N. Candoni, R. Grossier, Z. Hammadi, R. Morin, and S. Veesler, Practical Physics Behind Growing Crystals of Biological Macromolecules, Protein & Peptide Letters, vol.19, issue.7, pp.714-724, 2012.
DOI : 10.2174/092986612800793136

URL : https://hal.archives-ouvertes.fr/hal-00724324

Y. Fu, L. Buryanovskyy, and Z. Zhang, Quinone Reductase 2 Is a Catechol Quinone Reductase, Journal of Biological Chemistry, vol.269, issue.35, pp.23829-23835, 2008.
DOI : 10.1016/S0304-3940(00)01723-7

E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel et al., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Research, vol.31, issue.13, pp.3784-3788, 2003.
DOI : 10.1093/nar/gkg563

C. J. Gerdts, G. L. Stahl, A. Napuli, B. Staker, J. Abendroth et al., Nanovolume optimization of protein crystal growth using the microcapillary protein crystallization system, Journal of Applied Crystallography, vol.125, issue.5, pp.1078-1083, 2010.
DOI : 10.1107/S0021889810027378

R. Grossier, Z. Hammadi, R. Morin, and A. Magnaldo, Generating nanoliter to femtoliter microdroplets with ease, Applied Physics Letters, vol.98, issue.9, pp.91916-091913, 2011.
DOI : 10.1063/1.3560453.1

URL : https://hal.archives-ouvertes.fr/hal-00581232

S. Guha, S. L. Perry, A. S. Pawate, and P. J. Kenis, Fabrication of X-ray compatible microfluidic platforms for protein crystallization, Sensors and Actuators B: Chemical, vol.174, pp.1-9, 2012.
DOI : 10.1016/j.snb.2012.08.048

Z. Hammadi, R. Grossier, S. Zhang, A. Ikni, N. Candoni et al., Localizing and inducing primary nucleation, Faraday Discuss., vol.12, issue.214, pp.489-501, 2015.
DOI : 10.1063/1.4836095

URL : https://hal.archives-ouvertes.fr/hal-01171394

C. L. Hansen, S. Classen, J. M. Berger, and S. R. Quake, Structure Determination, Journal of the American Chemical Society, vol.128, issue.10, pp.3142-3143, 2006.
DOI : 10.1021/ja0576637

T. Hashimoto and M. Nakai, Increased hippocampal quinone reductase 2 in Alzheimer's disease, Neuroscience Letters, vol.502, issue.1, pp.10-12, 2011.
DOI : 10.1016/j.neulet.2011.07.008

M. Heymann, A. Opathalage, J. L. Wierman, S. Akella, D. M. Szebenyi et al., Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. Corrigendum, IUCrJ, vol.1, issue.5, p.601, 2015.
DOI : 10.1107/S2052252514016960

E. M. Horstman, S. Goyal, A. Pawate, G. Lee, G. G. Zhang et al., Crystal Growth & Design, 2015.

J. Leng and J. B. Salmon, Microfluidic crystallization, Lab Chip, vol.196, issue.1, pp.24-34, 2009.
DOI : 10.1016/S0022-0248(98)00821-5

M. Maeki, A. S. Pawate, K. Yamashita, M. Kawamoto, M. Tokeshi et al., A Method of Cryoprotection for Protein Crystallography by Using a Microfluidic Chip and Its Application for in Situ X-ray Diffraction Measurements, Analytical Chemistry, vol.87, issue.8, pp.4194-4200, 2015.
DOI : 10.1021/acs.analchem.5b00151

M. Maeki, S. Yoshizuka, H. Yamaguchi, M. Kawamoto, K. Yamashita et al., X-ray Diffraction of Protein Crystal Grown in a Nano-liter Scale Droplet in a Microchannel and Evaluation of Its Applicability, Analytical Sciences, vol.28, issue.1, pp.65-65, 2012.
DOI : 10.2116/analsci.28.65

L. Mazutis, A. F. Araghi, O. J. Miller, J. Baret, L. Frenz et al., Droplet-Based Microfluidic Systems for High-Throughput Single DNA Molecule Isothermal Amplification and Analysis, Analytical Chemistry, vol.81, issue.12, pp.4813-4821, 2009.
DOI : 10.1021/ac900403z

URL : https://hal.archives-ouvertes.fr/inserm-00420178

O. Nosjean, M. Ferro, F. Cogé, P. Beauverger, J. Henlin et al., as the Quinone Reductase 2, Journal of Biological Chemistry, vol.261, issue.40, pp.31311-31317, 2000.
DOI : 10.1074/jbc.275.12.8794

F. Pinker, M. Brun, P. Morin, A. Deman, J. Chateaux et al., ChipX: A Novel Microfluidic Chip for Counter-Diffusion Crystallization of Biomolecules and in Situ Crystal Analysis at Room Temperature, Crystal Growth & Design, vol.13, issue.8, pp.3333-3340, 2013.
DOI : 10.1021/cg301757g

M. Van-der-woerd, D. Ferree, and M. Pusey, The promise of macromolecular crystallization in microfluidic chips, Journal of Structural Biology, vol.142, issue.1, pp.180-187, 2003.
DOI : 10.1016/S1047-8477(03)00049-2

S. Veesler, N. Ferté, M. S. Costes, M. Czjzek, and J. P. Astier, Temperature and pH Effect on the Polymorphism of Aprotinin (BPTI) in Sodium Bromide Solutions, Crystal Growth & Design, vol.4, issue.6, pp.1137-1141, 2004.
DOI : 10.1021/cg0498195

M. K. Yadav, C. J. Gerdts, R. Sanishvili, W. W. Smith, L. S. Roach et al., data collection and structure refinement from microcapillary protein crystallization, Journal of Applied Crystallography, vol.38, issue.6, pp.900-905, 2005.
DOI : 10.1107/S002188980502649X

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1858637

S. Zhang, N. Ferté, N. Candoni, and S. Veesler, Versatile Microfluidic Approach to Crystallization, Organic Process Research & Development, vol.19, issue.12, pp.1837-1841, 2015.
DOI : 10.1021/acs.oprd.5b00122

URL : https://hal.archives-ouvertes.fr/tel-01230807

S. Institut-de-recherches, chemin de ronde, F-78290 Croissy-sur-Seine. 3 Synchrotron SOLEIL Proxima-I, Gif-sur-Yvette, France Solubilities at 20°C are measured by equilibrating crystal-solution suspensions (initial volume of 40µL) over time as described in, 2004.