefficient (μs
'
) equal to 12 cm

1
 at 

820 nm. We followed a standard recipe coming from the work of Spinelli et al [33]. 

2.4 Simulation process 

To better understand the physical mechanisms of TR-DOT concerning the quantification in 

depth, we generated simulated measurements similar to those in the experiments (same 

geometric configuration). From the mathematical point of view, supposing that source and 

detector can be seen as points, a TR measurement is the time convolution of the Green's 

functions (which are intrinsic responses of the diffusive medium to a Dirac point source) and 

the instrumental response function (IRF) of the experimental setup. The simulation procedure 

involves first to convolve the experimental IRF of the SPAD with the Green's functions 

generated using the diffusion equation solved with our MLT approach described below. Then 

each curve was multiplied by a scaling factor in order to get the desired photon integral. 

Finally, Poisson noise comparable with experimental measurements was added. The inclusion 

was simulated by a 1 cm
3
 sphere with a δμa given by the Equivalence Relation reported in 

Table 1. Geometry, background optical properties, and reconstruction processing matched 

those used for the phantom measurements. 

2.5 Reconstruction technique 

Forward model 

Light propagation in the diffusive medium was modeled using the time-domain diffusion 

equation: 
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where c is the speed of light in the medium depending of the optical index fixed at n = 1.4. 

D( r ) is the spatial distribution of the diffusion coefficient which is defined by '1/ (3 ( ))s r  

with ' ( )s r  the reduced scattering coefficient. μa( r ) is the spatial distribution of the 

absorption coefficients. ( , )S r t  is the spatial and temporal distribution of the light source. 

( , )r t  is the photon density. To take into account the boundary constraints of the surface, we 

apply the modified Robin boundary condition. For the reconstruction, we will only take 

( )a r  as the unknown and ' ( )s r  is chosen constant and equal to 12 cm
1

. 

Green’s function, noted G ( r , r ',t), is defined as the solution of Eq. (1) at position r ’ for 

a Dirac source at r . We also note Gs( r ,t) = G(
sr , r ,t), Gd( r ,t) = G(

dr , r ,t) and Gsd(t) = 

G(
sr ,

dr ,t) some subsets of the Green’s function where s and d are indexes for sources and 

detectors. 

When a small perturbation on the absorption δμa( r ) is applied, the Green’s functions of 

Eq. (1) are known to vary according to Eq. (2): 
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where ‘*’ is the time convolution product. 

Inverse problem 

Our reconstruction method is based on the work by Puszka et al [34] which showed that by 

combining perturbed ( )B

sdM t  and reference ( )A

sdM t measurements acquired on two 

configurations without (A) and with the inclusion (B) with the known Green’s functions (G
A
) 

of configuration (A) and the estimation at iteration k of the Green’s functions (G
B(k)

) of 

configuration (B), we obtain an equation which links measurements to the update δμa to be 

applied to the unknown absorption map (μa
(k + 1)

 = μa
(k)

 + δμa
(k)

): 
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 (3) 

The advantage of such an equation is that it does not require the knowledge of the IRF of 

the acquisition system. 

Discretization of the problem 

To numerically solve the problems (forward problem, i.e. the determination of Green’s 

function and inverse problems, i.e. the μa update computation), discretizations in time and 

space are applied. Spatial discretization is obtained by using the finite volume method (FVM) 

which gives a finite partitioning in tetrahedra of the 8.0 × 6.6 × 3.6 cm
3
 medium with 24354 

nodes. The time discretization is obtained by using the MLTs as described in [29]. It permits 

to transform the continuous TR signals f(t) to a few coefficients as shown in the following: 

 

 (p,n) (p,n)

( )

0

MLT f(t) f

( )
( )

!

n
ptpt

f t e dt
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 (4) 

The parameter n (integer) is the order of the transform (growing from 0 to N, here N being 

fixed to 20) and p (a positive real number) is the analysis precision set here to 3 ns
1

, meaning 
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that 3 coefficients are extracted per nanosecond. The MLT, which performs windowings on 

TR signal, is suitable to extract pieces of information from late photons and, therefore, to 

improve the quality of reconstruction of deep layers of scattering media. The ability to detect 

an inclusion in depth was studied in Ref [34]. 

Update of the medium optical properties 

After the problem discretization, Eq. (3) is transformed as a matrix equation: 

 ( , )( ) ( , )( ) ( )

, ,

p n k p n k k

sd sd m a mm
Y W    (5) 

where W is the sensitivity matrix and m index of the volume of node. 

The 3D map of the absorption coefficient update is obtained by minimizing the weighted 

least squares criterion χ
2
 associated to Eq. (5) with a conjugated gradient method (5 

iterations). The formula below of χ
2
 is given in matrix form. 

 
22 ( )L Y WRX    (6) 

The L (Left preconditioning) matrix in Eq. (6) is a diagonal matrix filled with the inverse of 

standard deviation of the noise on Y, derived from an assumption of photon noise on the 

original measurements A

sdM and B

sdM . We also introduce an R (Right preconditioning) matrix 

to reexpress the problem on an adapted basis ([δμa = RX]). In the following, R is either used 

to attribute weight to voxels when it is a diagonal matrix. In this case, we set its elements Rmm 

to the square of the distance between the position of node m and the proximal source and 

detector locations to reinforce sensitivity in deep layers. In another case R can also force 

identical optical parameter per predefined region. R is then a “Dictionary matrix” whose 

columns gather voxels together into these predefined regions. 

Ten iterations for all the cases (forward model and optical parameters updates) are 

performed to get the final reconstructed µa. 

Constrained method 

By incorporating geometric constraints in the reconstruction, it was demonstrated in a review 

[35] that prior information in near-infrared spectroscopy (NIRS) maximizes the accuracy in 

recovery the expected optical parameters. The constrained method implemented here consists 

in using R as a Dictionary matrix to force the absorbing inclusion on the expected position of 

the equivalent volume (i.e. a sphere of 1 cm
3
). 

Because of the low resolution of DOT, one of the solutions is to do multimodal imaging 

and use a high resolution imaging like magnetic resonance imaging (MRI) to bring spatial 

information seen as a priori for DOT. Thus in this paper, we are exploring a priori spatial 

approach and see if the quantification can be improved with such an algorithm. 

3. Measuring the quantitation 

While the objectives assessment of sensitivity and spatial resolution in DOT have been 

addressed in many papers, and are related to the figures of contrast (C) or contrast-to-noise 

ratio (CNR) and to spatial localization and resolution, conversely the assessment of 

quantitation is less discussed. 

To be in agreement with the use of the EBV approach, we evaluate the reconstructed δμa
vol

 

integrated over a given volume because the maximum value δμa
max

 of the reconstructed 

absorption has non-physical meaning since it will depend on the effective volume of the 

perturbation. This approach is consistent with the findings of the EBV study. Since plenty of 

combinations of absorption changes and volumes yield the very same effect on the 

measurements, then it is not possible to assess δμa alone. Rather, we can estimate the 

equivalent δμa
vol

 corresponding to a given volume. It is not even simply the product of δμa and 
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volume that is retrieved since the Equivalence Class implies a non-linear relation. Clearly, 

these equivalence relations are in force only for small objects (e.g. volume  1 cm
3
) and are 

ultimately related to the poor spatial resolution of DOT [28]. 

In this paper, we quantified the absorption variation (δμa) in the DOT reconstruction by 

comparing the integral reconstructed δμa,i
vol

 over a volume of each absorbing object i 

according to δμa,i
true

 which is the expected variation. In our case, the integral reconstructed 

δμa,i
vol

 was calculated by taking the integral over the equivalence volume of the perturbation 

(i.e. a 1 cm
3
 sphere) and by subtracting the background absorption coefficient. The 

background absorption coefficient was determined by taking the mean in an area without 

perturbation of the inclusion. 

We evaluate the accuracy on the retrieval of δμa with a relative error ε defined as 

 
, ,

,

vol true

a i a i

i true

a i

 





  (7) 

we evaluate the linearity on the retrieval of δμa by fitting the dependence of δμa
vol

 vs. δμa
true

 

using a 2nd order polynomial and looking at the linear and non-linear terms. More precisely, 

we extract the 3 parameters a, b, c using the expression: 

 2y ax bx c    (8) 

where
vol

ay



 ,

true

ax



 , and -10.1cm    is a normalization factor to provide 

dimensionless coefficients. The linearity of the retrieval can be assessed considering the slope 

of the interpolating polynomial that is the first derivative of the previous expression: 

 2slope ax b   (9) 

thus, a  represents the non-linear distortion that must be referred to the b  value. The 

deviation from linearity can be expressed as: 

 
2a

NL x
b

   (10) 

which is the fractional deviation from a linear behavior over a spanned range of absorption 

of x . For example, referring to the numbers which will be identified in the Results session 

for z = 1 cm, a nonlinear coefficient 10%a   combined with 100%b   implies that a 

distortion from linearity (i.e. a relative decrease in slope) of 20%  is expected spanning an 

absorption range of 1x   (i.e. over a range of absorption change of 0.1 cm
1

). The linear 

coefficient b  should be as close as possible to 100% so as to reproduce the correct variation 

in δμa. For high values of NL, the slope must be evaluated for the effective x value. A lower 

value of b  – accompanied by a low non-linearity NL – indicates still a linear trend but with a 

reduced slope on the retrieved δμa. Obviously, for 0b   and 0NL  , the system is linear but 

absorption variations are so low that cannot possibly be detected. The coefficient c  displays 

the offset of the retrieval for 0x  , thus for a null absorption perturbation. The closeness of b  

to 100%, accompanied by a low a  and c  coefficients can be used as another measure of 

accuracy. 

Another important parameter of quantification in clinical diagnosis is precision. This 

parameter is typically addressed under the sensitivity framework, as contrast-to-noise ratio, 

which indicates how the detected perturbation stands out of noise. We have not studied this 

figure systematically for all combinations of δμa, z, ρ, and gated modality. Rather, we 

performed some overnight repeated scans for one inclusion and we obtained relative standard 

deviations less than 8% at different depths, which demonstrates a good stability of the 

quantified values. 

                                                                              Vol. 7, No. 10 | 1 Oct 2016 | BIOMEDICAL OPTICS EXPRESS 4355 



4. Results 

 

Fig. 2. Numerical and experimental 3D reconstruction absorption maps with non-gated SPADs 

at 3.0 cm source-detector distance represented in a vertical (z-y) and a horizontal (y-x) slices 

both passing through the expected center of the inclusion (x = 0, y = 0 and z = 1.0 cm). From 

top to bottom, the 4 inclusion sizes are shown (see Table 1 for equivalent δμa). The black 

circle corresponds to a 1 cm3 sphere and is centered on the expected position of the inclusion. 

The simulation and experimental results obtained with non-gated SPAD of the reconstructed 

3D absorption maps are displayed in Figs. 2 and 3 with two cut views along the transversal 

slice (z-y) at x = 0 and the horizontal slice (z-y) at the expected depth. The common colorbar 

for simulation and experiment shows the quantitative scale of the reconstructed absorption 

coefficient distribution. 

The absorption perturbation appears as a spot surrounded by a quite homogenous 

background whose μa is close to the expected value of 0.07 cm
1

 with less than 13.1% relative 

error. For all the maps, a good localization in x-y and in depth z with an accuracy better than 

0.2 cm is obtained. In Fig. 2, a gradual increase of the absolute absorption coefficient is 

observed from inclusion “size 1” (δμa = 0.056 cm
1

) to inclusion “size 4” (δμa = 0.37 cm
1

). 

The absorption values of the experimental results are slightly higher than in simulation. 

Figure 3 shows the effect of the depth on quantification. The reconstructed absorption of a 

given inclusion (“size 2” is shown here) decreases with the depth (1.0-1.5-2.0 cm). The 
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experimental and simulation 3D maps are comparable and follow the same trend. In both 

figures (Fig. 2 and Fig. 3), artefacts appear for high absorption inclusions (white hollows 

below and around the absorption spot) probably due to the L configuration of the probe 

affecting the reconstruction. With gated SPAD, we get the same remarks on the 3D 

reconstruction absorption maps (not shown). 

 

Fig. 3. Numerical and experimental 3D reconstruction absorption maps with non-gated SPADs 

at 3.0 cm source-detector distance represented in a vertical (z-y) and a horizontal (y-x) slices 

both passing through the expected center of the inclusion “size 2” (equivalent δμa = 0.087 

cm1). From top to bottom, the 3 depths are shown. The black circle corresponds to a 1 cm3 

sphere and is centered on the expected position of the inclusion (x = 0, y = 0 and given depth). 

Figure 4 synthesizes the quantified absorption variations δμa
vol

 from the 3D reconstruction 

absorption results for all the configurations: at 1.5 or 3.0 cm interfiber distance, with non-

gated or gated SPAD, for simulations and for experiments (dotted and continuous lines, 

respectively) at 1.0, 1.5 or 2.0 cm depth and for each inclusion. For example, the continuous 

and dotted brown curves in box “Non Gated” and “ρ = 3.0 cm” are absorption variations 

extracted from the 3D reconstruction maps of the absolute absorption distribution of Fig. 2. 

All the plots are increasing in accordance with the expected black curve. Concerning the 

linearity, the plots seem to be fairly linear up to δμa = 0.15 cm
1

 in all cases. The gated SPAD 

slightly improves the quantification for ρ = 1.5 cm. The shorter source-detector separation 

provided slightly better results in general. A possible reason for this is due to stricter photon 

confinement at the shorter as compared to a larger distance yielding a better contrast and thus 

a better quantification. We observe that the quantification decreases with depth and this effect 

is the same for both experiment and simulation data. This reinforces the reliability of the 

direct model based on the diffusion approximation. Only the experimental results with the 

inclusion “size 4” (δμa = 0.37 cm
1

) with ρ = 1.5 cm is far from the associated simulation 

which is possibly due to the limits of the conditions of EBV approach for short distances 
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(inclusion vs surface and source-detector couple) or to the higher complexity of 

measurements at a short ρ. 

 

Fig. 4. Overview of quantified plots of δμa
vol, the integral variation in absorption coefficient 

over a 1 cm3 spherical volume, in the different configurations: with small or large source-

detector distance (ρ) (columns), by using two non-gated or gated SPADs (rows), in simulation 

and experiment, at 1.0, 1.5 or 2.0 cm depth and with each inclusion. The black curves 
correspond to the expected values δμa of each inclusion. The dotted curves correspond to the 

simulation curves and the continuous curves correspond to the experimental curves. 

The accuracy is obtained only at 1.0 cm up to 0.15 cm
1

 with relative errors inferior to 

30% in the experiment (brown curves in Fig. 4). Results in simulation for deep inclusion are 

similar for 1.5 or 3.0 cm interfiber distance. The decrease of quantification with depth and for 

high absorptions may be due to the loss of resolution of the reconstruction with depth and the 

difficulties to get marked inclusions without smoothing of the reconstructed data. The current 

algorithm seems to have limits to reconstruct absorbing objects with high absorption variation 

above 0.2 cm
1

 but it is an acceptable absorption range for the target medical applications of 

diffuse optics imaging [16]. 

With the spatially constrained method (Fig. 5), the quantified plots are more linear and the 

reconstructed values of the absorption perturbation are much larger and closer to the expected 

ones for all depths. In simulation, we recover exact absorption of the background and 

inclusion for each depth, each mode and for both source-detector distances. With 3.0 cm 

interfiber distance, the experimental curves are linear with a small offset. For ρ = 1.5 cm, 

some problems of accuracy are visible for high absorption (δμa = 0.37 cm
1

). The constrained 

method which solves the depth-dependent decrease in retrieved absorption can amplify also 

errors or artefacts. The error of quantification could be in the high perturbation produced by 

the object. For short ρ this produces also a great contrast well beyond the small perturbation 

approximation. Thus, the error could derive by some failure of the model to reproduce 
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correctly large perturbations. By comparing the two modes, the gated mode gives slightly 

better accuracy for ρ = 1.5 cm than the non-gated mode but no difference is observed for ρ = 

3.0 cm. 

This method gives good perspectives for the use of TR-DOT to quantify though it still 

requires to know the size and position of the absorption perturbation (with another imaging 

modality for instance). By constraining the reconstruction on specific regions the dimension 

of the space of unknowns is reduced. Consequently, the problem of quantification is no more 

ill-posed as demonstrated by the important improvements of results in Fig. 5. 

 

Fig. 5. With constrained method, quantified plots of δμa in the different configurations: with 
small or large source-detector distance (ρ) (columns), by using two non-gated or gated SPADs 

(rows), in simulation and experiment, at 1.0, 1.5 or 2.0 cm depth and with each inclusion. The 

black curves correspond to the expected values δμa of each inclusion. The dotted curves 
correspond to the simulation curves and the continuous curves correspond to the experimental 

data. 

Figure 6 displays the percent of relative errors of δμa
vol

 (calculated with Eq. (7)) between 

the simulation and theory and between experiment and theory. The same is reported in Fig. 7 

but applying the constrained method. Using the standard code (Fig. 6), relative errors are 

increasing with depth and with absorption perturbations independently of the gating-modality 

and the source-detector distance both for phantom and numerical realizations. For example, 

we get with the inclusion “size 2” in experiment a relative error ε = 16% on average with a 

standard deviation σ = 3% at 1.0 cm depth and ε = 49% on average with a standard deviation 

of 4% at 1.5 cm depth. For inclusion “size 3” at 1.0 cm, we obtain ε = 28% with σ = 6%. 

Thanks to the constrained method (Fig. 7), we recover in simulations the exact absorption 

variations where the average ε = 0.2% going from 0 to 4% with σ = 1%. Relative errors of 

phantom experiments in Fig. 7 are almost all positives and for ρ = 3.0 cm, average and 

standard deviation (respectively 44% and 14%) of relative errors are lower in absolute and 
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less spreading than in Fig. 6 (respectively 53% and 22%) without the a priori approach. At 

the 3 depths, no significant difference is observed between non-gated and gated mode. 

 

Fig. 6. Relative errors in percent (%) of δμa
vol between (a) simulation and theory (Sim/Th) and 

(b) experiment and theory (Exp/Th) calculated with Eq. (7) for each reconstruction in each 
configuration (ρ = 1.5 or 3.0 cm and Non Gated (NG) or Gated (G) SPAD). Colors encode 

depth while the filling gated or not and the color intensity the ρ. 

To extract quantitative information on the linearity of the reconstruction, we report in 

Table 2 the coefficients of the polynomial fit of δμa
vol

 vs. δμa
true

 divided by a reference γ = 0.1 

cm
1

 as defined in Section 3. The slope and the NL term are estimated for x = 1 and Δx = 1, 

that is around γ = 0.1 cm
1

. For what concerns the simulations, we observe a general trend 

with respect to the depth z, substantially similar for both source-detector distances and for the 

gated and non-gated modalities. The slope is close to 50%, 30% and 15% for z = 1.0, 1.5, and 

2.0 cm respectively. In practical terms, all this means that compared to the ideal slope = 100% 

there is a z-dependent decrease in slope by a factor of 2, 3 and 6 for z = 1.0, 1.5, and 2.0 cm 

respectively. This is a strong effect, still not so huge to mask deep changes due to more 

superficial alterations. The NL coefficient accounts for the nonlinearity for increasing δμa
true

 

and is around 20%, at all depths. Thus, the non-linearity with the increased δμa
true

 is 

acceptable at least for absorption changes in the order of 0.1 cm
1

. The c coefficient that is the 

offset at δμa
true

 = 0 is substantially negligible (~5%) (Table 2). 
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Fig. 7. [Constrained method] Relative errors in percent (%) of δμa between (a) simulation and 
theory (Sim/Th) and (b) experiment and theory (Exp/Th) calculated with Eq. (7) for each 

reconstruction in each configuration (ρ = 1.5 or 3.0 cm and Non Gated (NG) or Gated (G) 

SPAD). Colors encode depth while the filling Gated or Not Gated and the color intensity the ρ. 

The coefficients (Table 2) related to the experiments are more scrambled, as expected, 

since only 4 absorption points affected by experimental noise are possibly not enough to get a 

robust 3-parameter fit. The general trend for ρ = 3.0 cm is substantially similar to what 

observed on simulations still with a higher non-linearity (more around 30%). For ρ = 1.5 cm 

there is more discrepancy with simulations, clearly due to noisy measurements particularly 

for the non-gated detector as observed in Fig. 4. Upon applying the gating, data are slightly 

more regular, in particular at the larger depth (z = 2.0 cm). 

Table 2. Coefficients of the polynomial fit of reconstructed a
vol vs. a

true as defined in 

Section 3 for Non Gated (NG) and Gated (G) SPAD modes. 

d
ep

th
 

ρ 
[cm] 

mode 

Simulation 

coefficients of the polynomial fit  

Experiment 

coefficients of the polynomial fit  

a b c 
NL 

(x=1) 

slope 

(x=1) 
a b c 

NL 

(x=1) 

slope 

(x=1) 

1
.0

 c
m

 

1.5 
NG -6% 64% 1% -18% 53% 0% 63% 25% -1% 62% 

G -6% 64% 1% -19% 52% 2% 47% 27% 9% 51% 

3.0 
NG -5% 56% 1% -16% 47% -11% 86% 4% -26% 63% 

G -4% 53% 3% -15% 45% -9% 79% 8% -24% 60% 

1
.5

 c
m

 

1.5 
NG -4% 35% 5% -22% 28% -10% 68% -1% -29% 48% 

G -4% 39% 2% -23% 30% -9% 56% 0% -31% 38% 

3.0 
NG -4% 36% 1% -20% 29% -6% 43% 11% -27% 32% 

G -4% 36% 3% -21% 28% -5% 42% 10% -26% 31% 

2
.0

 c
m

 

1.5 
NG -1% 14% 6% -12% 12% -1% 13% -6% -12% 11% 

G -2% 19% 3% -23% 15% -7% 37% -2% -39% 23% 

3.0 
NG -2% 20% 2% -21% 16% -4% 30% 4% -29% 21% 

G -2% 20% 3% -22% 16% -5% 33% 2% -30% 23% 

Table 3 displays the same parameters yet for the constrained method. On simulations the 

agreement is perfect with basically only b = 100% and all other terms negligible. This means 

that the knowledge of the exact location and size of the perturbation can completely cure the 

depth and absorption related decrease in the retrieved δμa. These results are substantially 

confirmed also on experiments at ρ = 3.0 cm. For ρ = 1.5 cm results are substantially altered 
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with a strong non-linearity and non-systematic alterations. It looks like measurements at ρ = 

1.5 cm are more critical, and the constrained method while fixing model-based inaccuracy, at 

the same time enhances any experimental artefacts. The gating does not help here. 

Table 3. [Constrained method] Coefficients of the polynomial fit of reconstructed δμa
vol 

vs. δμa
true as defined in Section 3 for Non Gated (NG) and Gated (G) SPAD modes. 

d
ep

th
 

ρ 

[cm] 
mode 

Simulation 

coefficients of the polynomial fit 

Experiment 

coefficients of the polynomial fit 

a b c 
NL 

(x=1) 

slope 
(x=1) 

a b c 
NL 

(x=1) 

slope 
(x=1) 

1
.0

 c
m

 1.5 
NG 0% 101% 0% 1% 100% 115% 139% 123% 166% 91% 

G 0% 101% 0% 0% 100% 59% 25% 71% 480% 93% 

3.0 
NG 0% 100% 0% 0% 100% 9% 152% 2% 12% 133% 

G 0% 100% 0% 0% 100% 9% 149% 2% 13% 130% 

1
.5

 c
m

 1.5 
NG 1% 105% 3% 2% 103% 101% 103% 118% 197% 99% 

G 0% 100% 0% 0% 101% 27% 56% 43% 96% 110% 

3.0 
NG 0% 100% 0% 0% 100% 7% 155% 3% 9% 142% 

G 0% 101% 0% 0% 100% 7% 154% 3% 9% 140% 

2
.0

 c
m

 

1.5 
NG 2% 94% 5% 5% 99% 76% 144% 177% 106% 9% 

G 0% 102% 1% 1% 101% 5% 111% 49% 8% 121% 

3.0 
NG 1% 97% 2% 2% 98% 9% 108% 34% 17% 126% 

G 0% 98% 1% 1% 99% 8% 112% 33% 13% 127% 

5. Discussion and conclusions 

In this paper, we have addressed the quantification of DOT using time-domain reflectance 

measurements and Mellin-Laplace analysis both on simulations and on phantoms. The issues 

of sensitivity (i.e., minimum detectable focal perturbation as a function of depth) and 

localization (i.e., correct retrieval of lateral and depth position of the perturbation) have 

already been addressed elsewhere [25–27] and results reported here basically confirm those 

findings. Rather, this paper is focused on the quantification of the value of the reconstructed 

absorption perturbation. 

Five main conclusions can be drawn from the results: 

1) The main parameter affecting the correct reconstruction of δμa
vol

 is the depth z. A 

depth-dependence underestimation of the absorption is observed, with a reduction of 

the slope by a factor of 2, 3 and 6 for z = 1.0, 1.5 and 2.0 cm respectively. 

2) The reconstructed δμa
vol

 is fairly linear with respect to the increase in the real δμa with 

the absorption change in the range 0-0.15 cm
1

. For higher absorption changes, a 

deviation from linearity is observed with a non-linear coefficient NL of around 20% 

for a change in δμa = 0.1 cm
1

 (for a 1 cm
3
 volume). 

3) The adoption of a constrained approach, where the perturbation location and volume 

are fixed a priori, completely cures depth- and absorption- reduction in the 

reconstructed δμa on simulations, and greatly improves the outcome on experiments. 

4) The geometry (source-detector distance ρ), as well as the adoption of a fast gating 

approach to suppress early photons have marginal effects both on simulations and 

experiments. While substantial improvements in sensitivity and localization were 

demonstrated adopting a short-distance [27], the use of a fast-gated approach seems 

to provide only a minor advantage for the issue of quantification. A possible 

explanation results from worse photon confinement at the larger ρ as compared to a 

shorter distance yielding a deterioration of contrast and thus affecting the 

quantification. Conversely, results at the shorter ρ = 1.5 cm distance are more 

scrambled and more prone to experimental alterations. The fast-gating does not help 

here. 
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5) Phantom measurements substantially agree with simulations, at least for the general 

trends. Apart from some intrinsic higher variability, phantom measurements show a 

systematic small overestimation of the reconstructed δμa particularly for shallower 

inclusions. This effects has still to be fully explained and could well reside in some 

experimental inaccuracies, yet, the main conclusions of items 1, 2, 3, and 4 are fully 

confirmed by phantom measurements. 

Taken as a whole, these results are quite encouraging since they demonstrate that for a 

fixed depth – e.g. in brain functional imaging at the brain cortex – absorption linearity for 

limited yet realistic absorption changes is preserved. This feature is important for instance in 

functional brain imaging or in the study of brain connectivity, since it permits to follow 

temporal evolutions of the signal during the exercise, or to perform spectral analysis with low 

distortion. The depth-decrease in the reconstructed δμa is clearly present and must be taken 

into account when comparing absolute reconstruction at different depths – for e.g. 

characterization of breast lesions in reflectance geometry. Still, this effect is somewhat a 

constant trend, not much dependent on the other parameters such as the measurement 

geometry, and could be somehow taken into account. 

The origin of the depth- and absorption- related underestimation in δμa – already observed 

in different DOT papers – seems to be indeed due to the general spread of the reconstructed 

δμa – possibly due to the ill-posedness of the problem – leading to a dilution of the absorption 

change. Constraining the region of the optical perturbation – as recalled above at item #4 – 

completely solves this problem. In practical terms, this approach is not unrealistic, since can 

be implemented in co-registration with a different imaging modality yielding the size and 

location of the activation or suspect lesions. 

Clearly, the present paper is not exhaustive since it leaves untouched the effect of other 

parameters, such as the background optical properties, different source-detector arrangements, 

and other reconstruction schemes. Still, the aim here is more on one side to appreciate the 

effective quantification capability of a practical DOT system, and whether this is acceptable 

for the specific applications, on the other to contribute to the proposal of tests and figures-of-

merits to measure quantitation of δμa towards the proposition of shared protocols for 

objective performance assessment of DOT systems and algorithms. 
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