Integrating Tensile Parameters in 3D Mass-Spring System
Vincent Baudet, Michael Beuve, Fabrice Jaillet, B. Shariat, Florence Zara

To cite this version:
Vincent Baudet, Michael Beuve, Fabrice Jaillet, B. Shariat, Florence Zara. Integrating Tensile Parameters in 3D Mass-Spring System. 2007. hal-01493738

HAL Id: hal-01493738
https://hal.archives-ouvertes.fr/hal-01493738
Preprint submitted on 22 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Integrating Tensile Parameters in 3D Mass-Spring System

V. Baudet1 and M. Beuve2 and F. Jaillet2 and B. Shariat2 and F. Zara 2

1LSIIT-IGG, UMR CNRS 7005, Illkirch, F-67412, France
2LIRIS-SAARA, UMR CNRS 5205, Univiversity of Lyon 1, Villeurbanne, F-69622, France

Abstract
Besides finite element method, mass-spring discrete modeling is widely used in computer graphics. This discrete model allows to perform very easily interactive deformations and to handle quite complex interactions with only a few equations. Thus, it is perfectly adapted to generate visually correct animations. However, a drawback of this simple formulation is the relative difficulty to control efficiently physically realistic behaviors. Indeed, none of the existing models has succeeded in dealing with this satisfyingly. Here, we propose a new general 3D formulation that reconstructs the geometrical model as an assembly of elementary “bricks”. Each brick (or element) is then transformed into a mass-spring system. Edges are replaced by springs that connect masses representing the element vertices. The key point of our approach is the determination of the spring-stiffness to reproduce the correct mechanical properties (Young’s modulus, Poisson’s ratio, bulk and shear modulus) of the reconstructed object. We validate our methodology by performing some numerical experimentations, like shearing and loading, or beam deflection and then we evaluate the accuracy limits of our approach.

1. Introduction

Models based on the resolution of continuous-media-mechanics equations by finite elements methods are generally applied to accurately simulate the deformations of 3D objects. However, they require a rigorous description of the boundary conditions, which is hardly compatible with any unpredictable interactions. Moreover, the amplitudes of the applied strains and stresses must be well defined in advance to choose either a small - with Cauchy’s description - or a large deformation context - with St Venant Kirchoff’s description. Indeed, the accuracy of each context is optimized to its domain of deformation.

In the literature, discrete models (like mass-spring systems) widely used in computer-graphics animation are generally proposed to deal with interactive applications and to allow unpredictable interactions. They are adapted to virtual reality environments where many unpredicted collisions may occur and objects can undergo large or small deformations. Medical or surgery simulators present another example of their possible applications. Nevertheless these models generally fail to represent accurately the behavior of real objects.

In this paper, we propose a new method that gathers the advantages of both approaches. Section 2 presents some previous work on mass-spring systems and particularly their parameterization and section 3 presents a survey of some mechanical parameters. Then in section 4, we propose our 3D mass-spring model in which stiffness constants are calculated according to tensile parameters of the simulated object. Section 5 presents an evaluation of our model through numerical experiments. Finally some concluding remarks and perspectives are given in section 6.

2. Related Work

Mass-spring systems have largely been used in the animation context, because of their simple implementation and their possible applications for a large panel of deformations. They consist in describing a surface or a volume with a mesh in which the global mass is uniformly distributed over the mesh nodes. The tensile behavior of the object is simulated by the action of springs, linking the mesh nodes. Then, Newton’s laws govern the dynamics of the model.

Mass-spring systems have been used to model textiles [KEH04, LJF*91, Pro95], long animals such as
snakes [Mil88], or soft organic tissues, such as muscles, face or abdomen, with sometimes the possibility to simulate tissue cut [AT00, CHP89, MLM*05, MC97, NT98, Pal03, PB96]. Moreover, these systems have been used to describe a wide range of different behaviors such as anisotropy [Bou03], heterogeneity [TW90], non linearity [cB00] and also incompressibility [PB88, Pro97].

An important problem of these models is to choose an appropriate meshing that describes well the object and that does not contain any privileged direction for the strains propagation. Then, the elasticity of springs must be rigorously defined to achieve the desired behavior. Despite this requirement, springs stiffness constants are generally empirically set [NMK*05].

Solutions based on simulated annealing algorithms or genetic algorithms [BSSH03, BSSH04, DKT95, LPC95] give access to spring stiffness constants. Usually they consist in applying random values to different springs constants and in comparing the obtained model with some mechanical experiments in which results are either well known analytically or can be obtained by finite element methods. The stiffness constant of the springs that induce the greatest error is corrected to minimize the discrepancies. However, the efficiency of this process depends on the number of springs and is based on numerous mechanical tests leading to a quite expensive computation time. Moreover, the process should be repeated after any mesh alteration.

Instead of a try-and-error process, a formal solution to parameterize the springs should save computer resources. In this context, two approaches were explored. The Mass-Tensor approach [CDA99, PDA03] aims at simplifying finite element method theory by a discretization of the constitutive equations on each element. Despite its interest, this approach requires pre-computations and the storage of an extensive amount of information for each mesh component (vertex, edge, face, element).

The second approach has been proposed by Van Gelder [Van98] and has been referenced in [Bou03, BO02, Deh00, MBT02, Pal03, Pic01, WV97]. In this approach, Van Gelder proposes a new formulation for triangular meshes, allowing calculating spring stiffness constant according to elastic parameters of the object to simulate (Young's modulus, E, and Poisson's ratio : ν). This approach combines the advantages of an accurate mechanical parameterization with a hyper-elastic model, enabling either small or large deformations. However, numerical simulations completed by an Lagrangian analysis exhibited the incompatibility of the proposal with the physical reality. Therefore, it is impossible to use Van Gelder’s technique to control realistically the elastic parameters [BBJ*07].

3. Tensile Characteristics and Physical Experiments

Linear elastic isotropic and homogeneous material can be characterized in small deformation by four parameters [Fey64]: the Young’s modulus, the Poisson’s ratio, the shear modulus and the bulk modulus. These parameters are generally extracted by a set of experiments performed on parallelepiped samples for which geometrical dimensions (x0, y0, z0) at rest are well defined (see Fig.1).

\[E \sim \frac{\delta P}{\delta x/y} \]
Young’s modulus can vary from \(3.9 \times 10^{-3}\) MPa for lung tissue to 1,000,000 MPa for diamond. Poisson’s ratio ν characterizes the thickness (\(2\delta i/\delta 0 \)) with \(i \in (x,y))\) induced by the elongation:

\[\nu = -\frac{2\delta i/\delta 0}{\delta x/y} \]
The Poisson’s ratio has no unity. It amounts to 0.69 for metals, 0.3 for lungs and 0.5 for incompressible materials.

Elongation experiment

The Young’s modulus and the Poisson’s ratio are measured by elongation experiments. It consists in applying a defined pressure \(P\) along the z axis of the parallelepiped and measuring the elongations \(\delta z\) along z axis and the thinnings \(\delta x\) and \(\delta y\) along x and y axes (see Fig.1).

Shear modulus along x axis is measured by applying a force \(F\) along x to one of the faces orthogonal to z axis, and the opposite force to the other face. The induced deviation angle, noted \(\theta\) (see Fig.1), characterizes the amplitude of shearing. The shear modulus \(G\) is then defined by:

\[G = \frac{\delta F}{\delta A_0} / (\tan(\theta)) \sim \frac{\delta F}{\delta A_0} / \theta \text{ when } \theta \to 0, \]
We establish a Taylor’s expansion of the Lagrangian to

\[G = \frac{E}{2}(1 + \nu). \]

(4)

Inflation experiment

Bulk modulus characterizes the response of a material to inflation. Inflation experiments consist in measuring the inflation \(\Delta V \) resulting from a concentric pressure \(\Delta P \), applied to each face of the parallelepiped (see Fig.1).

The bulk modulus \(B \) is defined by:

\[B = \frac{\Delta P}{\frac{\Delta V}{V_0}}, \]

where \(\Delta V/V_0 \) is the volume variation, and \(\Delta P \) the applied pressure. The bulk modulus is linked to the Young’s modulus and the Poisson’s ratio for small deformations, with:

\[B = \frac{E}{3}(1 - 2\nu). \]

(6)

4. **Our 3D Model**

The present work aims at reproducing the mechanical behavior of a linear isotropic and homogeneous material with mass-spring systems. We have therefore to determine the stiffness coefficient of the springs so that the mechanical characteristics of the simulated object match the mechanical characteristics of real materials. To set the coefficients, we propose to carry out numerically the experiments described in the previous section, and to establish a relation between the stiffness coefficients and the imposed Poisson’s ratio, Young, shear and bulk moduli.

We consider as sample, a parallelepiped with rest dimensions \(x_0 \times y_0 \times z_0 \). To ensure homogeneous behavior, springs laying on parallel edges need to have the same stiffness constant. Thus, we have to determine only 3 stiffness coefficients for these edges: \(k_{x0} \), \(k_{y0} \), and \(k_{z0} \). In addition, some diagonal springs are necessary to reproduce the thinning induced by the sample elongation. Fig.2 displays three possible configurations for these diagonal links:

- diagonal springs located on all the faces (configuration M1),
- only the inner diagonals (configuration M2),
- the combination of both inner and face diagonals (configuration M3).

Prior to the above configuration choice, let’s present our springs parameterization approach. The determination of the stiffness parameters could be realized by a series of numerical try-and-error processes. This may hardly converge. Therefore, we propose a methodology to calculate these parameters analytically, within the Lagrangian framework, and according to the following procedure.

For each experiment that defines an elastic characteristic (see Fig.1):

1. We build the Lagrangian as the sum of the potential of springs due to elongation as well as the potential of external forces, since kinetic term is null.
2. We establish a Taylor’s expansion of the Lagrangian to the second order in deformations and apply the principle of least action. It reads linear equations.
3. We use the definitions of section 3 to express the mechanical characteristics as a function of the stiffness coefficients.
4. We obtain a set of equations, since the mechanical characteristics are input parameters. We solve this system to get stiffness coefficients.

To solve the system, the number of unknowns has to be equal to the number of equations (constraints).

Three equations result from each elongation experiment (one for the Young’s modulus and one for the Poisson’s ratio along each direction orthogonal to the elongation). Thus, we obtain 9 equations for all the elongation directions. Moreover, 6 more equations have to be added to take into account the shear modulus (6 experiments). We have also to add one more equation to take into account the bulk modulus (1 experiment). Consequently, we could have 16 equations. Since the four elastic characteristics can be linked (see eq. (4) and (6)), if three characteristics are imposed, one can expect that the fourth will be verified. Thus, the whole system admits at most 15 equations.

Three degrees of freedom stem from the parallel edge \((k_{x0}, k_{y0}, k_{z0}) \), but the total number of freedom degrees depends on the diagonal spring configuration. Note that, for small shearing \((\theta \approx 0) \), only diagonal springs are stressed. Thus, the Lagrangian equation defining this characteristic depends only on the stiffness constants \(k_d \) of the different diagonals. This means that the diagonal springs constant can be determined independently of the other stiffness coefficients.

Note that, for the configuration (M2), the equations of shearing depend only on the inner diagonal \(k_d \). Consequently, only 3 equations are independent.

We summarize the number of degrees of freedom and the number of equations in Table 1 according to the possible configurations of the system. We observe that all the geometrical configurations bring to an over-constraint system. Nevertheless, the configuration (M2) is less constrained than the others. Thus, we chose this configuration, which corre-
Computes all the forces applied to each element. These forces are calculated in each direction
and action forces due to neighboring elements.

Displace each mesh node consequently.

6

3

12

15

9

9

4

6

3+(1)

3+(3)

1

3

(8)

(9)

\(F_{\text{el}} \)

\(M_2 \)

\(M_3 \)

\(s \)

\(T \)

\(\beta \)

\(\gamma \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)

\(\zeta \)

\(\eta \)

\(\iota \)

\(\kappa \)

\(\lambda \)

\(\mu \)

\(\nu \)

\(\xi \)

\(\omicron \)

\(\pi \)

\(\rho \)

\(\varsigma \)

\(\sigma \)

\(\tau \)

\(\upsilon \)

\(\phi \)

\(\chi \)

\(\psi \)

\(\omega \)

\(\theta \)

\(\delta \)

\(\epsilon \)
The quantitative study of the test results shows that Young’s modulus (see Fig. 4) and Poisson’s ratio (see Fig. 5) of our model tend to drift when the deformation increases. Nevertheless, these results are really satisfying. As illustrated in Fig. 4, the error on Young’s modulus exceeds 5% only for deformations larger than 10%.

![Figure 4: 2D Young’s modulus errors for a cubic meshed element in quasi-static tensile stress.](image)

Figure 4: 2D Young's modulus errors for a cubic meshed element in quasi-static tensile stress.

Besides, we notice that this error increases conversely with the imposed Poisson’s ratio: for a 10% deformation, the error on Young’s modulus amounts to 2.7% if \(\nu = 0.3 \), it amounts only to 2% if \(\nu = 0.4 \). This error falls down to 1.5% if \(\nu = 0.5 \).

Concerning Poisson’s ratio simulation, the error for \(\nu \in [0.3; 0.5] \) remains lower than 5%, even if the deformation attains 14% (see Fig. 5). We observe identical curves whatever the value of \(E \) is. This is not surprising since the spring stiffness constants and the thinning forces are proportional to the input parameter \(E \).

![Figure 5: Poisson's ratio errors (absolute value) for a cubic element in tensile stress.](image)

Figure 5: Poisson’s ratio errors (absolute value) for a cubic element in tensile stress.

To validate the shearing on an element composition, we built a 100 × 100 × 300 mm beam by assembling elements characterized by \(E = 1 \) Pa and \(\nu = 0.3 \). We stressed it by applying a force equivalent to 2000 N. The interpretations of shearing experiment are not straight forward for large deformations. Therefore we considered as reference, a Finite Element Model (FEM) to evaluate the accuracy of our model. For this, the results of our simulations and the FEM reference have been superimposed (see Fig. 7). Within the theoretical framework of our model, i.e. small deformations, the agreement is very satisfactory, attesting the good behavior of our model.
To get a more quantitative comparison, we quantified at each node of the mesh the discrepancy between the displacements calculated by our model and the displacements extracted from the finite element reference. We obtained a map of errors in which the mesh illustrate the solution of our model, and the arrows represent the enhanced discrepancies with regard to finite element reference.

Fig. 7 illustrates the influence of the mesh resolution on the result accuracy. We observe the mean error amounts to about 13% with a maximum of 33% for a $2 \times 2 \times 6$ resolution. It decreases progressively, if we improve the resolution. Mean error and the maximal error fall down respectively to 3% and 6% for a $8 \times 8 \times 24$ resolution.

Limits in inflation

We also performed some tests of deflation and inflation to measure the error in the bulk modulus conservation (see Fig. 8). These experiments exhibit a conservation of this coefficient for small displacements whatever the imposed coefficient E and ν are. Conservation is observed whatever the composition of elements is.

Fig. 8: Error measured on the bulk modulus according to the deformation imposed in volume.

Limits in deflection

The deflection experience (construction or structural element bends under a load) is recommended to validate mechanical models. It constitutes a relevant test to evaluate (a) the mass repartition, and (b) the behavior in case of large deformations (inducing large rotations, especially close to the fixation area).

This test consists in observing the deformation of a beam anchored at one end to a support. At equilibrium, under gravity loads, the top of the beam is under tension while the bottom is under compression, leaving the middle line of the beam relatively stress-free. The length of the zero stress line remains unchanged (see Fig. 9).

Fig. 9: Cantilever submitted to gravity, expression of the neutral axis deviation.

In case of a null Poisson’s ratio, the load induced deviation of the neutral axis is given by:

$$y(x) = \frac{\rho g}{24EI} \left(6L^2 x^2 - 4Lx^3 + x^4 \right)$$ \hspace{1cm} (10)

for a parallelepiped beam of inertia moment $I = TH^3/12$, and with linear density $\rho = M/L$.
We notice that results are dependent of the sampling resolution, as for any other numerical method, however the fiber axis profile keeps close to the profile given by the equation (10). Figure 10 displays some results for a cantilever beam of dimensions $400 \times 100 \times 100$ mm, with Young’s modulus equals to 1000 Pa, Poisson’s ratio to 0.3 and a mass of 0.0125 Kg.m$^{-3}$. By looking at the displacement errors at each mesh node, we observe that the error is decreasing when the sampling is improved: the maximum error in the sampling $4 \times 1 \times 1$ is about 45% while it is about 5% for a resolution of $16 \times 4 \times 4$.

Nevertheless figure 11 illustrates that there is a limit to the sampling resolution beyond which large shearings (rotations) of meshes in the vicinity of the fixation area are observed. In this area, our model is outside of its domain of validity and the maximum of error is about 8%. However, our model behaves better than the models using finite element methods that prove more difficulty outside their validity domain.

Illustration on a non-symmetric composition

All the previous tests were performed on highly symmetric objects. We propose now to break this symmetry. Figure 12 presents L-like object fixed at its base.

We apply a constant force to the edges that are orthogonal to the base. Figure 13 shows our results superimposed to the FEM solution, with a map of error in displacement. The object dimensions are $4000 \times 4000 \times 4000$mm. The mechanical characteristics are: Young’s modulus = 1kPa, Poisson’s ratio = 0.3 and an applied force = 0.3GN. In this experiment, we have neglected the mass. Again we clearly observe that our model behaves as expected: better mesh resolution leads to better results. Moreover, the dissymmetry of the geometry does not influence the accuracy of the results.
6. Conclusion and Future Work

We proposed a mass-spring model that ensures fast and physically accurate simulation of linear elastic, isotropic and homogeneous material. It consists in meshing any object by as set of cubic mass-spring elements, and in adding some corrective forces orthogonal to elongation forces. By construction, our model is well characterized by the Young’s modulus, Poisson’s ratio, shearing modulus and bulk modulus, for small deformations. The spring coefficients have just to be initialized according to simple analytic expressions. The amplitude of the corrective forces is simply derived from the elongation forces. Limits of our model have been given, by comparing our results with those obtained by a finite element method, chosen as reference for preciseness.

We exhibited that our model can also support large deformations. The accuracy increases with the mesh resolution.

In the future, we are looking to apply the same technique to other geometrical elements, for example parallelepipeds, tetrahedron or any polyhedron. This would increase the geometrical reconstruction possibilities and would offer more tools for simulating complex shapes.

Mesh optimization or local mesh adaptation would probably improve the efficiency of the model. For example, we can modify the resolution in the vicinity of highly deformed zones, reducing large rotations of elements undergoing heavy load.

Moreover, it may be interesting to investigate a procedure to update the spring coefficients and corrective forces when the deformations become too large.

References

[CD99] Cotin S., Delingette H., Ayachi N.: Efficient linear elastic soft models of tissues for real-time

