Profiled deviance for the multivariate linear mixed-effects model fitting

Abstract : This paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the marginal residual terms are assumed uncorrelated and homoscedastic with possibly different standard deviations. The random effects covariance matrix is Cholesky factorized to directly estimate the variance components of these random effects. This strategy enables a consistent estimate of the random effects covariance matrix which, generally, has a poor estimate when it is grossly (or directly) estimated, using the estimating methods such as the EM algorithm. By using simulated data sets, we compare the estimates based on the present method with the EM algorithm-based estimates. We provide an illustration by using the real-life data concerning the study of the child's immune against malaria in Benin (West Africa).
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01494186
Contributeur : Eric Adjakossa <>
Soumis le : mardi 2 mai 2017 - 12:04:25
Dernière modification le : vendredi 5 mai 2017 - 01:08:27

Fichiers

Article2ADJAKOSSA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01494186, version 2
  • ARXIV : 1703.08045

Collections

UPMC | PMA | USPC

Citation

Eric Adjakossa, Grégory Nuel. Profiled deviance for the multivariate linear mixed-effects model fitting. 2017. <hal-01494186v2>

Partager

Métriques

Consultations de
la notice

52

Téléchargements du document

13