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Linear pantographic sheets: Asymptotic micro-macro models

identification

Claude Boutin, Francesco dell’Isola, Ivan Giorgio and Luca Placidi

Abstract

In this paper we consider linear pantographic sheets which in their natural configuration are con-
stituted by two orthogonal arrays of straight fibers interconnected by internal pivots. We introduce
a continuous model by means of a micro-macro identification procedure based on the asymptotic
homogenization method of discrete media. The rescaling of the mechanical properties and of the
deformation measures is calibrated in order to complies with the specific kinematics imposed by
the quasi-inextensibility of the fibers together with the large pantographic deformability. The ob-
tained high order continuum model shows interesting and exotic features, related to its extreme
anisotropy but also to the sub-coercivity of its deformation energy. Some first numerical simula-
tions are presented, showing that the model can account for experimental uncommon phenomena
occuring in pantographic sheets. The paper focuses on the precise analysis and the understanding
of the effective behaviour based on a well-calibration of the extension and bending phenomena
arising at the local scale. In an upcoming work the analysis will be extended to oblique arrays, to
some analytical solutions to proposed equations and to some further applications.

1 Introduction

In the study of generalised (multiscale or architectured) continua, two different and complementary
approaches can be identified.

1. A phenomenological approach can applied at the macroscopic scale: it gives a general framework
and in general it is based on variational principles and methods ([70, 90, 50, 53, 22, 41, 38, 64]);
however, using this approach it is not possible to make the influence of microstructure on macro-
phenomena to become explicit. In other words, a model is established but the microstructured
material to which it could be applied is unknown.

2. Another approach for which the scale change is made possible through an homogenization. This
method has been developed in a vast literature (see e.g. [13, 77, 11, 16, 9, 4, 2, 34, 35]) but
it has not been applied too often to the case of multiscale materials in which a great contrast
in physical properties appears at micro-level (see [88, 15]). Moreover homogenization methods
treat more particular cases and therefore they are not supposed to cover all situations. However
a careful homogenization technique gives the possibility to identify the micro-morphologies that
lead to the macroscopic behavior characteristic of generalized continua.

Recently the attention has been attracted by a particular class of microstructure: that which produces
so called pantographic continua ([37, 36, 34, 35, 51, 66]). This kind of structure is inspired by several
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natural examples, indeed, some biological tissues present fibers that can be modeled in a similar
way (see e.g. [68, 48, 58] for some possible applications). Their interest was initially related to
the possibility to prove the existence of purely second gradient continua [3], but subsequently their
practical applicability has been proven for woven fabrics and some ’ad hoc’ designed metamaterials
(see e.g. [30, 12, 47, 5, 37, 46]).
On the other hand some theoretical interesting results were presented by [26, 15, 16]. In these last
papers some suitable homogenization methods were introduced to study the dynamics of periodic beam
structures and other evidence has been presented concerning the need to introduce second gradient
continua when high contrast of mechanical properties is present at micro-level.

In all considered cases, directional (anisotropic) materials with high contrast in properties between
shear and extension are studied. This paper, differently to what done in [83], considers the case of
extensible fibers and gives a more solid foundation to and generalizes the heuristic results presented
in [82], based on an accurate analysis of the different and relative order of magnitude of involved
physical phenomena.

In this paper we will use a micro-macro asymptotic identification method and obtain the macro-
scopic equilibrium equations for pantographic lattices in the neighborhood of a reference configuration.
The analysis of obtained equation is started and some equilibrium problems are solved by means of
numerical simulations.

In a forthcoming paper we will treat the generalized case of reference configuration constituted by
two oblique arrays of straight beams, some semi-analytical solutions and some further application.

2 Hypotheses and notations

Let us consider a periodic pantograph network of fibers (which we also call pantographic lattice or
pantographic sheet) formed of two families of continuous fibers arranged perpendicularly and along the
axes x and y. The fibers oriented along x are identical, as well as those oriented along y. However, the
two families may differ from one another. These fibers are connected by perfect pivots, with an axis
perpendicular to the {x, y} plane. The fibers oriented along x are spaced periodically by the length
`y. Those oriented along y, are spaced by `x. This defines the rectangular mesh, which is constituted
by those two elements that are the portions of the orthogonal fibers that cross a pivot. Each pivot is
referenced by two integers nx and my, which are simply its discrete coordinates along the axes x and
y, respectively. We will model each segment of fiber between two consequent nodes as a beam. The
four beam elements connected to the pivot {nx,my} are denoted by [nx − 1, nx] and [nx, nx + 1] for
the two elements oriented along x , or by [my − 1,my] and [my,my + 1] for the two elements oriented
along y. The understanding of the reader is help by fig. 1.

The parameters of the beam elements are their Young modulus Ej , the area Aj of their
sections and the moments of inertia Ij of their sections, with j = x, y. The dimensions of the
sections

√
Aj are assumed small with respect to the lengths `j . Accordingly, the behavior of the

inter-pivot elements can be effectively modeled by the Euler beam model. It is further assumed
that the geometrical and the mechanical parameters of both types of beams are of the same order
of magnitude: to be more precise and in particular, the period is characterized by the length
` =

√
`x`y in such a way that O(`x) = O(`y) = `. We will need in the sequel to introduce also



Figure 1: Topology of the pantographic lattice. The pivots are equally distributed on the whole
sheet. The black points are indicating specific monitoring points during bias test experimentations.

the following dimensionless quantities `?x = `x/`; `
?
y = `y/` so that `?x`

?
y = 1 and O(`?x) = O(`?y) = O(1).

Note that the specificity of the adopted assumption of beam behaviour is that the length of the
arrays is not considered (i.e. the fibers are not treated as beams) but instead, this is the topology of
the pantographic lattice that leads to a local beam description.

We study in the {x, y} plane the quasi-static small deformations of the lattice in the neighborhood
of its initial equilibrium position where the lattice is periodic, having a rectangular period. It is also
assumed that the spatial variations of the deformation fields and/or of the placement fields occur at
large-scale and have a characteristic variation length L that is large compared to the size of period `:
in other words to have a relevant variation of the deformation fields the space variables must have an
increment larger relatively to `.

These considerations naturally introduce the small parameter to be used for specifying scale sep-
aration

ε = `/L� 1

The macroscopic description of the system, valid at the dominant order, is reached for ε→ 0.



3 Homogenization Method: multiscale asymptotic heuristic ap-
proach.

Let us construct the global behavior from the local behavior of beam elements connected by pivots. To
do this, the problem is first discretized exactly and then it is converted into a continuum macroscopic
formulation by an asymptotic homogenization procedure.
Using the balance laws of an Euler beam, the contact actions (normal and shear forces and moment)
at the ends of each beam element are explicitly expressed in terms of the kinematic variables (displace-
ments and rotations) evaluated at the same ends. The balance of each element is thereby assured.
We will consider the cases in which the beam elements between the nodes deform in a quasi-static
regime. In other words our treatment will be applicable when, in considered phenomena, there is a
(quasi-)instantaneous equilibrium, at the level of periodic cell, of the interconnected beams. Some-
times this assumption is referred to as: the assumption of local microscopic instantaneous equilibrium.
This approach is relevant when dealing with phenomena of slow time evolution.

As a consequence of the exact discretization, to specify the conditions of the global equilibrium
conditions, it is necessary and sufficient to focus on the equilibrium of each one of the pivots, which
will play the role of material points of the homogenized continuum. It is therefore expressed, in each
pivot, the balance of forces and moments applied by the four elements therein connected (belonging
to the two orthogonal fibers that intersect at each pivot). This gives an exact representation of
the original problem in a discrete form of finite difference type, the variables being the kinematic
variables and the actions, of each element, evaluated at the pivot-locations. One has to explicitly
remark that in the set of the aforementioned four elements one can distinguish two pairs (parallel in
the reference configuration) which are indeed part of the same fiber: moving from one to the other
elements belonging to the same fiber, the displacements and rotations are continuous (see figure 1,
x-fiber and y-fiber).

Remark also that the action of a pivot on the two continuous fibers which the pivot itself is
interconnecting is modeled here as concentrated (in a point) force and couple: of course, by action
and reaction principle, the action of the pivot on the fiber of one array is opposite to the action exerted
by the same pivot on the fiber of the other array.

The passage from the exact discrete formulation to the macroscopic continuous description, valid
at the dominant order, is performed as follows [17]. We assume that the overall behavior of the system
can be described by a set of macroscopic fields, the generic element of which is denoted by Q(x, y).

Discrete variables q(nx,my) at the pivots are considered as the values at these points of continuous
functions Q(x, y).

This procedure has been described in general already in the works by Piola [40] (he seems to us
to be among the first scientists having introduced such a heuristic method of homogenization (see
[36, 83])): however he applied it specifically only to the case of fluids.

We therefore set
q(nx,ny) = Q(xn, ym); xn = nx`x, ym = my`y

Consistent with the hypothesis of separation of scale, these continuous functions vary at large scale as
O(L). Consequently, the increments of the inter-pivot distance O(`) can be expressed by the Taylor
expansions of macroscopic fields. Thus, the finite difference of the discrete formulation is converted
into series by introducing successive gradients of the macroscopic functions. As the distances between



the pivots are constant due to the periodicity, the terms of such series are of the type, for example,
`kx∂

kQ/∂xk = O(`kx/L
k)O(Q) = εkO(Q), with a multiplication factor. They therefore involve the

orders of magnitude in powers of ε. As we are interested in situations where ε → 0, we need the
following specification for the consistency of the orders of magnitude, i.e. we need to represent the
functions Q(x, y) in the form of asymptotic expansions of the type:

Q(x, y) =
∞∑
k=0

εkQ(k)(x, y); O(Q(k)) = O(Q(0))

These asymptotic expansions are to be used in the equations of equilibrium expressed by means of
Taylor expansions. The dimensionless parameters that emerge from this formulation must be weighed
in power of ε to translate correctly the dominant mechanisms in the studied system [59, 14]. This
normalization of the balance equations preserves the same local physics during the transition to the
limit ε→ 0. Consequently, the macroscopic model, in the limit, preserves —at the dominant order—
the same local physics than that prevailing in the real system where the scale ratio `/L is taking small
but finite values.
After aforementioned normalization, we obtain a series of equilibrium conditions in terms of the
powers of ε, which may be solved term by term. The macroscopic description, at the dominant order,
is constituted by the first nontrivial differential system on the macroscopic variables.

4 Micro-Modeling of pantographic lattices

In the literature many attention has been paid to lattices of beams interconnected by clamping con-
straints or to trusses. The reader is referred to [73, 65, 75] and references there cited. However, the
existence of so called “floppy modes” at micro-level in the pantographic structures requires the most
attentive consideration. To be more precise: what we call a floppy mode, is a deformation of the
micro-structure to which is associated a vanishing energy (for more details see [3, 87] and references
there cited). An intuitive consequence of the existence of floppy modes is that for the effective medium
the standard condition of coerciveness is not verified and therefore this concept needs to be modified or
generalized. Actually one can decompose the space of deformations into a coercive subspace plus the
space of floppy modes and the role of boundary condition becomes more determinant in well-posedness
problems.

These microscopic floppy modes were exploited there to prove that, in general, the class of first
gradient continua (those introduced by Cauchy and usually considered in continuum mechanics, see e.g.
[33, 42]) is not sufficient to describe, at a macro-level, all conceivable physical systems. In particular,
when there is a high contrast (see [18, 77, 59, 16, 25]) in the physical properties at micro-level then it
may become necessary at macro level to introduce higher order continua (see [43, 39]).

The analysis which we present now adapts to the case of pantographic lattices the studies presented
in [15, 16, 59, 88] to take into account its behavior, which can be regarded as being somehow exotic.

We start by using the framework of local microscopic instantaneous equilibrium to formulate a
meso-level model where the lattice is described as a set of nodes (the pivots) interconnected by beams
element.



4.1 Characterization of the mechanical behavior of a beam element

Let the section of the considered straight (in the reference configuration) beam be A, its moment of
inertia being I, and let the material constituting it be elastic, isotropic and with Young’s modulus E.
We denote (referring them to the beam planar reference configuration) by v the axial displacement,
by w the transverse displacement, by N the normal force, by T the shear force and by M the bending
moment (we will be using the French convention for the orientation of axes). These contact actions
are defined as that of the part s < 0 on part s > 0, where s designates the abscissa along the axis of
the beam. Consider a portion of the beam between two points B and C spaced apart by a distance `
that is large enough compared with the size, i.e.

√
A, of the beam section. The Euler beam theory can

therefore be used. Accordingly, the rotation of the section is related to the transverse displacement
via the relation θ(s) = dw(s)

ds . The constitutive equations of the beam are the following:

N(s) = EA
dv

ds
; M(s) = −EI d2w

ds2
(1)

and, in the quasi-static regime, the equilibrium equations in differential form are expressed by:

dN

ds
= 0;

dT

ds
= 0;

dM

ds
+ T = 0 (2)

Suppose that for the point B (respectively C) the displacements and the rotation are vB, wB and
θB, ( respectively vC , wC and θC). The forces and moment at B and at C are determined using the
equations of beams. They are expressed as a function of the kinematic variables as follows

NB = NC =
EA

`
(vB − vC) (3)

TB = TC =
12EI

`3

(
wB − wC +

`

2
(θB + θC)

)
(4)

MB =
6EI

`2

(
wB − wC +

`

3
(2θB + θC)

)
(5)

MC = −6EI

`2

(
wB − wC +

`

3
(θB + 2θC)

)
(6)

Expressions of N and T,M involve the axial EA` and bending 12EI
`3

rigidities, respectively. The beams

slenderness hypothesis
√
A � ` implies that such rigidities differ significantly. In fact, considering

beams of regular section, say for instance rectangular section of length’s sides a and b with b = O(a) =
O(
√
A), then A = ab, I = ba3/12 and 12I/A = a2 = O(A), and consequently the rigidity ratio R is

R =
12EI

`3
`

EA
=

12I

`2A
= O(

A

`2
)� 1 (7)

This strong stiffness contrast plays an essential role in the functioning of the system. Thereafter we
take into account explicitly that the aspect ratio of the elements is

√
A/` = O(ε) which leads to:

R =
12EI

`3
`

EA
= O(ε2) (8)



4.2 Discrete kinematic variables and equilibrium at pivots

Because of the operating principle of an internal pivot, the ends of the four elements connected to it
undergo the same displacement ux (uy) along the axis x (y), but rotations of those elements belonging
to fibers with distinct orientations are not identical: the coinciding ends of the two elements oriented
along x (respectively y) undergo the same rotation θx (respectively θy). Thus, each pivot {nx,my} is
described by four kinematic variables ux(nx,my), uy(nx,my), θx(nx,my) and θy(nx,my).

The equilibrium at a pivot results:
(i) in the balances of force (exerted on the pivot) along x and y, and
(ii) in the continuity of the both moment fields arising in the beam elements oriented either along

x or along y.
These four equations expressed at the pivot {nx,my} take the following form:

−TC[my−1,my ]
+ TB[my ,my+1] +NC

[nx−1,nx]
−NB

[nx,nx+1] = 0 Balance of force along x (9)

TC[nx−1,nx]
− TB[nx,nx+1] +NC

[my−1,my ]
−NB

[my ,my+1] = 0 Balance of force along y (10)

MC
[nx−1,nx]

−MB
[nx,nx+1] = 0 Balance of Moments for the elements along x (11)

MC
[my−1,my ]

−MB
[my ,my+1] = 0 Balance of Moments for the elements along y (12)

here we have denoted by the symbol QD[p,q] the value of the field Q at the extremity D = C or D = B
of the beam element connecting the node p and the node q , where p and q are two consecutive ones
in both x or y direction.

The component ux (respectively uy) of the pivot displacement is:
(i) the axial displacement of the ends of the beam element oriented along x (respectively y), and
(ii) the opposite transverse displacement (respectively direct) of the ends of the beam element

along y (respectively along x). The change of sign results from different orientations of the global
frame and of the local frame of the y-oriented fibers.

Thus, by substituting in equations (9–12) the forces by their expressions in terms of the displace-
ment fields (3–6), the balance of force along x is obtained as follows

12EyIy
`3y

(
(ux(nx,my−1) − 2ux(nx,my) + ux(nx,my+1)) +

`y
2

(−θy(nx,my−1) + θy(nx,my+1))

)
+
ExAx
`x

(
ux(nx−1,my) − 2ux(nx,my) + ux(nx+1,my)

)
= 0. (13)

The continuity at the nodes of bending moments of the elements oriented along y (after the simplifi-

cation by
2EyIy
`y

) reads

3

`y
(ux(nx,my−1) − ux(nx,my+1))− (θy(nx,my−1) + 4θy(nx,my) + θy(nx,my+1)) = 0, (14)



the balance of force along y reads

12ExIx
`3x

(
(uy(nx−1,my) − 2uy(nx,my) + uy(nx+1,my)) +

`x
2

(−θx(nx−1,my) + θx(nx+1,my))

)
+
EyAy
`y

(
uy(nx,my−1) − 2uy(nx,my) + uy(nx,my+1)

)
= 0, (15)

and finally the continuity at the nodes of bending moments of the elements oriented along x (after
the simplification by 2ExIx

`x
) reads

3

`x
(−uy(nx−1,my) + uy(nx+1,my))− (θx(nx−1,my) + 4θx(nx,my) + θx(nx+1,my)) = 0 (16)

These four equations are split into two independent groups of equations: the first one (13–14) couples
the variables ux and θy; while the second (15–16) couples the variables uy et θx. Thus, it is sufficient
to treat the equations (13–14), being the results of equations (15–16) easily deduced by changing the
roles of axes x and y.

4.3 Continuous formulation and asymptotic expansions

Let us introduce continuous kinematic descriptors (denoted by uppercase letters) coinciding with the
discrete kinematic variables of the pivots {nx,my} with coordinates xn = n`x and ym = m`y:

ux(nx,my) = Ux(xn, ym); θy(nx,my) = Θy(xn, ym) (17)

uy(nx,my) = Uy(xn, ym); θx(nx,my) = Θx(xn, ym) (18)

and use Taylor series expansions to express the terms of finite difference equations (13–14). By
introducing the dimensionless variables x? = x/L and y? = y/L, we have (the reader is referred for
comparison to [40] and [21]):

ux(nx,my−1) − 2ux(nx,my) + ux(nx,my+1) = `2y
∂2Ux
∂y2

(xn, ym) +
2

4!
`4y
∂4Ux
∂y4

(xn, ym) +O(`6y
∂6Uy
∂y6

)

= ε2`?2y
∂2Ux
∂y?2

+ ε4`?4y
2

4!

∂4Ux
∂y?4

+ ε6`?6y
2

6!

∂6Ux
∂y?6

+O(ε8)(19)

ux(nx−1,my) − 2ux(nx,my) + ux(nx+1,my) = ε2`?2x
∂2Ux
∂x?2

+ ε4`?4x
2

4!

∂4Ux
∂x?4

+ ε6`?6x
2

6!

∂6Ux
∂x?6

+O(ε8)(20)

similarly

−θy(nx,my−1) + θy(nx,my+1) = 2ε`?y
∂Θy

∂y?
+ ε3`?3y

2

3!

∂3Θy

∂y?3
+ ε5`?5y

2

5!

∂5Θy

∂y?5
+O(ε7) (21)

−ux(nx,my−1) + ux(nx,my+1) = 2ε`?y
∂Ux
∂y?

+ ε3`?3y
2

3!

∂3Ux
∂y?3

+ ε5`?5y
2

5!

∂5ux
∂y?5

+O(ε7) (22)



and finally

θy(nx,my−1) + 4θy(nx,my) + θy(nx,my+1) = 6Θy + ε2`?2y
∂2Θy

∂y?2
+ ε4`?4y

2

4!

∂4Θy

∂y?4
+ ε6`?6y

2

6!

∂6Θy

∂y?6
+O(ε8)(23)

By construction, the coefficients of the powers expansion for ε in the equations (20–23) are of the
same the dominant order but also they contain terms of lower order. Therefore, to really order the
relative weight of the different addends, it is necessary to introduce now the asymptotic expansions
of the variables Ux, Uy, Θx and Θy. This is essential to effectively separate the powers exponents
and to ensure the coherence of the passage to the limit ε → 0. It should be noted that consecutive
terms of Taylor expansions are systematically offset of ε2. It is therefore sufficient to introduce the
developments in the even powers of ε. Consequently, we are looking for fields Ux, Uy, Θx, Θy in the
following generic form:

Ux = U (0)
x + ε2U (2)

x + ε4U (4)
x +O(ε6U (6)

x )

Thereafter, we will denote with a tilde the correction terms that are physically observable, e.g.,

Ũ (4)
x = ε4U (4)

x ; Θ̃(4)
x = ε4Θ(4)

x

Referring the developments in power of ε2 in equations (20–23), we get:

ux(nx,my−1) − 2ux(nx,my) + ux(nx,my+1) = ε2`?2y
∂2U

(0)
x

∂y?2

+ ε4`?4y

(
∂2U

(2)
x

∂y?2
+

2

4!

∂4U
(0)
x

∂y?4

)
+O(ε6) (24)

ux(nx−1,my) − 2ux(nx,my) + ux(nx+1,my) = ε2`?2x
∂2U

(0)
x

∂x?2

+ ε4`?4x

(
∂2U

(2)
x

∂x?2
+

2

4!

∂4U
(0)
y

∂x?4

)
+O(ε6) (25)

−θy(nx,my−1) + θy(nx,my+1) = ε`?y2
∂Θ

(0)
y

∂y?

+ ε3`?3y

(
2
∂Θ

(2)
y

∂y?
+

2

3!

∂3Θ
(0)
y

∂y?3

)

+ ε5`?5y

(
2
∂Θ

(4)
y

∂y?
+

2

3!

∂3Θ
(0)
y

∂y?3
+

2

5!

∂5Θ
(0)
y

∂y?5

)
+O(ε7) (26)

−ux(nx,my−1) + ux(nx,my+1) = ε`?y2
∂U

(0)
x

∂y?

+ ε3`?3y

(
2
∂U

(2)
x

∂y?
+

2

3!

∂3U
(0)
x

∂y?3

)



+ ε5`?5y

(
2
∂U

(4)
x

∂y?
+

2

3!

∂3U
(2)
x

∂y?3
+

2

5!

∂5U
(0)
x

∂y?5

)
+O(ε7) (27)

θy(nx,my−1) + 4θy(nx,my) + θy(nx,my−1) = 6Θ(0)
y + ε2`?2y

(
Θ(2)
y +

∂2Θ
(0)
y

∂y?2

)

+ ε4`?4y

(
Θ(4)
y +

∂2Θ
(2)
y

∂y?2
+

2

4!

∂4Θ
(0)
y

∂y?4

)
+O(ε6) (28)

The calculations presented in this subsection provides an accurate transformation of the finite differ-
ences into successive derivatives. This step is essential to get the continuous asymptotic model valid
in the limit ε→ 0.

5 Asymptotic macroscopic model

In the expressions (24–28) do appear the macroscopic continuous fields and their macroscopic deriva-
tives. By substituting them in the equilibrium equations (13–14) we may obtain a macroscopic contin-
uous formulation of the equilibrium of pivots (equilibrium of force along x and equilibrium of moment
for the elements along y). To make explicit which are the appearing powers of ε, it is convenient to
write the obtained equations in the non-dimensional variables x? and y?, where L is the reference
length. As, by hypothesis, `x and `y are of order ε with respect to L, we have `x = `?x` = ε`?xL et
`y = ε`?yL. Thus by limiting ourself to the infinitesimals O(ε6), the continuity (14) of moments of the
elements oriented along y gives, after grouping different terms,

6

(
∂U

(0)
x

∂y?
+ L`?yΘ

(0)
y

)
+ ε2`?2y 6

(
∂U

(2)
x

∂y?
+ L`?yΘ

(2)
y

)

+ε4`?4y

(
6

(
∂U

(4)
x

∂y?
+ L`?yΘ

(4)
y

)
+

2

4!

∂4

∂y?4

(
1

5

∂U
(0)
x

∂y?
+ L`?yΘ

(0)
y

))
+O(ε6) = 0 (29)

and the equation (13) of the equilibrium of forces along x gives:

Rxε
2`?2y

(
∂
∂y?

(
∂U
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where

Rx =
12EyIy
`3y

`x
ExAx

The moment equation (29) comes in the form of a series in which the mechanical characteristics of
beams do not interfere. The convergence of the series when ε → 0 implies that each involved term



vanishes. Consequently:
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This precisely means that, the equilibrium of moments for y fibers requires, with an error being equal
to O(ε4), a relationship between their rotation and their transverse gradient, which is expressed in the
dimensional fields as follows:

∂Ux
∂y

+ `?yΘy = O(ε4)

At the dominant order, Θy can thus be considered a hidden variable which does not emerge in the
macroscopic description at the leading order. Only by considering the correction O(ε4), the rotation
differs from the transverse gradient, because we have
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or, in dimensional variables and denoting explicitly the observable corrections Ũ
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Let us replace now the results (31–32) in the balance equation (30). This leads to
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To exploit this equation it is necessary to weigh the effects of bending (left-hand side term) and
extension (right-hand side term). These effects are a consequence of both the mechanical properties
of considered system and of the nature of admitted kinematics. The mechanical parameters which we
choose will introduce the high contrast condition (8) which is expressed by

Rx = R?xε
2. (35)

Regarding the nature of the macroscopic kinematics, we are led thus to distinguish between low or
high contrast situations in the axial and the transverse gradient.



5.1 Low contrast between axial and transverse gradient of Ux

We consider here macroscopic kinematics where axial and transverse components of the displacement
gradient Ux are of the same order, i.e.,
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x

∂y?

)
(36)

This estimate explicitly means that the axial and transverse variations have as a common evolution
characteristic value O(L). This hypothesis is usually considered in the case of an elastic composite
medium where the terms of the strain tensor components are assumed of the same order. In this case,
we obtain successively the equation (each relative to the orders ε0, ε2, ε4):
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By simplifying and returning to the dimensional variables and observable correctors we deduce that:
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The equations (37–38) mean that the tension of the fibers oriented along x is constant to the accuracy
ε4. Only by considering the order 4 of the correctors, the tension of the beams varies due to the
bending of orthogonal beams, as indicated by (39).

The assumption (36) obviously can not cover all cases of loading. In particular, it is not predictive
if the lattice is subjected to an uniaxial extension in a direction that does not coincide with one of the
directions of the fibers’ arrays (see Fig. 2). Indeed if one considers the “red” fiber in Fig. 2 (which
presents an experimental evidence), it is clear that its state of tension cannot be constant: its tension
is not vanishing in the clamping but its clearly vanishes at the free end. To describe these situations
it is necessary to change the too restrictive hypothesis (36) by allowing a strong contrast between the
axial and transverse components of the gradient of the macroscopic displacement.



Figure 2: An example of standard bias extension test. Courtesy by Tomasz Lekszycki, Marek
Pawlikowski and Roman Grygoruk.

Figure 3: An example of generalized bias test with imposing a shear displacement.



5.2 Strong contrast between axial and transverse gradient of Ux

Thus we are lead to consider macroscopic kinematics where the transverse gradient ∂U
(0)
x

∂y? dominates

in comparison to the axial gradient ∂U
(0)
x

∂x? , i.e.
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This assumption reflects the fact that the axial characteristic length of variation of Ux (denoted Lx,a)
is much larger than the transverse (denoted Lx,t) length (see e.g. experimental evidence presented in
[36]). This is a consequence of the high shear deformability of pantographic network, compared to its
deformability in the axis of the fibers.

To assure scale separation we are thus lead to consider as reference length the smaller between the
two i.e. L = Lx,t so that
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Once we consider Lx,t = ε2Lx,a we have
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The presence of a contrast in the components of the strain tensor as given by (41) is unconventional in
elastic composite medium but arises naturally in the case of weakly compressible viscous fluid (where
the trace of the strain rate tensor is negligible compared to its deviatoric component) or in beams
and plates (where deformations in the section of the beam—or in the thickness of the plate—are
negligible). This contrast is present also in pantographic sheets.

Replacing the estimate (42) into (34) we get at the leading order

∂2U
(0)
x

∂x?2
= (`?x)−2R?x`

?4
y

2

4!

∂4U
(0)
x

∂y?4

or, returning to the dimensional variables and normalizing by introducing the surface of the periodic
cell we have:
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This equation indicates that the normal force (on left-hand side) varies at the first order in the beams
due to the shear force exerted by the orthogonal beams (on the right-hand side). This is made possible
because the transverse gradient is of two orders of magnitude higher than that of the extension gradient



(see again (41)).
Moreover, we note that the equation (43) is more general than the equation (37) and it is needed

in the considered mechanical system. Moreover equation (43) degenerates to the equation (37) when
∂U

(0)
x
∂x � ε2 ∂U

(0)
x
∂y . We will use in what follows the description (43) which applies to more general

kinematics.

5.3 Synthesis of obtained results

The above results, derived from the system (13–14) for the variables U
(0)
x and Θ

(0)
y is transposed by

a similar analysis of the system (15–16) to the variables U
(0)
y and Θ

(0)
x . The description in small

deformations of the orthogonal pantographic lattice is therefore obtained by restricting the analysis
at the dominant order (for simplicity, the exponents of order (0) are removed)
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with the addition of the relationships between the transverse gradients and rotations
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Remark that equations (44–45) can be rewritten by introducing two intrinsic characteristic lengths ηx
and ηy as follows
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where

η2x :=
`yEyIy
`xExAx

; η2y :=
`xExIx
`yEyAy

.

It is clear that the physics of the system is governed by these internal intrinsic lengths which differ
from the size of the cell.

The model governed by (44–45) is of the type of a conservative generalized continuum medium
having deformation energy depending on first and second order gradient of displacement (see [3, 87]).
Its evolution ruled by two displacement fields which are independent and uncoupled Ux and Uy. This
particular behavior is within the framework of the second gradient continua where the internal actions
are described by a stress symmetric tensor T of order two and by a hyper stress tensor T of third
order. To make the identification, we pose (44–45) in the following form where the differential operator
DIV denotes the Lagrangian divergency:

DIV(T−DIV(T )) = 0 (47)



and where we used the definitions

T := C.(∇U +∇Ut)/2, T := D.∇∇U (48)

in which the symbol ‘.’ denote the repeated index saturation between different order tensors and ‘t’ the
transposition of second order tensors. The elasticity tensors C and D of order four and six respectively
have the particular form defined by their components as follows:

Cabcd :=
ExAx
`y

δaxδbxδcxδdx +
EyAy
`x

δayδbyδcyδdy (49)

Dabcdef :=
EyIy
`x

δaxδbyδcyδdxδeyδfy +
ExIx
`y

δayδbxδcxδdyδexδfx (50)

Remark that (separately) the tensors C and D are not coercive. For instance, pure shear deformations
do not have any first gradient energetic content, while any affine displacement field has not any second
gradient energetic content. This is consistent with the existence, for pantographic sheets, of floppy
modes as nullifiers of deformations energy, in addition to the standard rigid motions. Nevertheless,
considering both first and second gradient energies together, the system can be qualified as “sub-
coercive” when suitable boundary conditions are imposed in such a way that floppy modes are excluded.
In the framework of this requirement, the set of admissible displacements is restricted if compared to
the one needed in first gradient theory, where only rigid body motions are excluded. We conjecture
that in the set of considered admissible displacements the total deformation energy is definite positive
and leads to well-posed problems. This seems physically well-grounded and is confirmed by all the
performed numerical simulations presented in the last section.

To identify the class of physically meaningful boundary conditions, in the next section we more
closely study the structure of the considered energy.

5.4 Energy Formulation and boundary conditions for pantographic lattices

The general framework of second gradient continua (as formulated e.g. by [42]) enables, by means of
the energy formulation and of the divergence theorem, to specify the boundary conditions which can
be consistently considered as applicable to them.

Let B be a bi-dimensional medium whose elastic energy depends among the displacement gradient
∇U acting on the second order stress tensor, T, and among the second displacement gradient acting
on the third order hyperstress tensor, T . In this case the energy W of B is:

2W =

ˆ
B

(T : ∇U + T
...∇∇U) (51)

Transforming this expression through successive integrations by parts enables to make the link between
the variation of internal energy and the energy supplied at the boundary of B (see e.g. [42]). As
the considered system is bi-dimensional, the boundary consists in a set of regular edges ∂B with
unit normal n and wedges ∂∂B consisting in the union of a finite number N of vertices SI , i.e.
∂∂B = ∪SI = {S} . For our calculations we introduce Levi-Civita tensorial notation, keeping trace
of covariance and contravariance nature of considered tensorial quantities and we use latin indices for



Figure 4: Sketch of vectors n and N on the boundaries.

Eulerian components and greek letters for Lagrangian components.
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Using the equilibrium equation (47) the first integral in the RHS vanishes. Furthermore, the last term
of the second integral can be decomposed into a tangent and a normal contribution. As the considered
system is bi-dimensional, the boundary ∂B includes a set of regular edges. Thus, introducing the
projector on the tangent direction of ∂B, P = I − n ⊗ n (hence P γα = δγα − nαnγ and P.P = P ), we
have:
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(53)
On the last integral on ∂∂B = {S} the vectors n and N takes the values n± and N± defined on the
both sides of the discontinuity of the edges. This is also the case for T and P . On each side the vector
N is the tangent vector to ∂B which is the outer pointing normal to the border of ∂B, see Figure 4.
Thus P+.N+ = N+ and P−.N− = N−. In a condensed way, we can write (where the symbol f refers
to the tangent projection of a tensor on ∂B)

´
B(T : ∇δU + T
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´
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(
(T −DIV T ) .n−DIVfTf

)
.δU + (T .n.n) δ dUdn
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(54)



with
[T .n.N ] =

(
T +.n+.N+)+

(
T −.n−.N−

)
.

The previous integration by parts implies that in order to have well-posed problems one has to
suitably assign boundary conditions in a specific way (see e.g. [69]). In particular on any regular point
belonging to the set of edges ∂B one can assign:

• either a component U i or its dual quantity
(
T bi − T

βα
i,α

)
nβ −

(
T αβi nβP

δ
α

)
,γ
P γδ . In the case of

rectilinear edge ∂B the normal and the projector are constants and this expression simplifies

into
(
T βi − T

βα
i,α − T

αβ
i,γ (δγα − nγnα)

)
nβ.

• either a component of displacement normal gradient, dU i/dn, or its dual quantity
(
T αβi nanβ

)
.

Moreover on vertices constituting ∂∂B = {S} one can assign:

• either a component U i or its dual quantity [T αβi nbNα] which expresses the discontinuity of the
wedge on the vertices. (see Fig. 4)

Therefore the weak condition for equilibrium is given by

δW =

ˆ
∂B

fexti δU i + τ exti δU i,γn
γ +

ˆ
∂∂B

F exti δU i (55)

where external actions are given by forces per unit line fexti but also by concentrated forces on vertices
F exti and by double forces per unit line τ exti (see [50]).

One can apply these results to the particular pantographic lattice considered, where the preferred
orthogonal directions x and y coincide with the array of material fibers. In the context of small
deformations, the Lagrangian and Eulerian coordinates systems can be identify. In the pantographic
case given by (49) and (50) the deformation energy is given by
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B
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`y

(Ux,x)2 +
EyAy
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(Uy,y)
2 +

EyIy
`x
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(Uy,xx)2
)

dxdy (56)

so that we have that, as T = ∂W
∂∇U and T = ∂W

∂∇∇U , the only nonvanishing components of stress and
hyperstress are:

T xx =
ExAx
`y

Ux,x ; T yy =
EyAy
`x

Uy,y

T xxy =
ExIx
`y

Uy,xx ; T yyx =
EyIy
`x

Ux,yy.

Thus, for the pantographic sheet, the two types of kinematic and static (more often called natural)
boundary conditions which apply to a straight line edge of normal n = nxex +nyey take the following
form:

Ux dual of T xx nx +
(
−T yyx,y(1 + n2x) + T yyx,xnxny

)
ny ; dUx/dn dual of T yyx n2y



Uy dual of T yy ny +
(
−T xxy,x(1 + n2y) + T xxy,ynxny

)
nx ; dUy/dn dual of T xxy n2x

On the vertices, noting that n and N are orthogonal, the flux dual to the displacement components
Ux and Uy are respectively (T −yyx n−x n

−
y − T +yy

x n+x n
+
y ) and (T −xxy n−x n

−
y − T +xx

y n+x n
+
y ). Remark that

they vanish when the vertex angle is of π/2 and the boundary are parallel to the fibers.

For a better physical insight consider for instance a straight edge oriented along the direction x,
then n = ey and the boundary condition simplifies into

Ux dual of − T yyx,y = −EyIy
`x

Ux,yyy ; dUx/dy dual of T yyx =
EyIy
`x

Ux,yy

Uy dual of T yy =
EyAy
`x

Uy,y ; dUy/dy dual of T xxy n2x = 0

These boundary conditions on the lattice can be easily understood by recalling standard beam theory.
They show that:

• a virtual displacement tangent to the fiber materializing the edge develops energy due to the
shear forces in the orthogonal fibers,

• a virtual displacement normal to the edge fiber develops energy due to the tension forces in the
orthogonal fibers,

• a rotation of the edge fiber develops energy due to the couple in the orthogonal fibers,

• no energy is developed (in small deformations) by the extension of the orthogonal fibers associ-
ated with the couple of the edge fiber.

If the vertex at the end of the edge along x presents an internal angle α, the static quantities
dual to the components Ux and Uy are respectively the weighted couples T +yy

x sin(2α)/2 and
−T +xx

y sin(2α)/2. No energy is developed if the vertex angle is of π/2 with edges oriented along the
fibers.

Similar interpretation apply when the straight edge presents an angle with the fiber orientation,
however due to the coupling between the forces and couples in different directions, the physical inter-
pretation of the boundary condition becomes more difficult.

In this paper, for the sake of simplicity, we consider only imposed boundary conditions on dis-
placements and displacement gradients and we consider weak form (55) of equilibrium conditions, so
that no dual boundary conditions (on forces or double forces) are assigned. In further papers we will
consider more general situations.



6 Some equilibrium shapes of linear pantographic sheets: numerical
simulations

Pantographic sheets have an exotic behavior which is not only characterized by their anisotropy as
evidenced by (i) their vanishing resistance to shear deformation, and (ii) their significant resistance to
elongation along fibers; but also by their capacity to resist to variations in their so-called “geodesic
curvature” (see [44, 89, 52, 51]) i.e. the changes of curvature of material curves induced by in-
plane displacements. Moreover in their deformation patterns one can observe also the onset of inner
boundary layers where bending of constituting beams is concentrated, as suggested by the existence
of the intrinsic characteristic lengths ηx and ηy.

The aim of this section is to provides numerical illustrations of the theoretical developments
presented in the previous sections. The considered examples may seem purely academic or dictated
simply by the taste of investigating mathematical structures (see [45]). Although we indeed consider
that scientific knowledge is based on the study of exemplary cases (see [86, 92, 61, 62, 8]). In addition,
a potential application of the presented results concern the forming of fiber reinforced composites
(see e.g. [19, 63, 27, 60, 1, 74]).

All the presented numerical simulations are obtained by a code elaborated using COMSOL Mul-
tiphysics. The homogenized energy introduced in this paper (56) is minimized by using the package
‘Weak Form PDE’ and by introducing standard third order Hermite finite elements. While the used
code is surely not optimized for the introduced problem (we believe that the recently developed numer-
ical methods would be more efficient, see e.g. [23, 24, 54, 55, 57, 91, 56, 10, 31]) its rate of convergence
seems satisfactory for getting preliminary results concerning the behavior of the simplest structures:
actually it is based on the introduction of an auxiliary tensor field which appears in the deformation
energy and which is equated to the displacement gradient by means of suitable fields of Lagrange
Multipliers. Remark also that all presented numerical simulations are really and intrinsically mesh-
independent, because of the properties of introduced continuum model, where the second gradient of
displacement is at the same time modeling the relevant physical properties and supplies a regularizing
effect on equilibrium equations.

In the presented simulations we have chosen a lattice made of square cells, so that `x = `y = ` and
we have imposed that the x and y fibers have identical rectangular sections (having sides a and b) and

elastic moduli so that Ey = Ex , Ix = Iy = ba3

12 and Ax = Ay = ab. As a consequence we have that

η2 = η2x = η2y =
Ix
Ax

=
Iy
Ay

=
a2

12
.

The numerical values a = 0.9 mm and b = 1.6 mm are that used for the pantographic structures
used in the experimental measurements (see [37]) having rectangular sections. Young’s modulus is
1600 MPa. We remark that the Elastica model for beams is applicable in the considered situation as
` = 4.95 mm and the number of cells is sufficiently large (L = 42.42 × `) to apply the homogenized
model.

In the following subsections, we present the numerical simulation of bias tests in different config-
urations. First, we consider rectangular specimens undergoing standard bias test in extension, but
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Figure 5: Equilibrium shapes of rectangular specimens submitted to extension (left, a) shear (center,
b) and bending (right, c) displacement. The colours indicate the levels of stored energy density.

also in shear and bending. The results (i) demonstrate the ability of the model to catch the occurence
of highly non-homogeneous deformation patterns with inner boundary layer, and (ii) illustrate the
dependance of the pattern on the different imposed deformations. Second, the same type of bias tests
are performed on circular specimens in order to investigate the role of the sample geometry on the
equilibrium shape and on the elastic energy distribution. Finally, extension and bending bias test on
circular specimens with a central squared of different orientations are simulated. The comparison with
the previous cases evidence the effect of different boundary conditions.

In all the following figures the black lines indicate the local actual orientation of the material fibers
(which are orthogonal in the reference configuration), and the deformed shape is displayed together
with the map of the stored energy density. All the calculations are performed in the framework of
small deformations, however, for a better insight, the deformation is magnified in the figures.

6.1 Bias tests on rectangular pantographic sheet

We start by considering a pantographic sheet having a rectangular initial shape with the long side
three times longer than the short one.

In the standard extension bias test the short sides are rigidly displaced in the direction of the long
side. The Figure 5a shows the small deformation pattern. Remark that the deformation energy is
concentrated along the material lines constituted by some fibers and that, meanwhile the fibers are
extensible in the present case, the structure of the deformed shape is similar to the one described by
Pipkin [78, 79] in the case of inextensible fibers. Notice also that the distribution of deformation is
strongly non homogeneous while respecting the symmetry of the loading. The simulation enables to
identify several zones with different kinematics. The partitioning of the specimen can be describe as
follows:

- The clamping zones that consists in two “isosceles triangles” having as basis the short sides.
These areas do not sustain any significant deformation, neither in extension nor in shear, so that
the first gradient description (37) applies. The vanishing stored energy results here from the
quasi-rigid body motion of these regions;



- The deformed zones outside of the aforementioned triangles, in which large shear deformation
arise. In this highly sheared domain, the behavior is governed by the second gradient description
(44–45). One distinguishes a central and four lateral sub-domains of vanishing stored energy
delimited by transition zones. The different sub-domains correspond to the occurence of local
“floppy” modes. Indeed, because of the specific boundary condition, “floppy” modes on the
whole specimen are forbidden. Nevertheless, the minimum of energy is attained by activating
local floppy modes, far from the boundary conditions. This results in large parts of the body
where the deformation energy is very close to be vanishing;

- The transition zones between the different domains (of quasi-floppy modes or quasi-monolithic
type) consist in inner boundary layers where the bending of the fibers is concentrated to ac-
commodate the different kinematics that prevails in the two regions in contact. Such layers,
that concentrate the elastic energy, take place along material lines constituted by fibers and
are characterized by large gradient of shear deformation. These specific features are the direct
signature of the second gradient effects: a standard Cauchy continuum description (i.e. simple
gradient description as (37)) would lead to an homogeneous deformation pattern and avoid the
development of shear bands.

Furthermore, the qualitative and quantitative comparison of the numerical simulations plotted on
Figure 5a and the experimental data presented in ([37]) clearly argue in favor of the second gradient
description (44-45) for two reasons. First, the experimental deformation pattern is obviously non
homogeneous with inner boundary layers whose the structure presents a similar geometry as that
observed in the simulation. Second, by making a best fit of the experimental data ([37]), the effective
parameters of the second gradient continuum model has been identified. It happens that this “blindy”
procedure supply exactly the same values of the effective parameters than the one calculated from the
micro-macro upscaling procedure, once the geometric and mechanic properties of the cell beams of
the sheet tested experimentally are taken.

In addition simulations of shear bias tests with uniform lateral displacement imposed on the top
side, and bending bias tests with rotational displacement imposed on the top side (corresponding to a
rigid body rotation centered in the middle of the specimen) have been done. The results are displayed
on Figures 5b and 5c. Similar general comments as done for the extension test still apply, however the
geometry of the shear bands and the energy distribution is modified. In particular, the partitioning of
the specimen submitted to bending shows only one sub-domain of quasi-floppy mode which is confined
between two quasi-monolithic zones.

6.2 Bias test on circular pantographic sheets

Consider now the same bias test as the previous one, except that the rectangular pantographic sheet
is replaced by a sheet of circular initial shape. The imposed deformation are obtained by clamping
one circular arc and impose a rigid displacement of the opposed one.

In fig. 6a) we consider the extension imposed by a relative rigid translation of the two arcs in
the direction of the common bisecting diameter. Note the great similarity of the deformation pattern
obtained with rectangular and circular sheets, when focusing on the internal rectangular domain con-
sidered in the standard bias test. This means that, independently of rectangular or circular geometry
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Figure 6: Equilibrium shapes of circular specimens submitted to extension (left, a) shear (center, b)
and bending (right, c) displacement. The colours indicate the levels of stored energy density.

of the sheet, the structure of the deformation pattern is kept (almost) unchanged when identical kine-
matic boundary conditions are imposed, Remark also that the largest lateral dimension of the circular
sheet enable the inner boundary layers to extend and intersect. Thus the partitioning of the specimen
is complemented by the appearance of two additional lateral sub-domains.

These observations indicate that in the considered cases, the structure of the inner boundary layer
(hence of the partitioning) mostly results from the geometry of the boundary conditions, while the
extension of the shear bands depends on the geometry of the whole body. Furthermore, in the circular
case, the activation of the deformation outside of the rectangle implies additional energy. Therefore,
to reach the same displacement imposed at the boundaries, a largest force is required in the circular
case than in the rectangular case .

In fig. 6b) the relative rigid displacement is in the direction orthogonal to the bisecting diameter
and imposes a shear to the specimen. The resulting shear deformation pattern is similar to the one
activated in extension 6a) but with different orientations of the inner boundary layers. The comparison
with the case of rectangular sheet lead to the similar comments as above.

In fig. 6c) the relative displacement of the two arcs is obtained by fixing one arc and by rotating
the second one with respect the center of the circle. Remark that the partitioning of the specimen is
similar as in the rectangular case but here the boundary layers invade the whole body.

6.3 Bias test on initially circular pantographic sheets with central holes

In the same body considered in the previous subsection a square hole (of 14×14 cells) is now carved
in its central part. The initial orientation of the hole relatively to the fibers is varied from zero (i.e.
the sides of the square are along the fibers) to π/8 and π/4 (i.e. the edges of the square are along
and orthogonal to the extension displacement). These different cases enable to investigate the effect
of the hole on the deformation pattern and on the onset of inner boundary layers.

One may expected, that when a hole is carved in a sub-domain corresponding to quasi-floppy
modes, its influence should be negligible since in both case, the hole or floppy modes deformation
occurs with no energy expense. However, if a hole intersects the deformation boundary layers in
which the energy would be localized in absence of hole, then the energy distribution is necessarily
modified and so does the deformation patterns.
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Figure 7: Equilibrium shapes for extension bias test of a circular sample with a squared hole: a)
whose edges are oriented along fibers; b) rotated of an angle of π/8; c) rotated of an angle of π/4.

The colors indicate the levels of stored energy density.
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Figure 8: Equilibrium shapes for bending test of a circular sample with a squared hole: a) whose
edges are oriented along fibers; b) rotated of an angle of π/8; c) rotated of an angle of π/4. The

colours indicate the levels of stored energy density.

This is what is observed in the simulations. The edges of the carved hole are such that when
oriented along the fibers, the hole almost belong to the central floppy mode sub-domain that arises
in the non-carved sheet, while when rotated, two corners of the hole may cross the boundary layers
of the intact sheet. In extension tests presented on Figs. 7a and 7c the intersection of the carved
hole with the deformation boundary layers of the intact body is relatively small and the deformation
patterns are weakly disturbed. This is not the case in Figs. 7b where the hole cut the material lines i.e.
fibers in which the energy would be concentrated in intact body. As a consequence the deformation
response and the partitioning of the specimen change significantly. The same trends are observed
for the bending test: weak perturbations arise in Fig. 8a, but large and dramatic change appears in
Fig. 8b and Fig. 8c respectively.

7 Conclusions

Pantographic sheets belong to the specific class of architectured materials whose mechanical behavior
is characterized by:



• very high contrast of extensional and bending stiffness at microscopic level (see equation (35));

• very high contrasted gradients of displacement in the axial and transverse direction at the macro
level (see equation (40));

• a microstructure which produces a discretely oriented, orthotropic material exhibiting an ex-
treme anisotropy leading to the presence of two preferred material directions having very high
extensional stiffness; this circumstance causes the onset of internal boundary layers where gra-
dients of deformation may arise.

The standard (Cauchy or first gradient) continuum models were conceived under some implicit as-
sumptions which do not allow for the description of all just listed extreme mechanical properties [32].
For this reason, it is needed to introduce, for pantographic sheets, a generalized continuum model,
by reconsidering, at the very beginning, the standard modeling procedure. Indeed a consistent model
should allow for, in particular, the description of deformation gradient concentrations induced, for
instance, by imposed boundary displacements. To be driven in the construction of the most suitable
model we use the asymptotic homogenization method extensively presented in ([13]). It allows for the
rigorous construction of a description able to encompass all mentioned atypical properties.

Even if we limit ourselves to the case of linearized models in statics (and in absence of body
forces) we still get a nonstandard second gradient continuum model. Moreover, the advantage of used
micro-macro upscaling procedure is that it allows us to determine firstly the atypical structure of
the constitutive and balance equations and secondly all relative constitutive parameters (i.e. those
specifying first gradient and second gradient terms in deformation energy). This is done explicitly
in terms of the microscopic properties of the elementary cells constituting the pantographic sheet.
Furthermore, the presented micro-macro identification provides a design rule for pantographic bi-
dimensional continua.

The main advances provided by this paper compared to some previous works on pantographic
sheets lie in the three following points:

• The homogenization method leads to a clear and rigorous micro-macro identification procedure.
Hence, the structure of the homogenized description and its parameters are explicitly deduced
form the cell. This differ from the “a priori” variational approaches where a macroscopic descrip-
tion is proposed but its applicability to specific micro-structure can only be postulated. Beside,
compared to direct numerical simulations at the microscale [34] the established model presents
a great advantage, in terms of computational cost but also of in terms of physical understanding
of the actual behaviour.

• The description enables to account for the low extensibility and the high bending deformability.
It thus enable to overcome the drawback of the studies that consider inextensible fibers [35].

• The physical insight of pantographic systems is improved by a simple interpretation of the
macroscopic description: the tension in a fiber varies because of the shear forces transferred
through the pivots by the orthogonal fibers. Even if the paper focuses on small deformations, this
mechanism remains the essentially the same (meanwhile complicated by the non orthogonality
of the fibers) at large deformation [36].



Note that we only consider small in plane deformations. However the same homogenization method
can be extended to investigate buckling and out plane deformation as discussed in [51, 52].

The obtained models can be framed in the context of generalized continuum theories and immedi-
ately allows for the explicit determination of deformation energy and related boundary conditions. The
atypical features of described continuum model for pantographic sheets are reflected by its atypical
mathematical properties. That is:

• the PDEs determining the equilibrium configurations involve second and forth order partial
derivatives terms which may have a comparable order of magnitude; in the studied case of
orthogonal fibers, the displacement fields along the fibers result to be governed by uncoupled
PDEs;

• the deformation energy is not coercive in the standard sense. However, using specific boundary
conditions, consistently established from the found expression for deformation energy, we estab-
lish the definite positiveness of the deformation energy functional, which simultaneously involves
first and second order of displacement gradients; we conjecture that such formulated problems
are well-posed.

The corresponding atypical physical properties of pantographic sheets consist in the following circum-
stances:

• the extensional forces along a fiber are balanced by the shear forces due to the bending of its
transverse fibers (see equations (44), (45))

• the balance of couples is separately valid for the two arrays of orthogonal fibers, so that the fiber
rotation is proportional to the axial gradient of transverse displacement, see formula (46).

The numerical simulations which we have presented are aimed to illustrate the performances of ob-
tained model. Indeed pantographic sheets show very peculiar deformation patterns exhibiting regions
of concentrated deformation energy. In particular when applied to rectangular specimen the model:

• allows for the determination, already in the linear case, of the region where the deformation
energy is localized without any further a priori assumptions;

• shows that the diffusion patterns of deformation inside the specimen differ notably from those
shown in first gradient material. In particular, they are canalized in a way determined by the
material symmetry and boundary conditions, while their thickness is determined by the charac-
teristic length specified by the competition between the first and second gradient stiffnesses;

• the described features are confirmed by considering specimen with circular shape also when
including rectangular holes.

All these features and predictions match at least qualitatively the experimental evidence e.g. [37]. It
then appears that pantographic sheet is an archetypical oriented material in which second gradient
effect plays a crucial role and for which it is possible to get a close description of the underlying
actual physical mechanism.

There are many worthy issues that may be investigated concerning the complex structure here
analyzed:



• linearized analysis of pantographic structures with non-orthogonal and uneven fibers (this case
is also relevant as it may give a tangent model for large deformations) and the determination of
some analytical solutions of found PDEs;

• the comparison of presented theory with further experimental evidence for possible improvement
in the idealized model;

• the exploration of the application of the model to the mechanics of fabrics, the analysis of the
dissipation that can arise from the interaction of the fibers or from internal friction (see e.g.
[72]) and the extension to three-dimensional deformations;

• buckling phenomena which can produce wrinkling (see e.g. [51, 84, 85, 49, 20, 76]) and damage
detection and its evolution (see e.g. [93, 71, 6, 80, 81]).

Finally, as future and more challenging lines of development, considering biological applications, it
is conceivable a morphoelastic pantographic continuum which can be employed as a ’smart’ prosthesis
(see e.g. [67]). In this context, it is possible also to equip the pantographic structure with transducers
that can act both as sensors or actuators in order to induce some functional adaptation capabilities
(see e.g. [28, 29, 7]).
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